Nothing Special   »   [go: up one dir, main page]

JPH0321080A - Manufacturing method for laminated type solar cell - Google Patents

Manufacturing method for laminated type solar cell

Info

Publication number
JPH0321080A
JPH0321080A JP1154757A JP15475789A JPH0321080A JP H0321080 A JPH0321080 A JP H0321080A JP 1154757 A JP1154757 A JP 1154757A JP 15475789 A JP15475789 A JP 15475789A JP H0321080 A JPH0321080 A JP H0321080A
Authority
JP
Japan
Prior art keywords
film
argon gas
type
layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1154757A
Other languages
Japanese (ja)
Inventor
Takeshi Ishimura
石村 猛
Keiji Kumagai
熊谷 啓二
Yoshio Yamanashi
山梨 嘉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP1154757A priority Critical patent/JPH0321080A/en
Publication of JPH0321080A publication Critical patent/JPH0321080A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable higher efficiency by forming an n-type crystallite silicon (muc-Si) semiconductor layer based on a glow discharge decomposition process where argon gas is added to a reaction system. CONSTITUTION:In the formation of an n-type muc-Si film 5, a slight amount of argon gas is introduced to a reaction system. Specifically, 1 to 10%, preferably 3 to 5% of argon gas is introduced to dilution hydrogen. Introduction of argon gas, if its amount is appropriate, makes it possible to crystallize down to 150Angstrom , although sufficient crystallization less than 250Angstrom is impossible without introducing argon gas. Moreover, when it is fine crystallized, the ohmic performance of pn conjunction can be maintained. It is, therefore, possible to further reduce its thickness of film and minimize photo absorption loss and improve conversion efficiency without the loss of electric conductivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は積層型太陽電池の製造方法に係り、より詳しく
述べるとpln型接合からなる単位セルを積層して戒り
、単位セル間のpn接合を形或するn型層が微結晶質シ
リコン半導体層からなる積層型太陽電池に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing a stacked solar cell, and more specifically, it involves stacking unit cells each having a PLN type junction, and reducing the PN between the unit cells. The present invention relates to a stacked solar cell in which an n-type layer forming a junction is made of a microcrystalline silicon semiconductor layer.

〔従来の技術〕[Conventional technology]

アモルファスシリコン(a−31)太陽電池は、資源が
豊富であり、製造プロセスが簡単な上に製造エネルギー
が少ないので、低コスト太陽電池として注目され、盛ん
に研究開発が行なわれている。
Amorphous silicon (A-31) solar cells are rich in resources, have a simple manufacturing process, and require little energy to manufacture, so they are attracting attention as low-cost solar cells and are being actively researched and developed.

しかし、結晶系シリコン太陽電池に比べて変換効率がや
や低いのでその改善が進められている。その1つは、光
キャリャの生戊が行なわれる1層に入射光が到達する前
に、その一部分がドープ層によって吸収されて、発電に
有効に利用されない欠点に鑑みて、ドープ層に微結晶シ
リコン(μCSi)を用いることである。
However, their conversion efficiency is somewhat lower than that of crystalline silicon solar cells, and efforts are being made to improve this. One of them is that a part of the incident light is absorbed by the doped layer before it reaches the layer where optical carriers are generated, and is not effectively used for power generation. Silicon (μCSi) is used.

さらに、通常のa−Siセルを用いたセルの入射光側に
a−SiCやa−SiNなどの短波長光に感度を持つセ
ルを配置し、背面側にa−SiGeやaSiSnなどの
長波長光に感度を持つセルを配置して、太陽光の広い波
長領域を有効に利用し、それによって変換効率を大幅に
改善することが提案されている。
Furthermore, a cell sensitive to short wavelength light such as a-SiC or a-SiN is placed on the incident light side of a cell using a normal a-Si cell, and a cell sensitive to short wavelength light such as a-SiGe or aSiSn is placed on the back side. It has been proposed to deploy cells that are sensitive to light to effectively utilize a wide wavelength range of sunlight, thereby significantly improving conversion efficiency.

