Nothing Special   »   [go: up one dir, main page]

JPH03239916A - Wrong piping detection system of differential flow rate measuring instrument - Google Patents

Wrong piping detection system of differential flow rate measuring instrument

Info

Publication number
JPH03239916A
JPH03239916A JP3622290A JP3622290A JPH03239916A JP H03239916 A JPH03239916 A JP H03239916A JP 3622290 A JP3622290 A JP 3622290A JP 3622290 A JP3622290 A JP 3622290A JP H03239916 A JPH03239916 A JP H03239916A
Authority
JP
Japan
Prior art keywords
flow rate
measurement
differential
differential flow
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3622290A
Other languages
Japanese (ja)
Inventor
Renzou Hirai
平井 錬造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3622290A priority Critical patent/JPH03239916A/en
Publication of JPH03239916A publication Critical patent/JPH03239916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To detect the wrong connection of piping automatically by feeding liquid to a series of pipes by one pump and monitoring a differential flow rate measured values in a transient period from the start of the liquid feeding to the convergence of the differential flow rate measured value on a constant value. CONSTITUTION:The flow directions in measurement pipes 1 and 2 are normal, but the measurement pipe 1 for inflow rate detection and the measurement pipe 2 for outflow rate detection are inverted in roll. In this case, the single pump is used to supply the liquid at the same flow rate to the measurement pipes 1 and 2 for the zero-point adjustment of the differential flow rate. The measurement pipe on the upstream side and the measurement pipe on the downstream side have a propagation time difference in flow velocity right after the liquid begins to flow. When the measurement pipe 2 and measurement pipe 1 are inverted in roll, the differential flow rate is inverted momentarily until a stationary value 0 is reached. For the purpose, the polarity of the differential flow rate right after the liquid begins to flow into the respective measurement pipes at the same flow rate is decided to detect the wrong connection of the pipes. Consequently, the detection output is sent out of a warning output circuit 10.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、配管接続間違いを自動検出する機能を備え
た電磁式差流量測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an electromagnetic differential flow rate measuring device having a function of automatically detecting incorrect piping connections.

(従来の技術) この種の差流量測定装置には2台の電磁流量計が用いら
れる。この電磁流量計は、ファラディの法則を利用した
導電性流体の流量測定用の計器である。
(Prior Art) Two electromagnetic flowmeters are used in this type of differential flow rate measuring device. This electromagnetic flowmeter is an instrument for measuring the flow rate of conductive fluid using Faraday's law.

断面積Sの測定管内に被測定流体を流速Vで流し、この
流速方向と垂直に磁束密度Bを掛けると、流速及び磁束
のそれぞれに垂直な方向に起電力Eが生ずる。
When a fluid to be measured is caused to flow at a flow rate V in a measuring tube having a cross-sectional area S and multiplied by a magnetic flux density B perpendicular to the direction of the flow velocity, an electromotive force E is generated in a direction perpendicular to each of the flow velocity and the magnetic flux.

このとき、各パラメータの間には、 Emk−v・B    ・・・(1) 但し、kは比例定数 という比例関係がある。すなわち、流速Vが増減すると
起電力Eは直線的に増減する。
At this time, there is a proportional relationship between each parameter: Emk-v·B (1) where k is a proportionality constant. That is, when the flow velocity V increases or decreases, the electromotive force E increases or decreases linearly.

さらに、起電力Eの極性に注目すれば、逆流((4)式
ではv<Qに相当)も検出することができる。
Furthermore, by paying attention to the polarity of the electromotive force E, it is also possible to detect a backflow (corresponding to v<Q in equation (4)).

ところで、差流量測定装置においては、流体圧力がそれ
程高くない微小な流量(例えば血液等)を測定する場合
、樹脂製のチューブを用いて流量計に対する配管を行う
ことがある。これは、頻繁に配管の洗浄あるいは交換を
するときには取り外しが容易になるからである。この種
の差流量測定装置においては、2台の電磁流量計を使用
することから、4本のチューブを配管接続する必要があ
る。
By the way, in a differential flow rate measuring device, when measuring a minute flow rate (for example, blood, etc.) where the fluid pressure is not so high, a resin tube may be used to connect the flowmeter to the flow meter. This is because it is easier to remove when cleaning or replacing pipes frequently. Since this type of differential flow rate measuring device uses two electromagnetic flowmeters, it is necessary to connect four tubes.

