Nothing Special   »   [go: up one dir, main page]

JPH03224722A - Manufacture of composite film - Google Patents

Manufacture of composite film

Info

Publication number
JPH03224722A
JPH03224722A JP1213996A JP21399689A JPH03224722A JP H03224722 A JPH03224722 A JP H03224722A JP 1213996 A JP1213996 A JP 1213996A JP 21399689 A JP21399689 A JP 21399689A JP H03224722 A JPH03224722 A JP H03224722A
Authority
JP
Japan
Prior art keywords
film
stretching
films
polyethylene
naphthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1213996A
Other languages
Japanese (ja)
Inventor
Tadashi Tahoda
規 多保田
Akito Hamano
明人 濱野
Tadashi Okudaira
奥平 正
Katsuro Kuze
勝朗 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1213996A priority Critical patent/JPH03224722A/en
Publication of JPH03224722A publication Critical patent/JPH03224722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To reduce breakage to be generated at the time of manufacturing a film, and carry out smooth operation by re-orienting vertically laminated fils manufactured by the coextrusion method in which polyethylene terephthalate and polyethylene 2,6-naphthalate following the first orientation in the horizontal and vertical directions, and specifying the conditions thereof. CONSTITUTION:A composite film is formed by successively orienting non- oriented films laminated by the coextrusion method and composed mainly of films of polyethylene terephthalate as the main component and films of polyethylene 2,6-naphthalate as the main component in the order of horizontal direction and vertical direction at the temperature of 100-170 deg.C up to 2.5-5.5 times to manufacture a biaxially oriented film, and re-orienting said film in the vertical direction at the temperature of 100-180 deg.C up to 1.05-2.00 times, and then heat fixing the same at 160-250 deg.C. Thus, respective orienting conditions are relaxed by carrying out the vertical orientation in the horizontal and vertical orientation method by two times as above-mentioned, which eliminates the breakage of films and the like and stabilizes the operation, and a film of high strength and high resistance to heat can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複合化フィルムの製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a composite film.

更に、詳しくはポリエチレンテレフタレートを主成分と
するフィルムと、実質的にポリエチレン2゜6−ナフタ
レートからなる配向されたフィルムを積層した縦方向の
強度が大きい、磁気記録テープ用途など、特に耐熱性が
要求される真空利用薄膜形成に適した複合化フィルムを
安価に製造する方法に関する。
Furthermore, in particular, heat resistance is particularly required for applications such as magnetic recording tape applications, which have high strength in the longitudinal direction by laminating a film mainly composed of polyethylene terephthalate and an oriented film consisting essentially of polyethylene 2゜6-naphthalate. The present invention relates to a method for inexpensively manufacturing a composite film suitable for vacuum-based thin film formation.

(従来の技術) 一般にポリエチレンテレフタレートに代表されるポリエ
ステルの2軸配向されたフィルムは、優れた機械的、電
気的性質の故に磁気テープ用、電気用、包装用等の広範
囲で使用されている。
(Prior Art) Generally, biaxially oriented polyester films represented by polyethylene terephthalate are used in a wide range of applications such as magnetic tapes, electricity, and packaging because of their excellent mechanical and electrical properties.

特に磁気テープの分野では、ポリエチレンテレフタレー
トからなるベースフィルムが広い範囲で使用されており
、その適用範囲は更に拡がる傾向にある。一方、技術の
高度化に伴い、装置および磁気テープの小型化が求めら
れ、そのためベースフィルムの一層の薄膜化、すなわち
高強力化が必要になり、ポリエチレンテレフタレートか
らなるベースフィルムを製造する際、−軸方向に強く延
伸してテープ強度を増加させるテンシライズ化が採用さ
れている。また、耐熱性も種々の用途で向上が要望され
ている0例えば、電気絶縁用途では、ポリエチレンテレ
フタレートは、8種に位置づけられているが、より高い
連続使用可能温度を有する素材が要求されている。又、
透明導電フィルムにおいては、蒸着時に熱の影響を受け
、カールしたりオリゴマーが析出したりするため、この
分野でもポリエチレンテレフタレートフィルムに比べ、
耐熱性に優れかつ、オリゴマー析出量の少ないフィルム
が要望されている。又、磁気テープの用途においても、
磁気テープに加工するために、金属蒸着法を採用する場
合は、ベースフィルムが100℃以上に加熱されて熱収
縮を生じるため、耐熱性を有するフィルムが要望されて
いる。上記要望に対して、種々の耐熱性フィルムが提案
されているが、高強力、高弾性率でしかも耐熱性を有す
るものとして、ポリエチレン2.6−ナフタレートフィ
ルムが有望視されている。
Particularly in the field of magnetic tapes, base films made of polyethylene terephthalate are widely used, and their range of application tends to expand further. On the other hand, as technology becomes more sophisticated, there is a need for smaller devices and magnetic tapes, which requires thinner base films, that is, higher strength. Tensilizing is used to increase the strength of the tape by strongly stretching it in the axial direction. In addition, there is a demand for improved heat resistance in various applications.For example, polyethylene terephthalate is ranked in class 8 for electrical insulation applications, but materials with higher continuous usable temperatures are required. . or,
Transparent conductive films are affected by heat during vapor deposition, causing them to curl and oligomers to precipitate.
There is a demand for a film that has excellent heat resistance and a low amount of oligomer precipitation. Also, in magnetic tape applications,
When a metal vapor deposition method is used to process magnetic tapes, the base film is heated to 100° C. or higher and undergoes thermal shrinkage, so a film with heat resistance is desired. Various heat-resistant films have been proposed to meet the above requirements, and polyethylene 2,6-naphthalate film is considered promising as it has high strength, high elastic modulus, and heat resistance.