(1) (2) 〔発明が解決しようとする課題〕 上記の如くセルを積層化して変換効率の向上を図る場合
、セル間のpn接合での光吸収損失によってJsc(短
絡電流)が低下するという問題がある。光吸収損失を小
さ《し、光透過率を高くするにはp層、n層の厚みを小
さくすることが有効である。しかしながら、一般的に微
結晶化膜を薄膜化していくと微結晶化しなくなり、急激
に電気伝導度が低下し、オーミック性を維持することが
困難になる。
(1) (2) [Problem to be solved by the invention] When stacking cells as described above to improve conversion efficiency, Jsc (short circuit current) decreases due to light absorption loss at the pn junction between cells. There is a problem. In order to reduce light absorption loss and increase light transmittance, it is effective to reduce the thickness of the p-layer and n-layer. However, in general, as a microcrystalline film is made thinner, microcrystalization ceases, the electrical conductivity rapidly decreases, and it becomes difficult to maintain ohmic properties.

そこで、本発明は、薄膜での微結晶化を促進してn型μ
c−Si層を電気伝導度を維持しつつ薄膜化することに
よって積層型太陽電池の高効率化を可能にする方法を提
供することを目的とする。
Therefore, the present invention promotes microcrystalization in a thin film to
It is an object of the present invention to provide a method that makes it possible to increase the efficiency of a stacked solar cell by thinning a c-Si layer while maintaining electrical conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達或するために、pin型接合か
らなる単位セルを積層して戒り、単位セル間のpn接合
を形或するn型層が微結晶質シリコン半導体層から或る
、積層型太陽電池の製造において、前記n型微結晶質シ
リコン半導体層を反応系にアルゴンガスを添加したグロ
ー放電分解法で形或することを特徴とする方法を提供す
る。
In order to achieve the above-mentioned object, the present invention stacks unit cells each having a pin type junction, and the n-type layer forming the pn junction between the unit cells is made of a microcrystalline silicon semiconductor layer. , provides a method for manufacturing a stacked solar cell, characterized in that the n-type microcrystalline silicon semiconductor layer is formed by a glow discharge decomposition method in which argon gas is added to the reaction system.

積層型太陽電池とは、例えば、p層、1層、n層をこの
順に又は逆の順序で積層して形或した単位セルを複数個
さらに積層した構造を有する太陽電池で、1層目のセル
で利用されなかった光を2層目以降で利用することによ
って高い起電力を得ることができると共に、光入射側か
ら順にエネルギーバンドギャップが次第に狭くなってゆ
くような材料を用いて入射エネルギーの有効利用を図る
などの形で利用されるものである。セルの積層数は2以
上であればよい。
A stacked solar cell is, for example, a solar cell having a structure in which a plurality of unit cells formed by stacking a p layer, a first layer, and an n layer in this order or in the reverse order are further stacked. A high electromotive force can be obtained by using the light that is not used in the cell in the second and subsequent layers, and the incident energy can be reduced by using a material whose energy bandgap gradually narrows from the light incident side. It is used in such a way as to make effective use of it. The number of stacked cells may be two or more.

太陽電池のセル構或材料としてはアモルファスシリコン
(a−Si  :H)のほか、このアモルファスシリコ
ンに炭素、酸素、ゲルマニウムなどを適当に添加又は合
金化したものなどを用いることができる。
In addition to amorphous silicon (a-Si:H), amorphous silicon to which carbon, oxygen, germanium, etc. are appropriately added or alloyed can be used as the cell structure or material of the solar cell.

μc−Si膜の形或は、一般に、原料ガスとしてS+H
4.S121{6などのシリコン源と必要に応じて(3
) (4) 希釈水素を用い(シリコン源:希釈水素=.l:10〜
200)プラズマCVD法(グロー放電分解法)でa−
Siを堆積させ、その際温度を100〜300℃、反応
圧力をl QQmtorr 〜2torr ,電力密度
を0.01〜0. 5 W/cutとし、好ましくはよ
り高温、高電力密度、高水素濃度に調整し、a−Si膜
中にマイクロクリスタル(微結晶)を混在させることに
よって行なうことができる。例えば温度は250〜30
0℃、電力密度は0. 1 〜0. 3 W/cnfが
好適である。μc−Si膜にn型の導電性を付与するに
は、原料ガス中にシリコン源のシリコン原子に対して0
.01〜5モル%程度のn型不純物源、例えばホスフィ
ンPll.などを混合してプラズマCVDすればよい。
μc-Si film form or generally S+H as source gas
4. A silicon source such as S121{6 and optionally (3
) (4) Using diluted hydrogen (silicon source: diluted hydrogen = .l: 10~
200) a- by plasma CVD method (glow discharge decomposition method)
Si is deposited at a temperature of 100 to 300°C, a reaction pressure of lQQmtorr to 2 torr, and a power density of 0.01 to 0. 5 W/cut, preferably by adjusting the temperature to a higher temperature, higher power density, and higher hydrogen concentration, and by mixing microcrystals in the a-Si film. For example, the temperature is 250-30
0°C, power density 0. 1 ~ 0. 3 W/cnf is preferred. To impart n-type conductivity to the μc-Si film, it is necessary to
.. 01 to 5 mol % of n-type impurity source, such as phosphine Pll. What is necessary is to mix them and perform plasma CVD.

