Nothing Special   »   [go: up one dir, main page]

JPH03225995A - Wiring board - Google Patents

Wiring board

Info

Publication number
JPH03225995A
JPH03225995A JP2143690A JP2143690A JPH03225995A JP H03225995 A JPH03225995 A JP H03225995A JP 2143690 A JP2143690 A JP 2143690A JP 2143690 A JP2143690 A JP 2143690A JP H03225995 A JPH03225995 A JP H03225995A
Authority
JP
Japan
Prior art keywords
wiring
nickel
film
nickel layer
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2143690A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tsubomatsu
良明 坪松
Naoki Fukutomi
直樹 福富
Akishi Nakaso
昭士 中祖
Akinari Kida
木田 明成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2143690A priority Critical patent/JPH03225995A/en
Publication of JPH03225995A publication Critical patent/JPH03225995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PURPOSE:To enhance a corrosion-resistant property and the contact tight property of a wiring pattern with an insulating board by a method wherein the insulating board is formed of a polyimide-based film, and a nickel layer at the lower part of the wiring pattern is formed by a vacuum film formation method. CONSTITUTION:A nickel layer 3 having through holes 2 is vapor-deposited by an electron beam by using a vacuum vapor deposition apparatus. A dry film photoresist is laminated on both faces of the nickel layer. The photoresist is exposed to light; it is developed by trichloroethane; resist patterns 4 are obtained; after that, patterns 5 are plated by an electroless copper plating operation. An electroless nickel plating operation is executed; the surface (excluding the lower part of a wiring part) of the wiring patterns 6 is covered with nickel 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐電食性に優れた配線板に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a wiring board with excellent electrolytic corrosion resistance.

(従来の技術) 従来、配線板の耐電食性を改善する目的で、重金属除去
剤あるいは防錆剤である、例えばベンゾトリアゾール、
ビニルトリアジン及びトリアジントリチオールなどの有
機化合物を配線板用高分子絶縁月利に分散させたものが
あった。
(Prior Art) Conventionally, in order to improve the electrolytic corrosion resistance of wiring boards, heavy metal removers or rust preventives such as benzotriazole,
There are some in which organic compounds such as vinyl triazine and triazine trithiol are dispersed in polymeric insulation for wiring boards.

また、配線パターンを形成した後、上記有機化合物を含
む溶液に配線パターンを浸漬、乾燥することにより配線
パターン表面に有機化合物の皮膜を形成したものもあっ
た。
In some cases, after forming a wiring pattern, the wiring pattern is immersed in a solution containing the above-mentioned organic compound and dried to form a film of an organic compound on the surface of the wiring pattern.

その他、配線パターン表面(配線パターンの側壁部及び
下部を含む)に無電解めっき法でニッケル皮膜を形成し
た配線構造のものも提案されている。
In addition, a wiring structure in which a nickel film is formed on the surface of the wiring pattern (including the sidewalls and lower part of the wiring pattern) by electroless plating has also been proposed.

(発明が解決しようとする課題) 有機化合物を使用する方法では、耐電食性は改善される
のの、有機化合物自体の耐熱性が低いために、絶縁層の
耐熱性が低下すること、あるいは、特に後者の場合に於
いては、配線パターン(−殻内には銅配線)に対する溶
液の濡れ性が悪いと均一な皮膜が形成されないことなど
の問題があった。
(Problems to be Solved by the Invention) Although the electrolytic corrosion resistance is improved in the method using an organic compound, the heat resistance of the insulating layer is reduced due to the low heat resistance of the organic compound itself, or in particular, In the latter case, there was a problem that a uniform film could not be formed if the solution had poor wettability with respect to the wiring pattern (copper wiring inside the shell).

一方、配線表面にニッケル皮膜を形成する方法は、ニッ
ケル、あるいは、ニッケル表面に生成したニッケル酸化
物の高安定性のため、耐熱性をそこなわずに耐電食性を
改善できるが、この方法に於いても、配線と基板との接
着力を確保するために、基板表面を物理的に粗化させる
工程(例えば銅張り積層板の銅箔をエツチング除去して
銅箔の粗化形状を転写する工程)が必要なこと、粗化面
に於ける配線形成用レジストパターンの解像度が低下す
ること及びレジストの現像残りなどの問題があった。
On the other hand, the method of forming a nickel film on the wiring surface can improve electrolytic corrosion resistance without sacrificing heat resistance due to the high stability of nickel or nickel oxide formed on the nickel surface. However, in order to ensure the adhesion between the wiring and the board, there is a process of physically roughening the board surface (for example, a process of etching away the copper foil of a copper-clad laminate and transferring the roughened shape of the copper foil). ), the resolution of the resist pattern for wiring formation on the roughened surface is lowered, and the resist remains undeveloped.