(発明が解決しようとする課題) ポリエチレン2,6−ナフタレートフィルムは、耐熱性
、低オIIゴマー性、機械的性質等種々の物性において
、ポリエチレンテレフタレート配向フィルムに比べて、
格段に優れている。
(Problems to be Solved by the Invention) Polyethylene 2,6-naphthalate film has better properties than oriented polyethylene terephthalate film in terms of various physical properties such as heat resistance, low polymerization properties, and mechanical properties.
It's extremely good.

しかしながら、強度と耐熱性を同時に満足するためには
、従来の縦方向および横方向に延伸後、更に縦方向に延
伸する再縦延伸法や、横、縦の順で延伸する横・縦延伸
法を用いることが必要である。一般に横延伸及び縦延伸
は押出し方向に対して直角及び同方向に延伸する事であ
り、本発明においても同様である。特に8ミリビデオ用
ベースフィルムの如く薄膜であって、しかも縦方向に高
い強力を要求されるフィルムの製膜に際しては、これら
従来の再縦延伸法や横・縦延伸法においては、生産性の
低下が著しく、かつ工程の不安定に起因する品質斑が大
きいという問題がある。また、ポリエチレン2.6−ナ
フタレート原料には、コストの面でポリエチレンテレフ
タレートよりも、非常に高価であるという問題がある。
However, in order to satisfy strength and heat resistance at the same time, it is necessary to use the conventional re-longitudinal stretching method, which involves stretching in the longitudinal and transverse directions and then further stretching in the longitudinal direction, or the transverse/longitudinal stretching method, which stretches in the order of transverse and longitudinal directions. It is necessary to use Generally, lateral stretching and longitudinal stretching are stretching perpendicular to and in the same direction as the extrusion direction, and the same applies to the present invention. In particular, when producing films that are thin and require high strength in the longitudinal direction, such as base films for 8mm videos, these conventional longitudinal re-stretching methods and transverse/longitudinal stretching methods are difficult to improve productivity. There is a problem that the deterioration is significant and there are large quality irregularities due to instability of the process. Furthermore, polyethylene 2,6-naphthalate raw material has a problem in that it is much more expensive than polyethylene terephthalate in terms of cost.

本発明は、ポリエチレン2.6−ナフタレートフィルム
において、縦方向に強度の増大した二軸延伸フィルムを
ポリエチレン2.6−ナフタレート単体フィルムよりも
安価に、そして製造する際の操業安定性を向上しようと
するものである。
The present invention aims to produce a biaxially oriented polyethylene 2.6-naphthalate film with increased strength in the machine direction at a lower cost than a single polyethylene 2.6-naphthalate film, and to improve operational stability during production. That is.

(課題を解決するための手段) 上記の課題を解決するため、この発明のフィルムの製造
法は、ポリエチレンテレフタレートを主成分とするフィ
ルムと、ポリエチレン2.6−ナフタレートを主成分と
するフィルムを共押出し法にて積層した実質的に未配向
のフィルムを、横方向、縦方向の順に100〜170℃
の温度で2.5〜5.5倍に逐次延伸して2軸配向フィ
ルムとし、次いで縦方向に100〜180℃で1.05
〜2.00倍に再延伸し、160〜250℃で熱固定す
ることを特徴とする複合化フィルムの製造法である。
(Means for Solving the Problems) In order to solve the above problems, the method for producing a film of the present invention combines a film containing polyethylene terephthalate as a main component and a film containing polyethylene 2,6-naphthalate as a main component. Substantially unoriented films laminated by extrusion are heated at 100 to 170°C in the horizontal and vertical directions.
A biaxially oriented film is obtained by sequentially stretching 2.5 to 5.5 times at a temperature of
This is a method for producing a composite film, which is characterized by re-stretching the film by a factor of ~2.00 and heat-setting it at 160-250°C.