本発明は、このようなn型μc−Sl膜の形或において
、反応系にアルゴンガスを微量、例えば希釈水素に対し
て1%〜10%、好ましくは3%〜5%程度添加するこ
とを特徴とする。これによって、アルゴンガスの添加な
しでは膜厚が250A以下になると微結晶化が不十分に
なるものが、膜厚が150人程度まで十分に結晶化する
ことができる。
In the present invention, in the form of such an n-type μc-Sl film, a trace amount of argon gas is added to the reaction system, for example, about 1% to 10%, preferably about 3% to 5%, relative to diluted hydrogen. Features. As a result, although microcrystalization is insufficient when the film thickness is 250 Å or less without the addition of argon gas, the film can be sufficiently crystallized up to a film thickness of about 150 Å.

微結晶化されていればpn接合のオーミック性を維持す
ることができるので、電気伝導度を失なうことな《薄膜
化して光吸収損失を低減することができる。
If it is microcrystalline, the ohmic properties of the pn junction can be maintained, so it is possible to reduce light absorption loss by making the film thinner without losing electrical conductivity.

〔作 用〕[For production]

アルゴンの添加によりプラズマ中のイオン量が増加し、
生或する微結晶の粒径が小さくなり、薄膜にても微結晶
化するものと考えられる。本発明によれば微結晶の粒径
を150A以下にすることができるので150人程度の
薄膜で良好なn型μC−31膜を得ることができる。
Addition of argon increases the amount of ions in the plasma,
It is thought that the grain size of the microcrystals that are formed becomes smaller, and even a thin film becomes microcrystalline. According to the present invention, since the grain size of the microcrystals can be reduced to 150A or less, a good n-type μC-31 film can be obtained with a thin film of about 150 people.

〔実施例〕 コーニングガラス上に、プラズマCVD法でn型Si膜
を製膜し、その膜厚と電気伝導度との関係を調べた。n
型S1膜の製膜条件は、温度270℃、圧力、1.OT
orr,電力密度0. 3 W / cutとし、原料
ガスとしては1%PH3/SiH4, SiH4/ H
2 =(5) (6) 1/120を用い、製膜時間をかえて膜厚を調整した。
[Example] An n-type Si film was formed on Corning glass by plasma CVD, and the relationship between the film thickness and electrical conductivity was investigated. n
The film forming conditions for type S1 film were: temperature 270°C, pressure, 1. O.T.
orr, power density 0. 3 W/cut, and raw material gas is 1% PH3/SiH4, SiH4/H
2 = (5) (6) Using 1/120, the film thickness was adjusted by changing the film forming time.

得られたガラス上のn型S1膜の電気伝導度を通常のコ
ープラナー型で評価した。結果を第2図に破線としてま
とめて示す。膜厚が250A以下になると電気伝導度が
急激に低下しており、微結晶化が不十分になったことを
示している。
The electrical conductivity of the obtained n-type S1 film on glass was evaluated using a normal coplanar type. The results are summarized in FIG. 2 as a broken line. When the film thickness became 250A or less, the electrical conductivity decreased rapidly, indicating that microcrystalization was insufficient.