(発明が解決しようとする課題) 上述のように、この種の差流量測定装置においては、2
台の電磁流量計を使用することから、4本のチューブを
配管接続する必要かあり、その結果、配管の接続間違い
が生しやすいという問題点があった。
(Problems to be Solved by the Invention) As mentioned above, in this type of differential flow rate measuring device, two
Since a stand-alone electromagnetic flowmeter is used, it is necessary to connect four tubes, and as a result, there is a problem in that it is easy to connect the piping incorrectly.

この発明は、上述の問題点に鑑みて成されたものであり
、その目的とするところは配管の接続誤りを自動的に検
出する機能を有する差流量測定装置を提供することにあ
る。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a differential flow rate measuring device having a function of automatically detecting a connection error in piping.

〔発明の構成〕 (課題を解決するための手段) この発明は、上記の目的を達成するために、差流量測定
対象となるシステム入口流体及びシステム出口流体がそ
れぞれ通過するように配管接続されるべき2本の測定管
と、前記測定管のそれぞれの通過流量を計測する電磁流
量計測部と、前記側流量計測部の計測値の差を差流量と
して出力する演算手段とを備えた差流量測定装置におい
て、前記測定管の4個のポートに対する配管接続が一応
完了した後、前記一連の配管に対して1台のポンプによ
り流体送給を行い、流体送給開始後前記差流量計測値が
一定値に収束するまでの過渡期における差流量計測値を
監視し、その極性に基いて測定管に対する誤配管を検出
することを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a system in which piping is connected so that a system inlet fluid and a system outlet fluid, which are objects of differential flow rate measurement, respectively pass through. A differential flow rate measurement device comprising: two measuring tubes, an electromagnetic flow rate measuring section that measures the flow rate passing through each of the measuring tubes, and a calculation means that outputs the difference between the measured values of the side flow rate measuring section as a differential flow rate. In the device, after the piping connections to the four ports of the measurement tube have been completed, one pump supplies fluid to the series of piping, and after the fluid supply starts, the differential flow rate measurement value is constant. This method is characterized by monitoring the differential flow rate measurement value during the transition period until it converges to the value, and detecting incorrect piping for the measurement pipe based on the polarity of the differential flow rate measurement value.

(作用) 測定管の4個のポートに対する配管接続が一応完了した
後、前記一連の配管に対して1台のポンプにより流体送
給を行うと、配管か正しく行われていれば、2台の電磁
流量計からは所定の時間差をもって計測出力が表れる。
(Function) After the piping connections to the four ports of the measurement tube are completed, if fluid is supplied to the series of piping by one pump, if the piping is connected correctly, two pumps will be connected. The electromagnetic flowmeter produces a measured output with a predetermined time difference.

従って、これら計測値の差を観察すると、流体送給開始
後両測定管の流量が定常状態に達するまでの過渡期にお
いては、所定の極性に振れるピク出力が観測され、これ
に基いて配管接続の良否を判定することかできる。
Therefore, when observing the difference between these measured values, a peak output that swings to a predetermined polarity is observed during the transition period from the start of fluid feeding until the flow rate of both measuring tubes reaches a steady state, and based on this, piping connections are made. It is possible to judge the quality of the product.

(実施例) 第1図は、本発明に係る電磁式差流量測定装置のハード
ウェア構成を概略的に示すブロック図である。
(Example) FIG. 1 is a block diagram schematically showing the hardware configuration of an electromagnetic differential flow rate measuring device according to the present invention.