上記のポリエチレンテレフタレートを主体とするフィル
ムは、分子構成の40モル%以上がポリエチレンテレフ
タレートを原料とするものであり、共重合成分としては
、ナフタレンジカルボン酸P−β−オキシエトキシ安息
香酸、4.4゛ジカルボキシルジフエニール、4.4’
−ジカルボキシルベンゾフェノン、ビス(4−カルボキ
シルフェニール)エタン、アジピン酸、セバシン酸、5
−ナトリウムスルホイソフタル酸、シクロヘキサン−1
,4−ジカルボン酸成分等のジカルボン酸成分、プロピ
レングリコール、ジエチレングリコール、シクロヘキサ
ンジメタツール、ビフェノールAのエチレンオキサイド
付加物、ポリエチレングリコール、ポリプロピレングリ
コール、ポリテトラメチレングリコール等のグリコール
成分、P−オキシ安息香酸などのオキシ安息香酸成分等
を任意に選択使用することができる。その他の共重合成
分としてアミド結合、カーボネート結合等を含有する少
量の化合物を含むことができる。また、ポリエチレン2
.6−ナフタレートを主体とするフィルムは、分子構成
の80モル%以上がポリエチレン2.6−ナフタレート
単位からなる重合体、共重合体または、これらの混合体
を原料とするものであり、共重合体成分としては、テレ
フタル酸、P−β−オキシエトキシ安息香酸、4.4″
−ジカルボキシルジフェニール、4.4°−ジカルボキ
シルベンゾフェノンビス(4カルボキシルフエニル)エ
タン、アジピン酸、セバシン酸、5−ナトリウムスルホ
イソフタル酸、シクロヘキサン−1,4−ジカルボン酸
等のジカルボン酸成分、プロピレングリコール、ジエチ
レングリコール、シクロヘキサンジメタツール、ビスフ
ェノールAのエチレンオキサイド付加物、ポリエチレン
グリコール、ポリプロピレングリコール、ポリテトラメ
チレングリコール等のグリコール成分、P−オキシ安息
香酸成分等を任意に選択使用することができる。その他
の共重合成分としてアミド結合、カーボネート結合等を
含有する少量の化合物を含むことができる。これら、2
種類のポリマーの中には、滑剤として、公知の内部粒子
や外部粒子、またリン酸、亜リン酸およびそれらのエス
テルなどの安定剤を含有することができる。
The film mainly composed of polyethylene terephthalate has 40 mol% or more of its molecular composition made from polyethylene terephthalate, and the copolymerization components include naphthalene dicarboxylic acid, P-β-oxyethoxybenzoic acid, 4.4゛Dicarboxyldiphenyl, 4.4'
-Dicarboxylbenzophenone, bis(4-carboxylphenyl)ethane, adipic acid, sebacic acid, 5
-Sodium sulfoisophthalic acid, cyclohexane-1
, dicarboxylic acid components such as 4-dicarboxylic acid components, propylene glycol, diethylene glycol, cyclohexane dimetatool, ethylene oxide adduct of biphenol A, glycol components such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, P-oxybenzoic acid Oxybenzoic acid components such as the following can be arbitrarily selected and used. A small amount of a compound containing an amide bond, a carbonate bond, etc. may be included as other copolymer components. In addition, polyethylene 2
.. Films mainly composed of 6-naphthalate are made from polymers, copolymers, or mixtures thereof, in which 80 mol% or more of the molecular structure consists of polyethylene 2.6-naphthalate units. Ingredients include terephthalic acid, P-β-oxyethoxybenzoic acid, 4.4″
- dicarboxylic acid components such as dicarboxyldiphenyl, 4.4°-dicarboxylbenzophenone bis(4carboxylphenyl)ethane, adipic acid, sebacic acid, 5-sodium sulfoisophthalic acid, cyclohexane-1,4-dicarboxylic acid, Glycol components such as propylene glycol, diethylene glycol, cyclohexane dimetatool, ethylene oxide adduct of bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, P-oxybenzoic acid component, etc. can be arbitrarily selected and used. A small amount of a compound containing an amide bond, a carbonate bond, etc. may be included as other copolymer components. These, 2
Some types of polymers can contain known internal and external particles as lubricants, as well as stabilizers such as phosphoric acid, phosphorous acid and their esters.

そして、本発明では上記ポリエステルの製造方法として
は、芳香族ジカルボン酸とグリコールとを直接反応させ
る直接重合法、芳香族ジカルボン酸のジメチルエステル
とグリコールをエステル交換させるエステル交換法など
任意の製造法を適用することができる。
In the present invention, the above-mentioned polyester can be produced by any production method, such as a direct polymerization method in which aromatic dicarboxylic acid and glycol are directly reacted, or a transesterification method in which dimethyl ester of aromatic dicarboxylic acid and glycol are transesterified. Can be applied.

