Nothing Special   »   [go: up one dir, main page]

JPH03245022A - Pyroelectric infrared-ray detector - Google Patents

Pyroelectric infrared-ray detector

Info

Publication number
JPH03245022A
JPH03245022A JP4418090A JP4418090A JPH03245022A JP H03245022 A JPH03245022 A JP H03245022A JP 4418090 A JP4418090 A JP 4418090A JP 4418090 A JP4418090 A JP 4418090A JP H03245022 A JPH03245022 A JP H03245022A
Authority
JP
Japan
Prior art keywords
circuits
pyroelectric
constituted
circuit
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4418090A
Other languages
Japanese (ja)
Inventor
Hitoshi Kuramoto
倉本 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP4418090A priority Critical patent/JPH03245022A/en
Publication of JPH03245022A publication Critical patent/JPH03245022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To simplify a structure by using a composite FET group wherein FETs having a plurality of circuits are housed in one package, and constituting detecting circuits of three or four circuits. CONSTITUTION:An electrode pattern for taking out a generated potential is formed on the rear surface of a pyroelectric body 12 by vapor deposition, and four pyroelectric elements 13 are constituted. A conductor pattern is formed on a wiring supporting board 14 so that four circuits are constituted. The parts of bias resistors and FETs are attached to the rear surface of the board 14. When four circuits are constituted, the space can be reduced by using a FET 15 containing two circuits. A supporting stage 23 is used for connecting between the pyroelectric body 12 and the board 14. A conductive bonding agent is applied to the cross section of the stage 23. At this time, lead-out parts for connections are provided on the surface of the pyroelectric body 12 with a vapor deposition pattern. The conductive bonding agent is applied from this surface to the supporting stage 23. These constituent parts are electromagnetically shielded in an airtight mode with a case 25 to which an optical filter 24 is attached and a stem 27 having six leads 26.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は焦電型赤外線検出器の構造に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to the structure of a pyroelectric infrared detector.

7従来技術] 焦電型赤外線検出器は、物体がら放射される赤外線を受
は電気信号に変換する素子であり、人体検知用センサと
して広く使用されている。従来人体検知用センサとして
使用されてきたものに、第2図に示すようなデュアル素
子、又はデュアル素子を2回路使用したデュアルツイン
素子が使用されてきた。デュアル素子の電気回路図を第
3図に示す。
7. Prior Art] A pyroelectric infrared detector is an element that receives infrared rays emitted from an object and converts it into an electrical signal, and is widely used as a human body detection sensor. Conventionally, a dual element as shown in FIG. 2 or a dual twin element using two circuits of dual elements has been used as a human body detection sensor. The electrical circuit diagram of the dual element is shown in FIG.

エレメント(1−a)及び(1−b)は、室温変動等に
より生じる各エレメントの出力をキャンセルするために
逆極性で直列又は並列に接続されている。エレメントか
らの出力はバイアス抵抗(3)を介し、インピーダンス
変換用FET(4)に接続され、ドレイン端子(5)、
ソース端子(6)、グランド端子(7)によって外部へ
接続されている。デュアルツイン素子の場合は、第3図
と同等の回路が同一ハウジング内に2回路構成されてい
る。
Elements (1-a) and (1-b) are connected in series or in parallel with opposite polarities in order to cancel the output of each element caused by room temperature fluctuations, etc. The output from the element is connected to the impedance conversion FET (4) via the bias resistor (3), and the drain terminal (5),
It is connected to the outside through a source terminal (6) and a ground terminal (7). In the case of a dual twin element, two circuits similar to those shown in FIG. 3 are constructed within the same housing.

このような現在使用されている赤外線検出器に対し、更
に信頼性を高めるべく実願昭63−80746号に示さ
れるような同一ハウジング内に、3回路以上の検出回路
を有する赤外線検出器が提案されている。エレメント配
置を第4図に示す。
In order to further improve the reliability of currently used infrared detectors, an infrared detector having three or more detection circuits in the same housing was proposed as shown in Utility Application No. 80746/1983. has been done. The element arrangement is shown in FIG.

ここでエレメント(8al  b)C9a、b)(10
−a、  b)  (11−a、  b)ともに、第3
図に示した回路によって4つの回路が構成されている。
Here element (8al b) C9a, b) (10
-a, b) (11-a, b) both 3rd
The circuits shown in the figure constitute four circuits.