同図に示されるように、この実施例の電磁式差流量測定
装置は、流入流量検出用の測定管1と、流出流量検出用
の測定管2と、油J定管lの検出電極からの信号を増幅
するバッファアンプ3と、測定管2の検出電極からの信
号を増幅するバッファアンプ4と、測定管lの検出流量
と測定管2の検出流量との差にt目当する信号を出力す
る差動アンプ5と、バッファアンプ3の出力をデジタル
化するA/D変換器6と、差動アンプ5の出力をデジタ
ル化するA/D変換器7と、A/D変換器6゜7からの
信号を処理するためのマイクロプロセッサ8と、マイク
ロプロセッサ8により処理された差流量信号を出力する
信号出力回路9と、例えばオープンコレクタによる接点
出力等を有する警報回路10とから構成されている。
As shown in the figure, the electromagnetic differential flow rate measuring device of this embodiment includes a measuring tube 1 for detecting the inflow flow rate, a measuring tube 2 for detecting the outflow flow rate, and a measuring tube 2 for detecting the inflow flow rate, and a detection electrode of the oil J fixed pipe l. A buffer amplifier 3 that amplifies the signal, a buffer amplifier 4 that amplifies the signal from the detection electrode of the measurement tube 2, and outputs a signal that is aimed at the difference between the detected flow rate of the measurement tube 1 and the detection flow rate of the measurement tube 2. an A/D converter 6 that digitizes the output of the buffer amplifier 3, an A/D converter 7 that digitizes the output of the differential amplifier 5, and an A/D converter 6゜7. A signal output circuit 9 outputs a differential flow rate signal processed by the microprocessor 8, and an alarm circuit 10 having a contact output using an open collector, for example. .

そして、マイクロプロセッサ8においては、通常の差流
量演算処理のほかに、第2図のフローチャートに示され
る処理(ステップ201.202)を実行することによ
り配管の誤接続を検出するようになっている。
In addition to the normal differential flow rate calculation process, the microprocessor 8 detects incorrect connection of pipes by executing the process shown in the flowchart of FIG. 2 (steps 201 and 202). .

第3図<a)は、差流量測定装置100に対する正常な
配管接続状、衿を示す説明図である。
FIG. 3<a) is an explanatory diagram showing a normal piping connection state and collar for the differential flow rate measuring device 100.

同図に示されるように、外部システムS1の流出口0U
TIから流出する液体は、配管P1を経由して差流量測
定装置100の流入口Aから測定管1へと流れ込み、流
出口Bから流れ出る。このときの測定管1の流量をQl
とする。
As shown in the figure, the outlet 0U of the external system S1
The liquid flowing out from the TI flows into the measuring tube 1 from the inlet A of the differential flow rate measuring device 100 via the pipe P1, and flows out from the outlet B. At this time, the flow rate of measuring tube 1 is Ql
shall be.

流出口Bから流れ出た液体は、配管P2を経由して外部
システムS2の流入口IN2へと流れ込む。
The liquid flowing out from the outlet B flows into the inlet IN2 of the external system S2 via the pipe P2.

同様にして、外部システムS2の流出口0UT2から流
出する液体は、配管P3を経由して差流量測定装置10
0の流入口Cから測定管2へと流れ込み、流出口りから
流れ出る。このときの測定管2の流量をQ2とする。
Similarly, the liquid flowing out from the outlet 0UT2 of the external system S2 passes through the pipe P3 to the differential flow rate measuring device 10.
0 flows into the measuring tube 2 from the inlet C, and flows out from the outlet. The flow rate of the measuring tube 2 at this time is assumed to be Q2.

流出口りから流れ出た液体は、配管P4を経由して外部
システムS1の流入口INIへと流れ込む。
The liquid flowing out from the outlet flows into the inlet INI of the external system S1 via the pipe P4.

このとき、差流量ΔQは ΔQ−Ql−Q2    ・・・(2)として求められ
る。
At this time, the differential flow rate ΔQ is obtained as ΔQ−Ql−Q2 (2).

一方、誤った配管接続としては、第3図(b)〜第3図
(h)の場合が考えられる。
On the other hand, the cases shown in FIGS. 3(b) to 3(h) may be considered as incorrect piping connections.