本発明の複合化フィルムの製造法は、実質的にポリエチ
レン−2,6−ナフタレートからなるフィルムとポリエ
チレンテレフタレートからなるフィルムの多層フィルム
の製造法であるが2層、3層、もしくはそれ以上でも良
い、また該多層フィルムの構成は、目的に応じて任意に
選択できる。ここで2層、3層又はそれ以上の積層を行
なう方法としては、別々に用意したフィルムを接着剤を
用いて貼り合わせる方法もあるが、これらの方法では、
フィルムの平面性を保つのが困難であり、本発明では、
ダイス中で積層する共押出法であるため上記問題はない
。溶融押出しの温度は、ポリエチレン2.6−ナフタレ
ート、ポリエチレンテレフタレート両原料とも250〜
320℃が好ましく、共押出しされたフィルムは冷却固
化され実質的に未配向の未延伸フィルムとして、本発明
では使用される。
The method for producing a composite film of the present invention is a method for producing a multilayer film consisting of a film consisting essentially of polyethylene-2,6-naphthalate and a film consisting of polyethylene terephthalate, but it may be two, three, or more layers. Moreover, the structure of the multilayer film can be arbitrarily selected depending on the purpose. Here, as a method for laminating two, three or more layers, there is also a method of bonding separately prepared films together using an adhesive, but in these methods,
It is difficult to maintain the flatness of the film, and in the present invention,
Since this is a coextrusion method in which layers are laminated in a die, there is no problem mentioned above. The melt extrusion temperature is 250~250°C for both polyethylene 2.6-naphthalate and polyethylene terephthalate raw materials.
The temperature is preferably 320° C., and the coextruded film is solidified by cooling and is used in the present invention as a substantially unoriented, unstretched film.

本発明では、上記の未配向のフィルムを横方向に延伸し
たのち、縦方向に延伸する横・縦延伸を行なって二軸配
向フィルムを得る。この場合の延伸倍率は、横方向およ
び縦方向とも、100〜170℃の温度下で2.5〜5
.5倍に設定されるが、横方向と縦方向とで若干倍率を
相違させ、横方向には、100〜160℃で2.5〜4
.5倍に延伸し、縦方向には、110〜170℃で3.
0〜5.5倍に延伸することが好ましい。
In the present invention, a biaxially oriented film is obtained by stretching the above-mentioned unoriented film in the transverse direction and then stretching it in the longitudinal direction. In this case, the stretching ratio is 2.5 to 5 at a temperature of 100 to 170°C in both the transverse and longitudinal directions.
.. The magnification is set to 5 times, but the magnification is slightly different in the horizontal and vertical directions, and the horizontal direction is set at 2.5 to 4 at 100 to 160 degrees Celsius.
.. Stretched 5 times, lengthwise at 110-170°C 3.
It is preferable to stretch 0 to 5.5 times.

本発明では、上記の横・縦延伸で得られた二軸配向フィ
ルムを更に縦方向に再延伸するものであり、このときの
延伸倍率は、100〜180℃の温度下で1.05〜2
.00倍、好ましくは120〜170℃の温度下で1.
05〜1.70倍に設定される。そして、この縦方向に
再延伸されたフィルムは、熱固定のために温度160〜
250℃1好ましくは200〜250℃で熱処理される
。処理時間は2〜3秒が好ましい。この熱処理は、上記
の再延伸フィルムの両端をクリップで把持して行なうが
、幅方向には弛緩状態であってもよい。
In the present invention, the biaxially oriented film obtained by the above-mentioned transverse and longitudinal stretching is further stretched again in the longitudinal direction, and the stretching ratio at this time is 1.05 to 2 at a temperature of 100 to 180°C.
.. 00 times, preferably at a temperature of 120-170°C.
05 to 1.70 times. This longitudinally re-stretched film is then heated at a temperature of 160~160°C for heat setting.
Heat treatment is carried out at 250°C, preferably 200-250°C. The processing time is preferably 2 to 3 seconds. This heat treatment is carried out by holding both ends of the re-stretched film with clips, but it may be in a relaxed state in the width direction.

(作用) 本発明では、共押出しされた未延伸原反を横・縦延伸法
で選択配向された二輪延伸フィルムとし、引続き縦方向
に再延伸する。換言すれば従来法の横・縦延伸法におけ
る縦延伸を2回に分けて行なう。したがって横・縦延伸
の縦延伸および再縦延伸の各延伸条件が緩和され、全延
伸倍率を従来と同じ倍率に設定してもフィルム破損等が
解消して操業が安定し、しかも従来以上の高強力化、高
耐熱化されたフィルムを得ることができる。
(Function) In the present invention, a coextruded unstretched original fabric is made into a two-wheel stretched film selectively oriented by a transverse/longitudinal stretching method, and then re-stretched in the longitudinal direction. In other words, longitudinal stretching in the conventional transverse/longitudinal stretching method is performed in two steps. Therefore, the stretching conditions for horizontal and vertical stretching, longitudinal stretching, and longitudinal re-stretching are relaxed, and even if the total stretching ratio is set to the same ratio as before, film damage etc. are eliminated and operation is stable, and the A film with increased strength and high heat resistance can be obtained.