次に、上記と同じ条件で、但し基板としてコーニングガ
ラスと共にコーニングガラス/ a − 3 iを用い
、反応系(原料ガス)にアルゴンガスをH2に対して3
%添加して、同様の製膜及び電気伝導度測定を行なった
Next, under the same conditions as above, except that Corning glass/a-3i was used together with Corning glass as the substrate, argon gas was added to the reaction system (raw material gas) at a ratio of 3 to H2.
% was added, and similar film formation and electrical conductivity measurements were performed.

結果を第2図に実線としてまとめて示すが、膜厚が15
0A程度まで充分に結晶化していることが示されている
。コーニングガラス上とコーニングガラス/ a − 
S i上の電気伝導度は同等であった。
The results are summarized as a solid line in Figure 2, and the film thickness is 15
It is shown that it is sufficiently crystallized to about 0A. Corning Glass Top and Corning Glass/a-
The electrical conductivity on Si was comparable.

従来法のアルゴン添加なしの条件下では、ガラス上では
結晶化してもa−Si上つまり実際のデバイス上では結
晶化しない現象も見られるが、アルゴンを添加すること
によって、このような問題もなく、安定して薄膜微結晶
化膜が得られた。
Under conventional conditions without the addition of argon, there are cases where crystallization occurs on glass but not on a-Si, that is, on actual devices, but by adding argon, this problem is eliminated. , a thin microcrystalline film was stably obtained.

次に、本発明の製膜法を積層型太陽電池に適用し、n型
層薄膜化の効果を調べた。
Next, the film forming method of the present invention was applied to a stacked solar cell, and the effect of thinning the n-type layer was investigated.

第l図を参照すると、透明ガラス基板1上に、先ず透明
電極2を形或後、プラズマCVD法で、順に、第1セル
のp型a−Si膜(厚さ100 A)3、1型a−Si
膜(厚さ1000人)4を堆積した。
Referring to FIG. 1, first, a transparent electrode 2 is formed on a transparent glass substrate 1, and then a p-type a-Si film (thickness 100 A) 3 and a type 1 film of a first cell are formed using a plasma CVD method. a-Si
A film (1000 thick) 4 was deposited.

それからエアブレークし数個に分割しプラズマCVD法
でn型μc−Si膜(りんドープ量1%)5を各種条件
、膜厚にて堆積した。それらの上に、第2セルのp型a
−Si膜(厚さ100人〉6、1型a−Si膜(厚さ、
1500A) 7、n型a−Si膜く厚さ25OA)8
を堆積した。さらに、その上にアルミニウム電極9を形
或した。
Thereafter, the film was air-broken and divided into several pieces, and an n-type μc-Si film (1% phosphorus doping) 5 was deposited by plasma CVD under various conditions and film thicknesses. Above them, the p-type a of the second cell
-Si film (thickness 100 people) 6, type 1 a-Si film (thickness,
1500A) 7, n-type a-Si film thickness 25OA) 8
was deposited. Further, an aluminum electrode 9 was formed thereon.

n型μC−S1膜の製膜条件は、温度270℃、圧力I
TOrrS電力密度0. 3 W / antとし、次
の3種類の膜を製膜した。
The film forming conditions for the n-type μC-S1 film are a temperature of 270°C and a pressure of I
TOrrS power density 0. 3 W/ant, and the following three types of films were formed.

■)水素希釈のみ、膜厚300人、 2〉水素希釈のみ、膜厚150人、 3)アルゴン添加、膜厚15〇人。■) Hydrogen dilution only, film thickness 300 people, 2> Hydrogen dilution only, film thickness 150 people, 3) Argon addition, film thickness 150.

得られた素子のV−I特性及び素子パラメータ(7) (8) をAM−1の照明下で評価した。結果を第3図下表に示
す。
The VI characteristics and device parameters (7) (8) of the obtained device were evaluated under AM-1 illumination. The results are shown in the table below in Figure 3.