本発明は、耐電食性、配線パターンの基板に対する密着
性に優れる配線板を提供するものである。
The present invention provides a wiring board having excellent electrical corrosion resistance and adhesion of a wiring pattern to a substrate.

(課題を解決するための手段) 上記の問題を解決するためには、配線パターン下部に於
いて、ニッケル層〜基板間の接着力を確保しつつ、基板
表面をロープロファイル化することが効果的である。
(Means for solving the problem) In order to solve the above problem, it is effective to lower the profile of the board surface while ensuring the adhesive strength between the nickel layer and the board at the bottom of the wiring pattern. It is.

本発明は、耐電食性に優れたニッケル被覆配線構造を達
成するものであり、平滑な表面を有するポリイミド系フ
ィルム上にスパッタリングなどの真空成膜法でニッケル
薄層を形成し、以下公知のセミアデイティブ法で銅等の
配線パターンを形成した後、無電解めっき法で配線パタ
ーンの上部、側壁部の表面をニッケル被覆するものであ
る。
The present invention aims to achieve a nickel-coated wiring structure with excellent electrolytic corrosion resistance. A thin nickel layer is formed on a polyimide film having a smooth surface by a vacuum film-forming method such as sputtering. After a wiring pattern of copper or the like is formed using a nickel method, the top and sidewall surfaces of the wiring pattern are coated with nickel using an electroless plating method.

ポリイミド系フィルムに、真空成膜法で形成する金属薄
層の材料としては、化学的に安定な酸化皮膜を形成し、
配線金属である銅よりもイオン化傾向が大きく、かつ基
板に対して良好な接着力を示すニッケルが好ましく、単
一金属に限るものでなく、クロムとの併用さらには、そ
れらの金属化合物やアルミナなどのセラミックス等の使
用も可能である。
A chemically stable oxide film is formed as a material for the thin metal layer formed on polyimide film using the vacuum deposition method.
Nickel is preferred because it has a greater ionization tendency than copper, which is a wiring metal, and has good adhesion to the substrate. Nickel is not limited to a single metal, and can also be used in combination with chromium, as well as metal compounds thereof, alumina, etc. It is also possible to use ceramics and the like.

成膜手段としては、蒸着法、スパッタリング法、イオン
ブレーティング法、クラスターイオンピム法など通常の
真空成膜法が使用できる。
As a film forming method, a normal vacuum film forming method such as a vapor deposition method, a sputtering method, an ion blating method, or a cluster ion PIM method can be used.

なお、本発明に於ける配線下部材料は、単一金属に限る
ものでなく、それらの金属化合物やアルミナなどのセラ
ミックスの適用も可能である。更に、必要であれば、該
配線下部層にニッケルや金属化合物層)を形成した後、
銅などの金属薄層を続けて形成した多層薄膜を適用する
こともできる。
Note that the wiring lower material in the present invention is not limited to a single metal, and metal compounds thereof and ceramics such as alumina can also be used. Furthermore, if necessary, after forming a nickel or metal compound layer on the lower wiring layer,
It is also possible to apply a multilayer thin film in which thin metal layers such as copper are successively formed.

ニッケルはポリイミド系フィルムに対して良好な接着性
を示すが、より高い接着力を得るためにポリイミド系フ
ィルムの表面処理として、低温プラズマ処理や反応性イ
オンエツチング処理を施しても良い。
Nickel exhibits good adhesion to polyimide films, but in order to obtain higher adhesion, low-temperature plasma treatment or reactive ion etching may be applied to the surface of the polyimide film.

またポリイミド系フィルムとニッケル間の接着性はニッ
ケルのポリイミド中への拡散量の影響も受けるため、3
0A以上ニッケルがポリイミド系フェルム中へ拡散して
いることが好ましい。拡散は例えば加熱により行なうこ
とができる。
In addition, the adhesion between polyimide film and nickel is also affected by the amount of nickel diffused into the polyimide.
It is preferable that 0A or more nickel is diffused into the polyimide ferm. Diffusion can be carried out, for example, by heating.