ただし、横・縦延伸の温度が100℃未満の場合は、延
伸に必要な応力の著しい増大によるフィルムの破断が生
じ、反対に170℃を越えた場合は、予熱時に生じる結
晶化に伴うフィルムの破断が生じ、また、上記槽・縦延
伸の延伸倍率が2.5倍未満の場合は良好な厚みの均一
性が得られず、反対に5.5倍を超えた場合は延伸に必
要な応力の著しい増大によるフィルム破断が生じ、そし
て横延伸と縦延伸の条件を相違させ、横延伸を温度10
0〜160℃延伸倍率2.5〜4.5倍とし、縦延伸を
温度110〜170℃1延伸倍率3.0〜5.5倍で行
なったときは、製膜時の安定性に優れるとともに厚み均
一性に優れたフィルムが得られる。
However, if the transverse/longitudinal stretching temperature is less than 100°C, the film will break due to a significant increase in the stress required for stretching, whereas if it exceeds 170°C, the film will break due to crystallization that occurs during preheating. In addition, if the stretching ratio of the tank/longitudinal stretching is less than 2.5 times, good thickness uniformity cannot be obtained; on the other hand, if it exceeds 5.5 times, the stress necessary for stretching Film breakage occurred due to a significant increase in
When the stretching ratio is 2.5 to 4.5 times at 0 to 160°C and the longitudinal stretching is carried out at a temperature of 110 to 170°C and a stretching ratio of 3.0 to 5.5 times, the film has excellent stability during film formation. A film with excellent thickness uniformity can be obtained.

また再延伸時の温度が100″C未満の場合は、延伸に
必要な応力に著しい増大による厚みの均一性の悪化が、
反対に180℃を超えた場合は、延伸時フィルムのロー
ルへの融着などが生じたり、機械的性質の向上がはかれ
ない他、厚みの均一性も損なわれ、そして再縦延伸の延
伸倍率が1.05倍未満の場合は、目的とする機械的性
質の向上がはかれず、反対に2.00倍を超えると延伸
応力の著しい増大によるフィルムの破断が生じる。また
、熱固定の際の熱処理温度が160℃未満の場合は、十
分な熱安定性が得られず製品として供せず、又反対に2
50”Cを超えた場合は結晶化度の著しい増加によるフ
ィルムの耐磨耗性の低下につながり、磁気テープ用ベー
スフィルム用途では好ましくない。
Furthermore, if the temperature during re-stretching is less than 100"C, the stress required for stretching will significantly increase, resulting in deterioration of the thickness uniformity.
On the other hand, if the temperature exceeds 180°C, the film may be fused to the roll during stretching, the mechanical properties cannot be improved, the uniformity of the thickness may be impaired, and the stretching ratio for longitudinal re-stretching may be reduced. If it is less than 1.05 times, the desired mechanical properties cannot be improved, and on the other hand, if it exceeds 2.00 times, the film will break due to a significant increase in stretching stress. In addition, if the heat treatment temperature during heat setting is less than 160°C, sufficient thermal stability cannot be obtained and the product cannot be used.
If it exceeds 50''C, the degree of crystallinity increases significantly, leading to a decrease in the abrasion resistance of the film, which is not preferable for use as a base film for magnetic tape.

なお、上記の熱固定処理の終了後、上記フィルムを温度
100〜160℃1好ましくは100〜150℃に加熱
して、縦方向に0.1〜1%弛緩処理を施すことにより
寸法安定性を一層向上させることができる。
In addition, after the completion of the above heat setting treatment, the above film is heated to a temperature of 100 to 160 °C, preferably 100 to 150 °C, and subjected to a relaxation treatment of 0.1 to 1% in the longitudinal direction to improve dimensional stability. This can be further improved.

以下、実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

なお、実施例中の延伸フィルムの5%伸長時の応力(F
−5値)および熱収縮率は、それぞれ次の測定法により
求めた。
In addition, the stress (F
-5 value) and heat shrinkage rate were respectively determined by the following measuring methods.

F−5値:フィルムの長さ方向および幅方向にそれぞれ
平行に幅10M、長さ15011IIgの短冊形試料を
切出し、東洋ボールドウィン 社製テンシロンを用い、毎分100%の変形速度下で引
張試験を行い、5%伸長 した時の応力を求めた。
F-5 value: A rectangular sample with a width of 10M and a length of 15011IIg was cut parallel to the length and width directions of the film, and a tensile test was performed at a deformation rate of 100% per minute using a Tensilon manufactured by Toyo Baldwin. The stress at the time of 5% elongation was determined.