第4図の場合、温度補償型シングル素子として示されて
いるが、第1図、第2図のようなデュアル素子でも同様
である。このような赤外線検出器は、当然のことながら
検出エリアのビーム数がエレメント数に応じて増え、そ
れに従って取り出される信号の数も増える。そのため検
知物体の細かな動き、又検知物体とそれ以外の動作要因
との識別がi足来の検出器に比べ、より明確にできると
いった利点を有している。
In the case of FIG. 4, a temperature-compensated single element is shown, but the same applies to dual elements as shown in FIGS. 1 and 2. Naturally, in such an infrared detector, the number of beams in the detection area increases according to the number of elements, and the number of signals extracted increases accordingly. Therefore, it has the advantage of being able to more clearly distinguish minute movements of the detected object and between the detected object and other movement factors than conventional detectors.

=発明が解決しようとする問題点] L記のように4回路(場合によっては3回路)の検出回
路を有する焦電型赤外線検出器は、従来素子に比べ特性
J:、様々ζ・利zを有し;いるにもかかわ5ず、現在
まだ実用化されていない理由は、その構造が複雑化する
ためTO5パッケージ及びこれに類するパッケージに納
めることが困難であった。
=Problem to be solved by the invention] A pyroelectric infrared detector having four detection circuits (in some cases, three circuits) as shown in L has characteristics J:, various ζ and gains compared to conventional elements. However, the reason why it has not yet been put into practical use is that its structure is complicated and it is difficult to fit it into a TO5 package or similar packages.

そこで大型のパッケージを用いることらできるが、この
場合特にミラーを用いて赤外線エネルギーを集光する方
式においては、パッケージの大きさに応じて死角が生じ
るといった欠点があった。
Therefore, a large package can be used, but in this case, there is a drawback that a blind spot occurs depending on the size of the package, especially in a method that uses a mirror to condense infrared energy.

又無理をしてT O−5パツケージに納めようとすれば
、部品間隔、配線ラインの間隔が狭くなりショートする
可能性が増大し、組立歩留まりの大幅な低下をまねく結
果となっていた。
Furthermore, if an attempt is made to fit the parts into the TO-5 package, the spacing between parts and wiring lines become narrower, increasing the possibility of short circuits, resulting in a significant drop in assembly yield.

1足って死角の少ないTo  5パツケージ及びこれに
相当するパッケージを用い、第4図に示した4回路(又
は3回路)の検出回路を容易に構成することが可能な構
造が望まれている。
What is desired is a structure that allows easy construction of the four (or three) detection circuits shown in Figure 4 using a To 5 package with fewer blind spots and an equivalent package. .

二問題を解決するための手段] 本発明は、第5図に示したような2回路のFETがワン
バ/ケージに納められた複合型FETを用いることによ
って上記問題を解決することができる。複合”4 F 
E Tは従来の1回路入りF E Tと同じ大きさで製
作可能であり、従来2回路購吠することが精−杯であっ
たが、上記複合型FETを用いることによって3回路な
いし4回路を構成することが容易になった。
Means for Solving Two Problems] The present invention can solve the above problems by using a composite FET in which two circuit FETs are housed in a single bar/cage as shown in FIG. Composite “4F”
ET can be manufactured in the same size as a conventional single-circuit FET, and conventionally it was difficult to use two circuits, but by using the above-mentioned composite FET, three or four circuits can be used. has become easier to configure.

二作用コ これによってパッケージの大型化を防ぎ、パッケージに
よる死角を従来と同じ状態に保ったまま従来の1回路又
は2回路では不充分であった検知物体の細かな動きや、
検知物体とそれ以外の動作要因との識別をより明確に行
うことが可能となった。
This dual function prevents the package from becoming large and maintains the blind spot caused by the package in the same state as before.
It has become possible to more clearly distinguish between the detected object and other operating factors.

[実施例] 第1図に本発明の実施例を示す。(12)は焦電体を示
し、PZT系セラミックを薄板上に加ニー用いた。(1
2)の焦電体の表裏には発生する電位を取り出すた力に
t極パターンを蒸着によって形成し、4つの焦!素子(
13)を構成した。
[Example] FIG. 1 shows an example of the present invention. (12) shows a pyroelectric material, in which a PZT ceramic was used on a thin plate. (1
2) A t-pole pattern is formed by vapor deposition on the front and back sides of the pyroelectric body to extract the generated potential, and four pyroelectrics are formed on the front and back sides of the pyroelectric body. element(
13) was constructed.

(14)は配線支持基板を示し、第3図の回路を1回路
fileすべく導体パターンを形成している。
(14) indicates a wiring support board, on which a conductor pattern is formed to form one circuit file of the circuit shown in FIG.