本発明に於いては、ポリイミド系フエルム上に形成され
るニッケルは完全に層状である必要はなく島状構造の形
態でも良い。
In the present invention, the nickel formed on the polyimide film does not need to be completely layered, and may be in the form of an island structure.

配線パターンの形成手段は、無電解めっきと電気めっき
を併用するセミアデイティブ法が、また要求される配線
厚さが数ミクロン程度の場合には、真空蒸着法で配線金
属層を形成した後、サブトラクト法で配線形成しても良
い。
The wiring pattern can be formed using a semi-additive method that uses a combination of electroless plating and electroplating, or if the required wiring thickness is several microns, after forming a wiring metal layer using a vacuum evaporation method, The wiring may be formed by a subtract method.

配線パターン上部、側壁部(配線パターン下部は含まな
い)にニッケル皮膜を形成する方法としては、電気めっ
きや無電解めっきを用いることができる。
As a method of forming a nickel film on the upper part of the wiring pattern and the side wall part (not including the lower part of the wiring pattern), electroplating or electroless plating can be used.

本発明の一実施例を図面によって説明する。An embodiment of the present invention will be described with reference to the drawings.

第1図(a)〜(C)は、本発明の一実施例を示す断面
図である。
FIGS. 1(a) to 1(C) are cross-sectional views showing one embodiment of the present invention.

所定の位置に直径0 、4mmの貫通孔2を有する厚さ
50μmのポリイミドフィルムUPILEX 5−Ty
pe(宇部興産(株)裂開品名)1上に厚さ5000A
のニッケル層3を真空蒸着装置(日本真空技術(株)製
EBV−6DA型)を用いて電子ビーム蒸着した((a
)参照)。蒸着条件を以下に示す。
Polyimide film UPILEX 5-Ty with a thickness of 50 μm having through holes 2 with a diameter of 0 and 4 mm at predetermined positions
Thickness 5000A on pe (Ube Industries Co., Ltd. dehiscence product name) 1
A nickel layer 3 of
)reference). The vapor deposition conditions are shown below.

加速電圧    10kV EB雷電流    8A 圧   力      I X10  Torr成膜温
度    270°C 成膜速度    10A/分 次に、ドライフィルムホトレジスト(日立化成工業(株
)製5R−3000)をニッケル層の両面にラミネート
した。ラミネート条件は、ロール温度、送り速度、ロー
ル圧力がそれぞれ、120℃、0.8m/分、30ps
iである。
Accelerating voltage: 10 kV EB lightning current: 8 A Pressure: I x 10 Torr Film forming temperature: 270°C Film forming rate: 10 A/min Next, dry film photoresist (5R-3000 manufactured by Hitachi Chemical Co., Ltd.) was laminated on both sides of the nickel layer. . The lamination conditions were roll temperature, feed speed, and roll pressure of 120°C, 0.8 m/min, and 30 ps, respectively.
It is i.

続いてマスクアライメント機構付き紫外線露光機(ミカ
サ(株)製M−3L型)により、所定のフォトマスクを
用いて露光量120mJ/cm′L で露光し、トリク
ロロエタン現像により所望するレジストパタン4を得た
後、以下に示した条件の無電解銅めっきで厚さ18μm
のパターンめっき5を行った((b)参照)。
Next, using a specified photomask, exposure was performed using an ultraviolet exposure machine with a mask alignment mechanism (Model M-3L manufactured by Mikasa Co., Ltd.) at an exposure amount of 120 mJ/cm'L, and a desired resist pattern 4 was obtained by developing with trichloroethane. After that, electroless copper plating was performed under the conditions shown below to a thickness of 18 μm.
Pattern plating 5 was performed (see (b)).