熱収縮率:F−5値の測定に使用したものと同形状の短
冊形試料を105℃のギアオー ブン中、無緊張状態で30分間放置処 理し、処理前後の短冊形試料の長さ 変化から熱収縮率を求めた。
Heat shrinkage rate: A rectangular sample of the same shape as that used for measuring the F-5 value was left in a gear oven at 105°C for 30 minutes without tension, and the change in length of the rectangular sample before and after treatment was calculated. The heat shrinkage rate was determined.

(実施例1〜5) 固有粘度、0.55のポリエチレン2.6−ナフタレー
トペレット(八)と固有粘度0.62のポリエチレンテ
レフタレートペレット(B)を各々乾燥したものを原料
とした。2機の押出しバレルを1個のT型ダイに接続し
た共押出し機により、内層が原料(B)両外層が原料(
^)の3層構造となる用に押出し、直ちに平滑なドラム
上で冷却固化させて、厚み160μmの未配向フィルム
を得た。
(Examples 1 to 5) The raw materials were dried polyethylene 2.6-naphthalate pellets (8) having an intrinsic viscosity of 0.55 and polyethylene terephthalate pellets (B) having an intrinsic viscosity of 0.62. A co-extruder in which two extrusion barrels are connected to one T-shaped die is used, with the inner layer being the raw material (B) and both outer layers being the raw material (B).
It was extruded to form a three-layer structure (^) and immediately cooled and solidified on a smooth drum to obtain an unoriented film with a thickness of 160 μm.

該未配向フィルムを温度130℃で横方向に3.2倍延
伸し、続いて140″Cの温度で縦方向に4.5倍延伸
して、二軸配向フィルムを得た。そして、この二軸配向
フィルムを更に160″Cの温度で縦方向に延伸倍率を
1.24倍で再縦延伸を行ない、240℃2秒間の熱固
定処理を施こし、冷却してフィルムを巻取った。
The unoriented film was stretched 3.2 times in the transverse direction at a temperature of 130"C, and then stretched 4.5 times in the machine direction at a temperature of 140"C to obtain a biaxially oriented film. The axially oriented film was further longitudinally stretched at a stretching ratio of 1.24 times at a temperature of 160''C, heat-set at 240°C for 2 seconds, cooled, and wound up.

二亥フィJレムは10μmの厚さからなり、そのうち内
層8μ蒙、外層が各々1μmからなる層フィルムである
。該フィルムの物性、評価結果を第1表に示す(実施例
1)。実施例1において内層6μ、外層釜々2μとする
以外は、すべて同様に製膜した。該フィルムの物性、評
価結果を第1表に示す(実施例2)。又、内層4μ、外
層3μとしたものを同様に製膜した。得られた該フィル
ムの物性、評価結果を第1表に示した(実施例3)0次
に、実施例3において、再縦延伸倍率を1.07倍とす
る以外はすべて同様に製膜した(厚み10μ、実施例4
)。又、再縦延伸倍率を1.16倍とした以外は、実施
例4と同様にして製膜し、得られた該フィルムの物性、
評価結果を第1表に示した(厚みlOμ。
The film is a layered film with a thickness of 10 μm, of which the inner layer is 8 μm thick and the outer layer is 1 μm thick. The physical properties and evaluation results of the film are shown in Table 1 (Example 1). Films were formed in the same manner as in Example 1, except that the inner layer was 6μ and the outer layer was 2μ. The physical properties and evaluation results of the film are shown in Table 1 (Example 2). Further, a film with an inner layer of 4 μm and an outer layer of 3 μm was formed in the same manner. The physical properties and evaluation results of the obtained film are shown in Table 1 (Example 3) Next, a film was formed in the same manner as in Example 3 except that the longitudinal re-stretching ratio was changed to 1.07 times. (thickness 10μ, Example 4
). In addition, a film was formed in the same manner as in Example 4, except that the longitudinal re-stretching ratio was 1.16 times, and the physical properties of the obtained film were as follows:
The evaluation results are shown in Table 1 (thickness lOμ.

実施例5)。Example 5).

(比較例1〜4) ポリエチレンテレフタレート原料(B)を溶融押出し未
配向フィルムを実施例1と同様にして得、該フィルムを
温度90℃で横方向に3.2倍延伸し、続いて95℃の
温度で縦方向に4.5倍延伸して、二軸配向フィルムと
し、そして更に130℃の温度で縦方向に延伸倍率1.
24倍で再延伸を行なps、210℃2秒間の熱固定処
理を施し、冷却してフィルムを巻きとり、厚み10μの
フィルムを得た(比較例1)。
(Comparative Examples 1 to 4) An unoriented film was obtained by melt-extruding polyethylene terephthalate raw material (B) in the same manner as in Example 1, and the film was stretched 3.2 times in the transverse direction at a temperature of 90°C, and then stretched at 95°C. The film was stretched 4.5 times in the machine direction at a temperature of 130° C. to form a biaxially oriented film, and further stretched at a temperature of 130° C. in the machine direction at a stretching ratio of 1.
The film was re-stretched by a factor of 24, heat set at 210° C. for 2 seconds, cooled, and wound to obtain a film with a thickness of 10 μm (Comparative Example 1).