これらの誤配管接続の中で、第3図(e)〜第3図(h
)の場合は、外部のシステムにおいて流入口と流出口が
逆となり、流量が予定通りに流れない等の不都合か生ず
るため、容易に誤配管を発見することができる。
Among these incorrect piping connections, Fig. 3(e) to Fig. 3(h)
), the inlet and outlet are reversed in the external system, causing problems such as flow not flowing as planned, and incorrect piping can be easily discovered.

従って、以下では第3図(b)〜第3図(h)の場合に
ついて説明する。
Therefore, the cases shown in FIGS. 3(b) to 3(h) will be described below.

先ず、第3図(b)の場合について説明する。First, the case shown in FIG. 3(b) will be explained.

この配管接続状態では、各測定管1,2内の流れ方向は
正常だが、流入流量検出用測定管1と流出流量検出用測
定管2の役割が逆転している。
In this piping connection state, the flow directions in each of the measurement tubes 1 and 2 are normal, but the roles of the measurement tube 1 for inflow flow rate detection and the measurement tube 2 for outflow flow rate detection are reversed.

このような場合には、差流量の零点調整のために流入流
量検出用測定管1及び流出流量検出用測定管2に対して
単一のポンプを用いて同一流量を流す。
In such a case, in order to adjust the zero point of the differential flow rate, a single pump is used to flow the same flow rate to the measurement tube 1 for inflow flow rate detection and the measurement tube 2 for outflow flow rate detection.

流し始めた直後では、上流側に位置する測定管と下流側
に位置する測定管とでは流速の変化に伝達時間差が生ず
る。
Immediately after the flow starts, a difference in transmission time occurs in the change in flow velocity between the measurement pipe located on the upstream side and the measurement pipe located on the downstream side.

各測定管内流量の変化を指数関数で近似したものを第4
図(a)に示す。ここで、Qlは流入流量検出用測定管
1内の流量を、Q2は流出流量検出用測定管2内の流量
を表し、 Ql−V [1−EXP (−t/τ)]2−0 (但し、0<t<T) Q2−v [1−EXP ((T−t)/τ)コ(但し
、t>T) ■、流量定常値 T二流体が流入流量検出用測定管1から流出流量検出用
測定管2まで達するのに 要する伝達時間 12時定数 である。
The fourth approximation of the change in flow rate in each measurement pipe using an exponential function
Shown in Figure (a). Here, Ql represents the flow rate in the measuring tube 1 for detecting the inflow flow rate, Q2 represents the flow rate in the measuring tube 2 for detecting the outflow flow rate, and Ql-V [1-EXP (-t/τ)]2-0 ( However, 0<t<T) Q2-v [1-EXP ((T-t)/τ) (however, t>T) ■, steady flow rate T Two fluids flow out from the measuring tube 1 for inflow flow rate detection This is a time constant of 12 times the transmission time required to reach the measuring tube 2 for flow rate detection.

配管が正常に接続された場合の差流量ΔQは、(2)式
から求められる。
The differential flow rate ΔQ when the pipes are connected normally can be found from equation (2).

ΔQ−Q 1−02 −V [1−EXP (−t/τ)] (但し、O<t<T) −V*EXP (T/τ)*EXP(−t/τ)(但し
、t /T) となる。これを第4図(b)に示す。差流量は定常値O
となるまでに瞬間的に正流量となる。
ΔQ-Q 1-02 -V [1-EXP (-t/τ)] (However, O<t<T) -V*EXP (T/τ)*EXP(-t/τ) (However, t/ T) becomes. This is shown in FIG. 4(b). The differential flow rate is the steady value O
The flow becomes positive instantaneously.