配線支持基板はアルミナ基板が一般的であるが、プリン
ト基板、その他の材料を用いても良い。導体パターンは
厚膜技術を用い、導電ペーストをスクリーン印刷し高温
で焼結して形成した。又、導体パターン上に半田付時の
ショート等を防ぐためにレジストパターンを形成した。
The wiring support substrate is generally an alumina substrate, but a printed circuit board or other materials may also be used. The conductor pattern was formed using thick film technology by screen printing a conductive paste and sintering it at high temperature. Furthermore, a resist pattern was formed on the conductor pattern to prevent short circuits during soldering.

次に配線支持基板の裏面には、第3図の回路図における
バイアス抵抗(3)及びFET (4)の部品を取り付
けた。ここで4回路構成する際に第3図に示した従来の
1回路入りFETを使用していたのでは必然的に広いス
ペースを必要とする。
Next, the bias resistor (3) and FET (4) components shown in the circuit diagram of FIG. 3 were attached to the back side of the wiring support board. If the conventional single-circuit FET shown in FIG. 3 were used to configure four circuits, a large space would inevitably be required.

更に1回路のFETを使用する場合(1回路当り3端子
)×(1回路のFETが4個)=12端子の半田付が必
要となる。これに対し第5図に示したように、2回路入
りFET(15)を用いることによりスペース的に小さ
くなるほが(接M端子が5端子) X (2回路(7)
FETが2個)=10端子ですみ、接続時の断線、ショ
ート等による不良の確率を低減することができる。ここ
で(16)はドレイン端子、(17)は2つのソース端
子、(18)は2つのゲート端子を示す。
Furthermore, when using one circuit of FETs, it is necessary to solder 12 terminals (3 terminals per circuit) x (4 FETs per circuit) = 12 terminals. On the other hand, as shown in Fig. 5, using a two-circuit FET (15) makes the space smaller (5 contact M terminals)
Only 10 terminals (2 FETs) are required, and the probability of defects due to disconnection, short circuits, etc. during connection can be reduced. Here, (16) represents a drain terminal, (17) represents two source terminals, and (18) represents two gate terminals.

当然のことながら3回路入り、4回路入りFETを用い
れば、これ等を組み合わせることによりスペース的、歩
留まり的効果は大きい。本実施例で用いた抵抗(22)
は配線支持基板(14)に直後スクリーン印刷し形成し
た。
Naturally, if a 3-circuit or 4-circuit FET is used, the effect in terms of space and yield will be large by combining these. Resistor (22) used in this example
was formed by immediately screen printing on the wiring support substrate (14).

焦電体(12)と配線支持基板(14)の接続は支持台
(23)を用い、その断面を導電接着剤を中布して行っ
た。二の場合、接続のための引き出ヒ部分を焦電体の表
面に蒸着パターンによって課け、この表面から支持台・
\と導電接着剤を塗り接続した。二〇場合、各エレメ/
トのグランド接べ部を共通と=、III力ゲート接続部
とグランド桜続部の合わせて5個の支持台を用いた。
The pyroelectric body (12) and the wiring support substrate (14) were connected using a support stand (23), and the cross section thereof was covered with a conductive adhesive. In the second case, an extraction hole for connection is imposed on the surface of the pyroelectric material by a vapor deposition pattern, and from this surface the support
\ and connected with conductive adhesive. In 20 cases, each element/
A total of five supports were used, with the ground connection part of the gate being common, the III force gate connection part, and the ground connection part.

これ等力構成部品は光学フノルタ−(24・が耳゛Zり
付(すらtLf: T O−,5パIケージのケース(
25)と、6水力リード 26゛:そ有するステム12
7・によ−)て電磁/−ルド及び気密/−ルされている
These equal force components are optical fnorter (24 mm with ears) (T Lf: T O-, 5-piece I-cage case (
25) and 6 hydraulic reeds 26゛: stem 12
It is electromagnetically shielded and hermetically sealed by 7.

:肋果3 L’J、 J−、のような購ノkをとることにより、3
回路又よ1回路の検出回路を持つ焦電撃赤外線検出益を
TO−)又;よそれに相当するパッケージにIII戊す
ることがuf能とζ・す、パッケージによって生じる死
角をi;を米と同程度に押さえることがて゛き、がっ光
学系も同ヒ光学系を用いることが可能て゛ある。
: Rib 3 By taking purchase no k such as L'J, J-, 3
It is also possible to convert the pyroelectric infrared detection effect with a circuit or one detection circuit into a package corresponding to TO-) or to reduce the blind spot caused by the package to the same as US. It is possible to use the same optical system as the optical system.