硫酸銅    10g/I EDTA ・4Na    40g/lpn     
  12.4 37%ホルマリン 3ml/1 添加物    少 量 めっき液温  70℃ 塩化メチレンでレジストパターン4を除去した後、ニッ
ケル層の所望する部分をエツチング除去し、以下に示し
た条件の無電解ニッケルめっきを行い、配線パターン5
の表面(配線下部を除く)を厚さ3.0μmのニッケル
6被覆した((C)参照)。
Copper sulfate 10g/I EDTA ・4Na 40g/lpn
12.4 37% formalin 3ml/1 Additive Small amount Plating solution temperature 70°C After removing the resist pattern 4 with methylene chloride, remove the desired part of the nickel layer by etching, and electroless nickel plating under the conditions shown below. and wiring pattern 5
The surface (excluding the lower part of the wiring) was coated with nickel 6 with a thickness of 3.0 μm (see (C)).

塩化ニッケル     30g/l 酢酸ナトリウム    10g/l 燐酸二水素ナトリウム 10g/1 pH5 めっき液温      80°C 次にワイヤーボンディング用パッドとなる部分以外に金
めつき用ソルダーレジストパターンをスクリーン印刷法
で形成した後、厚さ1.5μmの金めつきを施した。
Nickel chloride 30g/l Sodium acetate 10g/l Sodium dihydrogen phosphate 10g/1 pH 5 Plating solution temperature 80°C Next, a solder resist pattern for gold plating was formed by screen printing on areas other than the areas that would become wire bonding pads. , gold plating was applied to a thickness of 1.5 μm.

以上の実施例は、本発明をワイヤーボンド対応のチップ
オンボード用フレキシブル配線板に適用したものである
が、一般の多層配線板及び多層板用内層板の作成に適用
しても良い。
In the above embodiments, the present invention is applied to a chip-on-board flexible wiring board compatible with wire bonding, but it may also be applied to the production of general multilayer wiring boards and inner layer boards for multilayer boards.

(発明の効果) 本発明の効果は、以下に示す通りである。(Effect of the invention) The effects of the present invention are as shown below.

(1)ポリイミドフィルムの表面粗さは、接着力向上処
理として反応性イオンエツチング等の表面処理を施した
場合でも2.0μm以下のため、パターンめっき用レジ
ストパターン形成工程に於けるポリイミド表面での乱反
射の影響がほとんどなく、安定して、ライン線幅、スペ
ースが20μm程度の微細配線を形成可能になった。
(1) The surface roughness of polyimide film is less than 2.0 μm even when surface treatment such as reactive ion etching is applied to improve adhesion. With almost no influence of diffused reflection, it has become possible to stably form fine wiring with a line width and space of about 20 μm.

(2)ポリイミドのような低誘電率材料を使用できるた
め、従来のゴム系接着剤を用いたフレキシブル配線板や
ガラス布プリプレグのみを用いて製造された配線板に比
べ、信号の伝送速度などの電気特性が著しく向上した。
(2) Because low dielectric constant materials such as polyimide can be used, signal transmission speeds are faster than flexible wiring boards manufactured using conventional rubber adhesives or wiring boards manufactured using only glass cloth prepreg. Electrical properties were significantly improved.

(3)本発明に於ける絶縁フィルム上への成膜は連続化
が可能であり、かつ、従来の粗化形状転写法に於ける銅
箔粗化処理−銅箔積層→銅箔エツチングなどの工程を省
くことができ、生産性の点で向上を図ることができた。
(3) The film formation on the insulating film in the present invention can be made continuous, and the process of copper foil roughening treatment - copper foil lamination → copper foil etching, etc. in the conventional roughened shape transfer method is possible. It was possible to omit a process and improve productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の配線板の製造法を示す
断面図である。 符号の説明 1、ポリイミドフィルム 2、貫通孔 3、ニッケル層 4、レジストパターン 5、パターンめっき 6、無電解ニッケル層 ・′ べ
FIGS. 1(a) to 1(c) are cross-sectional views showing a method of manufacturing a wiring board according to the present invention. Explanation of symbols 1, polyimide film 2, through hole 3, nickel layer 4, resist pattern 5, pattern plating 6, electroless nickel layer・'

Claims (2)