これに対して、第3図(b)に示されるように、流出流
量検出用測定管と流入流量検出用測定管との役割が逆転
している場合には、 g 2− V [1−E X P (−t / r )
 ]Q 1−0 (但し、0<t<T) Ql−V  [1−EXP  ((T−t)/r)](
但し、t>T) であるから、 ΔQ−Ql−Q2 一−V [1−EXP (−t/τ)](但し、0<t
<T) w−v*EXP (T/τ)*EXP(−t/τ)(但
し、t /T) となる。これを第4図(c)に示す。差流量は定常値0
となるまでに瞬間的に逆流量となる。
On the other hand, as shown in FIG. 3(b), when the roles of the measurement tube for detecting the outflow flow rate and the measurement tube for detecting the inflow flow rate are reversed, g 2-V [1-E X P (-t/r)
]Q 1-0 (0<t<T) Ql-V [1-EXP ((T-t)/r)](
However, since t>T), ΔQ-Ql-Q2 -V [1-EXP (-t/τ)] (however, 0<t
<T) w−v*EXP (T/τ)*EXP(-t/τ) (where t/T). This is shown in FIG. 4(c). Differential flow rate is steady value 0
By the time this happens, the amount of flow becomes instantaneously reversed.

以上のことから、各測定管内に同一流量を流し始めた直
後の差流量の極性を判定することで配管の誤接続を検知
できる。これを警報出力回路10から外部へと出力する
From the above, it is possible to detect incorrect connection of the pipes by determining the polarity of the differential flow rate immediately after the same flow rate starts flowing into each measurement pipe. This is output from the alarm output circuit 10 to the outside.

次に、第3図(C)、第3図(d)の場合について説明
する。
Next, the cases of FIG. 3(C) and FIG. 3(d) will be explained.

差流量の零点調整のために流入流量検出用測定管1及び
流出流量検出用測定管2に同一の流量を流す。このとき
、流体の流れ方向は正常の場合と比べて逆極性になって
いる。
In order to adjust the zero point of the differential flow rate, the same flow rate is made to flow through the measurement pipe 1 for detecting the inflow flow rate and the measurement pipe 2 for detecting the outflow flow rate. At this time, the direction of fluid flow is of opposite polarity compared to the normal case.

従って、流入流量検出用測定管1で検出される信号も逆
極性になるため誤配管を検出することができる。これを
警報出力回路10から外部へと出力する。
Therefore, since the signal detected by the inflow flow rate detection measuring tube 1 also has the opposite polarity, incorrect piping can be detected. This is output from the alarm output circuit 10 to the outside.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、この発明によれば、差流
量の零点校正のために、流入流量検出用測定管と流出流
量検出用測定管に同一流量を流す際、すなわち差流量の
測定準備段階において、格別のコストアップを来すこと
無く、配管の誤接続を知ることができる。
As is clear from the above description, according to the present invention, when the same flow rate is caused to flow through the measurement tube for inflow flow rate detection and the measurement tube for outflow flow rate detection for zero point calibration of differential flow rate, that is, preparation for measurement of differential flow rate. At this stage, incorrect connection of piping can be detected without any particular increase in cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例装置のハードウェア構成を概略的に示す
ブロック図、第2図は実施例装置における誤配管検出処
理を示すフローチャート、第3図は配管接続態様を示す
説明図、第4図は各市j定管の流量及び最終的に得られ
る差流量の経時的変化を示すグラフである。 1・・・流入流量検出用測定管 2・・・流出流量検出用測定管 3.4・・・バッファアンプ 5・・・差動アンプ 6.7・・・A/D変換器 8・・・マイクロプロセッサ 9・・・信号出力回路 10・・・警報出力回路
Fig. 1 is a block diagram schematically showing the hardware configuration of the embodiment device, Fig. 2 is a flowchart showing erroneous piping detection processing in the embodiment device, Fig. 3 is an explanatory diagram showing the piping connection mode, and Fig. 4 is a graph showing changes over time in the flow rate of each city's fixed pipe and the finally obtained differential flow rate. 1...Measurement tube for inflow flow rate detection 2...Measurement tube for outflow flow rate detection 3.4...Buffer amplifier 5...Differential amplifier 6.7...A/D converter 8... Microprocessor 9...Signal output circuit 10...Alarm output circuit

Claims (1)