史に溝道が簡素化されるに至って組立も容易とな)、コ
ストの大幅な増加をまねくことなく工業的に価値のある
ものとなった。
In history, as ditches became simpler and easier to assemble, they became industrially valuable without significantly increasing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における構造そ示す。第2図(a)は従
来のデュアル素子11回路)のパターン図を示じ、又第
2図(b)はデュアルツイン素子2回路)のパターン図
を示す。第3図(a)(b)はデュアル素子(1回路)
の回路図を示す。 ス第1図は中・し・が受光エレメント、外側が温度補[
賞エレメントとし、これを4回路設けたエレメントパタ
ーン図そ示す。第5図は本発明に用いられる複合2 F
 E Tの回路図を示す。
FIG. 1 shows the structure of the present invention. FIG. 2(a) shows a pattern diagram of a conventional dual element 11 circuit), and FIG. 2(b) shows a pattern diagram of a dual twin element 2 circuit). Figure 3 (a) and (b) are dual elements (1 circuit)
The circuit diagram is shown. In Figure 1, the center and bottom are the light receiving elements, and the outside is the temperature compensation element.
An element pattern diagram in which four circuits of this element are provided as a prize element is shown. Figure 5 shows the composite 2F used in the present invention.
The circuit diagram of ET is shown.

Claims (1)

【特許請求の範囲】[Claims]  赤外線を受けて電気信号に変換する焦電型赤外線検出
器において、複数の回路のFETを1つに納めた複合型
FET(15)を用いることによって、3又は4回路の
検出回路を構成したことを特徴とする焦電型赤外線検出
器。
In a pyroelectric infrared detector that receives infrared rays and converts them into electrical signals, a 3- or 4-circuit detection circuit is constructed by using a composite FET (15) in which FETs of multiple circuits are housed in one. A pyroelectric infrared detector featuring:
JP4418090A 1990-02-22 1990-02-22 Pyroelectric infrared-ray detector Pending JPH03245022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4418090A JPH03245022A (en) 1990-02-22 1990-02-22 Pyroelectric infrared-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4418090A JPH03245022A (en) 1990-02-22 1990-02-22 Pyroelectric infrared-ray detector

Publications (1)

Publication Number Publication Date
JPH03245022A true JPH03245022A (en) 1991-10-31

Family

ID=12684380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4418090A Pending JPH03245022A (en) 1990-02-22 1990-02-22 Pyroelectric infrared-ray detector

Country Status (1)

Country Link
JP (1) JPH03245022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151762A (en) * 1997-08-06 1999-02-26 Toshiba Corp Infrared solid-state image pick-up device and its manufacture
JP2007240456A (en) * 2006-03-10 2007-09-20 Murata Mfg Co Ltd Pyroelectric temperature compensated infrared sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151762A (en) * 1997-08-06 1999-02-26 Toshiba Corp Infrared solid-state image pick-up device and its manufacture
JP2007240456A (en) * 2006-03-10 2007-09-20 Murata Mfg Co Ltd Pyroelectric temperature compensated infrared sensor

Similar Documents

Publication Publication Date Title
US4556796A (en) Infrared radiation detector
JPH07218648A (en) Infrared-ray sensor array device
US5457318A (en) Thermal detector apparatus and method using reduced thermal capacity
JPS60113951U (en) Target assembly for image pickup tube
JPH03245022A (en) Pyroelectric infrared-ray detector
JPS61123288A (en) Solid-state pick up device
US4475040A (en) Pyroelectric infrared detector
JPH0821767A (en) Infrared detector and preparation thereof
JP5734292B2 (en) Compact infrared light detector, method for manufacturing the same, and infrared light detection system including the infrared light detector
JPH049560Y2 (en)
GB2133615A (en) Pyroelectric infra-red radiation detector
JP2000304764A (en) Semiconductor dynamic value sensor and its manufacture
JP2963348B2 (en) Pyroelectric sensor element and manufacturing method thereof
JPH0843435A (en) Acceleration sensor
JP3201893B2 (en) Semiconductor laser device
JPH10122955A (en) Pyroelectric sensor element and its manufacture
JPH0731082B2 (en) Array infrared detector
KR100243357B1 (en) Infrared sensor array and manufacturing method thereof
JPH01202630A (en) Infrared ray detector
JPH07198479A (en) Pyroelectric infrared sensor
JPH0269624A (en) Pyroelectric infrared ray detecting element
JPH06120569A (en) Infrared detector
JPH01242928A (en) Pyroelectric type infrared array sensor
JPH034127A (en) Pyroelectric type infrared ray detector
JPH0637361A (en) Infrared detector