【特許請求の範囲】[Claims] 1.絶縁基板上に形成された配線パターンの上部、側壁
部及び下部をニッケル層で被覆した配線構造を有する配
線板に於いて、絶縁基板がポリイミド系フィルムであり
、配線パターン下部のニッケル層が真空成膜法で形成さ
れたものであることを特徴とする配線板。
1. In a wiring board having a wiring structure in which the upper part, side wall part, and lower part of a wiring pattern formed on an insulating substrate are coated with a nickel layer, the insulating substrate is a polyimide film, and the nickel layer under the wiring pattern is formed by vacuum deposition. A wiring board characterized in that it is formed by a film method.
2.ニッケル層がポリイミド系フィルム中に30A以上
拡散している請求項1記載の配線板。
2. 2. The wiring board according to claim 1, wherein the nickel layer is diffused in the polyimide film by 30A or more.
JP2143690A 1990-01-31 1990-01-31 Wiring board Pending JPH03225995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143690A JPH03225995A (en) 1990-01-31 1990-01-31 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143690A JPH03225995A (en) 1990-01-31 1990-01-31 Wiring board

Publications (1)

Publication Number Publication Date
JPH03225995A true JPH03225995A (en) 1991-10-04

Family

ID=12054924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143690A Pending JPH03225995A (en) 1990-01-31 1990-01-31 Wiring board

Country Status (1)

Country Link
JP (1) JPH03225995A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317566A (en) * 2004-04-26 2005-11-10 Kyocera Corp Wiring board and manufacturing method thereof
KR100736146B1 (en) * 2005-10-20 2007-07-06 산양전기주식회사 Method for fabricating the flexible circuit board
JP2012144791A (en) * 2011-01-13 2012-08-02 National Institute Of Advanced Industrial Science & Technology Method for patterning electroless nickel alloy film
JPWO2014199774A1 (en) * 2013-06-11 2017-02-23 株式会社シンク・ラボラトリー Gravure cylinder fully automatic manufacturing system and gravure cylinder manufacturing method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317566A (en) * 2004-04-26 2005-11-10 Kyocera Corp Wiring board and manufacturing method thereof
KR100736146B1 (en) * 2005-10-20 2007-07-06 산양전기주식회사 Method for fabricating the flexible circuit board
JP2012144791A (en) * 2011-01-13 2012-08-02 National Institute Of Advanced Industrial Science & Technology Method for patterning electroless nickel alloy film
JPWO2014199774A1 (en) * 2013-06-11 2017-02-23 株式会社シンク・ラボラトリー Gravure cylinder fully automatic manufacturing system and gravure cylinder manufacturing method using the same

Similar Documents

Publication Publication Date Title
TWI627886B (en) Preparation method of printed circuit board with ultra-thin metal layer
JP3210675B2 (en) Metal layer deposition method
US6942817B2 (en) Method of manufacturing wireless suspension blank
JP3570802B2 (en) Copper thin film substrate and printed wiring board
US8088294B2 (en) Method for manufacturing printed circuit boards
JPH0226397B2 (en)
SE8003203L (en) SUBSTRATE MATERIAL AND PROCEDURE FOR MANUFACTURING PRINTED COUPLINGS
TWI389618B (en) A two layer film, a method of manufacturing a two layer film, and a method of manufacturing a printed circuit board
JPH04283992A (en) Manufacture of printed circuit board
US20040040148A1 (en) Manufacture of flexible printed circuit boards
TW201519711A (en) Surface-treated copper foil and copper-clad laminate plate including the same, printed curcuit board using the same, and method for manufacturing the same
JPH03225995A (en) Wiring board
KR100999922B1 (en) Printed circuit board and method of manufacturing the same
KR100641341B1 (en) Flexible copper clad laminate using coducting polymer and the method for producing the same
GB2038101A (en) Printed circuits
JP2007245646A (en) Two-layered film, its manufacturing method and manufacturing method of printed circuit board
KR20210106811A (en) Method manufacturing structure for flexible printed circuit board and device thereof
JP2003283099A (en) Method for manufacturing film substrate for circuit
JPH02188987A (en) Material for wiring board and manufacture thereof
JP2542428B2 (en) Method for manufacturing double-sided flexible printed circuit board
JPH0823166A (en) Manufacture of multi-layer wiring substrate
JPH03203394A (en) Manufacture of insulating substrate with thin metallic layer and manufacture of wiring board using insulating substrate manufactured thereby
CA2203172A1 (en) Process for manufacturing electrical circuit bases
JP2536604B2 (en) Copper / organic insulation film wiring board manufacturing method
JP2007245645A (en) Two-layered film, its manufacturing method, manufacturing method of printed circuit board and two-layered film manufacturing apparatus