又、実施例3と同様にして得られた厚み160μの未配
向フィルムに従来法の横・縦延伸を施して最終厚み10
μのフィルムを製造した。すなわち上記未配向のフィル
ムを130℃で横方向に3.2倍延伸し、続いて140
℃で縦方向に5.2倍延伸して、二軸配向フィルムを得
、これを240℃で2秒間の熱固定処理を行った後、冷
却して巻取った(比較例2 )。
Further, an unoriented film with a thickness of 160 μm obtained in the same manner as in Example 3 was subjected to horizontal and longitudinal stretching using conventional methods to obtain a final thickness of 10 μm.
A film of μ was produced. That is, the above-mentioned unoriented film was stretched 3.2 times in the transverse direction at 130°C, and then stretched at 140°C.
A biaxially oriented film was obtained by stretching 5.2 times in the longitudinal direction at 240° C., which was then heat-set at 240° C. for 2 seconds, cooled, and wound up (Comparative Example 2).

2 )。2).

(比較例3〜4) 実施例3において、縦・横両延伸温度を180℃とする
以外は全て同様に製膜したものを比較例3とし、また、
横延伸倍率を5.6倍とする以外は、全て同様に製膜し
たものを比較例4とした。
(Comparative Examples 3 to 4) Comparative Example 3 was obtained by forming a film in the same manner as in Example 3 except that both longitudinal and transverse stretching temperatures were set to 180°C, and
Comparative Example 4 was obtained by forming a film in the same manner except that the transverse stretching ratio was 5.6 times.

上記実施例1〜5、比較例1〜4の製造条件および性能
を第1表にまとめた。
The manufacturing conditions and performance of Examples 1 to 5 and Comparative Examples 1 to 4 are summarized in Table 1.

上記の表の実施例1〜3を比較して明らかなようにポリ
エチレン2.6−ナフタレート層の厚みを厚くする程、
5%伸長時応力が増大し、逆に105℃における熱収縮
率は減少する。
As is clear from comparing Examples 1 to 3 in the table above, the thicker the polyethylene 2.6-naphthalate layer, the more
The stress increases at 5% elongation, and conversely, the heat shrinkage rate at 105°C decreases.

比較例1はポリエチレンテレフタレートの例であるが、
強度、熱収縮率とも実施例の方が優れている。
Comparative Example 1 is an example of polyethylene terephthalate,
Examples are superior in both strength and heat shrinkage.

比較例2は、総合縦延伸倍率が実施例5と等しいにもか
かわらず、製膜時の破断が多く、製品が得られなかった
In Comparative Example 2, although the total longitudinal stretching ratio was the same as in Example 5, there were many breaks during film formation, and no product was obtained.

比較例3および比較例4は、いずれも本特許請求の範囲
をはずれた延伸温度と延伸倍率があり、両側とも製品を
得ることができなかった。
Comparative Example 3 and Comparative Example 4 both had stretching temperatures and stretching ratios that were outside the scope of the claims of the present invention, and products could not be obtained in both cases.

以下余白 (発明の効果) 本発明は、ポリエチレンテレフタレートとポリエチレン
2,6−ナフタレートを用いた複合フィルムの製造に際
し、共押出し法により積層したフィルムを横・縦延伸に
続いて再縦延伸を行ない、かつその条件を特定するもの
であり、従来法の横・縦延伸法よりも、製膜時の破断が
著しく減少し、円滑な操業が可能となり、品質が均一化
された高強力でしかも、耐熱性の優れたフィルムが得ら
れる。
Margins below (Effects of the Invention) In the present invention, when producing a composite film using polyethylene terephthalate and polyethylene 2,6-naphthalate, a film laminated by a coextrusion method is stretched horizontally and longitudinally, and then stretched again longitudinally, This method also specifies the conditions for film formation, which significantly reduces breakage during film formation compared to the conventional horizontal and longitudinal stretching methods, enables smooth operation, and provides uniform quality, high strength, and heat resistance. A film with excellent properties can be obtained.