【特許請求の範囲】[Claims] (1)差流量測定対象となるシステム入口流体及びシス
テム出口流体がそれぞれ通過するように配管接続される
べき2本の測定管と、前記測定管のそれぞれの通過流量
を計測する電磁流量計測部と、前記両流量計測部の計測
値の差を差流量として出力する演算手段とを備えた差流
量測定装置において、 前記測定管の4個のポートに対する配管接続が一応完了
した後、前記一連の配管に対して1台のポンプにより流
体送給を行い、流体送給開始後前記差流量計測値が一定
値に収束するまでの過渡期における差流量計測値を監視
し、その極性に基いて測定管に対する誤配管を検出する
ことを特徴とする差流量測定装置の誤配管検出方式。
(1) Two measuring pipes to be connected so that the system inlet fluid and the system outlet fluid to be measured for the differential flow rate respectively pass therethrough, and an electromagnetic flow measuring section that measures the flow rate passing through each of the measuring pipes. , a calculation means for outputting the difference between the measured values of the two flow rate measurement sections as a differential flow rate, wherein after the piping connections to the four ports of the measurement pipe are temporarily completed, the series of piping Fluid is supplied by one pump to A method for detecting incorrect piping for a differential flow rate measuring device, which is characterized by detecting incorrect piping for a differential flow rate measuring device.
JP3622290A 1990-02-19 1990-02-19 Wrong piping detection system of differential flow rate measuring instrument Pending JPH03239916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3622290A JPH03239916A (en) 1990-02-19 1990-02-19 Wrong piping detection system of differential flow rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3622290A JPH03239916A (en) 1990-02-19 1990-02-19 Wrong piping detection system of differential flow rate measuring instrument

Publications (1)

Publication Number Publication Date
JPH03239916A true JPH03239916A (en) 1991-10-25

Family

ID=12463749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3622290A Pending JPH03239916A (en) 1990-02-19 1990-02-19 Wrong piping detection system of differential flow rate measuring instrument

Country Status (1)

Country Link
JP (1) JPH03239916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2411725A (en) * 2004-02-25 2005-09-07 Thames Water Utilities Sewer pipe misconnection detection
DE102015001406B3 (en) * 2015-02-04 2016-07-14 Fresenius Medical Care Deutschland Gmbh Cassette module for a differential flow meter and differential flow meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2411725A (en) * 2004-02-25 2005-09-07 Thames Water Utilities Sewer pipe misconnection detection
GB2411725B (en) * 2004-02-25 2007-01-24 Thames Water Utilities Plumbing or Drainage Pipe Misconnection Detection
DE102015001406B3 (en) * 2015-02-04 2016-07-14 Fresenius Medical Care Deutschland Gmbh Cassette module for a differential flow meter and differential flow meter

Similar Documents

Publication Publication Date Title
RU2181477C2 (en) Flowmeter of overflow type
US8291773B2 (en) Ultrasonic measurement of flow velocity
JPH03239916A (en) Wrong piping detection system of differential flow rate measuring instrument
JP2941255B1 (en) Flow measurement device
CN116263348A (en) Detection method, detection device and flowmeter for measuring pollutants in pipeline
JP4146699B2 (en) Ultrasonic vortex flowmeter
JP3757009B2 (en) Split flow meter
US11650091B2 (en) Compact vibrating type flowmeter
JP4273519B2 (en) Ultrasonic flow meter
CN115900850B (en) Detection method of electromagnetic flowmeter and electromagnetic flowmeter
JP2003065816A (en) Electromagnetic flowmeter
JPH11316144A (en) Differential pressure type flow meter
JP2002214002A (en) Flow meter
JP3398251B2 (en) Flowmeter
JP2002340632A (en) Flowmeter
JP4623488B2 (en) Fluid flow measuring device
JP5043514B2 (en) Ultrasonic vortex flowmeter
JP3101722B2 (en) Fluid dilution ratio measuring device
JPH0412423Y2 (en)
JPS61253424A (en) Vortex flowmeter
JPH05172599A (en) Vortex flowmeter
JPH07209042A (en) Vibration type flow meter
JP6303342B2 (en) Magnetic oxygen analyzer
JPH03242514A (en) Detecting system for flow rate
JPS596413Y2 (en) Zero drift detection device in electromagnetic flowmeter