Claims (1)

【特許請求の範囲】[Claims]  ポリエチレンテレフタレートを主成分とするフィルム
と、ポリエチレン2,6−ナフタレートを主成分とする
フィルムを共押出し法にて積層した実質的に未配向のフ
ィルムを、横方向、縦方向の順に100〜170℃の温
度で2.5〜5.5倍に逐次延伸して2軸配向フィルム
とし、次いで縦方向に100〜180℃で1.05〜2
.00倍に再延伸し、160〜250℃で熱固定してな
る複合化フィルムの製造法。
A substantially unoriented film obtained by laminating a film containing polyethylene terephthalate as a main component and a film containing polyethylene 2,6-naphthalate as a main component using a coextrusion method is heated at 100 to 170°C in the horizontal and vertical directions in that order. The film is sequentially stretched 2.5 to 5.5 times at a temperature of
.. A method for producing a composite film, which is re-stretched to 0.00 times and heat-set at 160 to 250°C.
JP1213996A 1989-08-18 1989-08-18 Manufacture of composite film Pending JPH03224722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1213996A JPH03224722A (en) 1989-08-18 1989-08-18 Manufacture of composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1213996A JPH03224722A (en) 1989-08-18 1989-08-18 Manufacture of composite film

Publications (1)

Publication Number Publication Date
JPH03224722A true JPH03224722A (en) 1991-10-03

Family

ID=16648531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1213996A Pending JPH03224722A (en) 1989-08-18 1989-08-18 Manufacture of composite film

Country Status (1)

Country Link
JP (1) JPH03224722A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032726A1 (en) * 1996-03-08 1997-09-12 Minnesota Mining And Manufacturing Company Multilayer polyester film
WO1997032724A1 (en) * 1996-03-08 1997-09-12 Minnesota Mining And Manufacturing Company A method for making multilayer polyester film
US5783283A (en) * 1996-03-08 1998-07-21 Minnesota Mining And Manufacturing Company Multilayer polyester film with a low coefficient of friction
US5795528A (en) * 1996-03-08 1998-08-18 Minnesota Mining And Manufacturing Company Method for making a multilayer polyester film having a low coefficient of friction
JP2011167909A (en) * 2010-02-18 2011-09-01 Toray Ind Inc Laminated polyester film, solar cell back sheet using this film and solar cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032726A1 (en) * 1996-03-08 1997-09-12 Minnesota Mining And Manufacturing Company Multilayer polyester film
WO1997032724A1 (en) * 1996-03-08 1997-09-12 Minnesota Mining And Manufacturing Company A method for making multilayer polyester film
US5759467A (en) * 1996-03-08 1998-06-02 Minnesota Mining And Manufacturing Company Method for making multilayer polyester film
US5783283A (en) * 1996-03-08 1998-07-21 Minnesota Mining And Manufacturing Company Multilayer polyester film with a low coefficient of friction
US5795528A (en) * 1996-03-08 1998-08-18 Minnesota Mining And Manufacturing Company Method for making a multilayer polyester film having a low coefficient of friction
US5968666A (en) * 1996-03-08 1999-10-19 3M Innovative Properties Company Multilayer polyester film
US6203921B1 (en) 1996-03-08 2001-03-20 3M Innovative Properties Company Multilayer polyester film
EP1332869A1 (en) * 1996-03-08 2003-08-06 Minnesota Mining And Manufacturing Company Multilayer polyester film
JP2011167909A (en) * 2010-02-18 2011-09-01 Toray Ind Inc Laminated polyester film, solar cell back sheet using this film and solar cell

Similar Documents

Publication Publication Date Title
US4226826A (en) Method for manufacturing polyester films
JPH0347752A (en) Easy heat-sealability laminated polyester film
EP0279611B1 (en) Process for producing high modulus film
JPS61211014A (en) Biaxial oriented heat-set film having improved abrasion resistance consisting of thermoplastic polyester
JPH03224722A (en) Manufacture of composite film
JPH09300518A (en) Laminated film and its production
JPH02191638A (en) Biaxially oriented polyester film
JPH0832499B2 (en) Heat resistant polyester film for transfer film
EP2233509B1 (en) Polyester resin, process for production of the same, and biaxially oriented polyester film comprising the same
JPH04316843A (en) Laminated polyester film
KR100453567B1 (en) Two axially drawn polyester film having straightforward tearing property
JP2555707B2 (en) Process for producing polyethylene 2,6-naphthalate film
JP2550746B2 (en) Polyester resin film
JPH0367629A (en) Biaxially oriented polyester film for molding
JP4387245B2 (en) Biaxially oriented polyethylene-2,6-naphthalene dicarboxylate film for electrical insulation
KR0157090B1 (en) Biaxial oriented polyester film
JPH0480815B2 (en)
JP3582671B2 (en) Method for producing biaxially oriented polyester film
JPS6082351A (en) Polyester laminated jfilm and manufacture thereof
JPH02130125A (en) Production of polyester film
JP2550745B2 (en) Polyester resin film
JPH06305016A (en) Manufacture of polyester film
JPH07106599B2 (en) Stretch molding method for polyester film
JPH04180939A (en) Preparation of copolyester film
KR20230024007A (en) Method for manufacturing biaxially oriented polyester film