表 膜厚バランス: IOOOA/1500A試料 n層作
製法  Voc(V)   Jsc(mA/c++f)
   FP1〉 水素希釈のみ  1.66    2
.96     0.816(300A) 2) 水素希釈のみ  1.60    3.13  
   0.741(150A) 3)  72q晶zr加  ■・663・140・81
5試料1)と2)を比較すると、2)はμc−n層の薄
膜化の効果で2層目へ入射する光量が増加し短絡電流(
Jsc)は上昇しているが、n/pのオーミック性が損
なわれ開放電圧(Voc)付近にキングが出現し形状因
子(FF値)、Vocとも低下している。一方、3)の
場合は2)と同程度のJSCを示し、かつFF値、Vo
cも良好であり光吸収ロス低減とn/pオーミック接合
の両方が実現されている。
Surface film thickness balance: IOOOA/1500A sample n-layer production method Voc (V) Jsc (mA/c++f)
FP1> Hydrogen dilution only 1.66 2
.. 96 0.816 (300A) 2) Hydrogen dilution only 1.60 3.13
0.741 (150A) 3) 72q crystal zr addition ■・663・140・81
5 Comparing samples 1) and 2), in 2), the amount of light incident on the second layer increases due to the effect of thinning the μc-n layer, and the short circuit current (
Jsc) is increasing, but the n/p ohmic property is impaired and a king appears near the open circuit voltage (Voc), and both the form factor (FF value) and Voc are decreasing. On the other hand, in the case of 3), the JSC is comparable to that of 2), and the FF value and Vo
c is also good, and both optical absorption loss reduction and n/p ohmic junction are realized.

さらに、これらの技術により、1.75eV/ 1.7
58V/L50eVの3層タンデムセルを作製したとこ
ろ、変換効率η=10.27%(1c%)が達或された
Furthermore, with these technologies, 1.75eV/1.7
When a three-layer tandem cell of 58V/L50eV was fabricated, a conversion efficiency η=10.27% (1c%) was achieved.

〔発明の効果〕〔Effect of the invention〕

グロー放電分解によるa−Si膜の製膜において反応ガ
スにArを微量添加することにより膜厚150人でも良
好なオーミック性を示すμc−Si膜を得ることができ
、これを積層型太陽電池のpn接合を形或するn型層に
適用して変換効率を向上させることができる。
By adding a small amount of Ar to the reaction gas during the formation of an a-Si film by glow discharge decomposition, it is possible to obtain a μc-Si film that exhibits good ohmic properties even at a film thickness of 150 mm, and this can be used for stacked solar cells. A pn junction can be applied to a certain n-type layer to improve conversion efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は積層型太陽電池の模式断面図、第2図は微結晶
化薄膜の電気伝導度の膜厚依存性を示すグラフ図、第3
図は2層クンデム素子のI一V特性図である。 1・・・基板、        2・・・透明電極、3
.4.5・・・第1セル、 3・・・p層、4・・・1
層、       5・・・n層、6.7.8・・・第
2セル、 6・・・p層、       7・・・1層、(9) (10) 8・・・n層、 9・・・電極。
Figure 1 is a schematic cross-sectional view of a stacked solar cell, Figure 2 is a graph showing the dependence of electrical conductivity on the thickness of a microcrystalline thin film, and Figure 3
The figure is an I-V characteristic diagram of a two-layer Kundem device. 1... Substrate, 2... Transparent electrode, 3
.. 4.5...first cell, 3...p layer, 4...1
Layer, 5...n layer, 6.7.8...second cell, 6...p layer, 7...1 layer, (9) (10) 8...n layer, 9. ··electrode.

Claims (1)

【特許請求の範囲】[Claims] 1、pin型接合からなる単位セルを積層して成り、単
位セル間のpn接合を形成するn型層が微結晶質シリコ
ン半導体層から成る、積層型太陽電池の製造において、
前記n型微結晶質シリコン半導体層を反応系にアルゴン
ガスを添加したグロー放電分解法で形成することを特徴
とする積層型太陽電池の製造方法。
1. In the production of a stacked solar cell, which is formed by stacking unit cells with pin-type junctions, and in which the n-type layer forming the p-n junction between the unit cells is made of a microcrystalline silicon semiconductor layer.
A method for manufacturing a stacked solar cell, characterized in that the n-type microcrystalline silicon semiconductor layer is formed by a glow discharge decomposition method in which argon gas is added to the reaction system.
JP1154757A 1989-06-19 1989-06-19 Manufacturing method for laminated type solar cell Pending JPH0321080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1154757A JPH0321080A (en) 1989-06-19 1989-06-19 Manufacturing method for laminated type solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1154757A JPH0321080A (en) 1989-06-19 1989-06-19 Manufacturing method for laminated type solar cell

Publications (1)

Publication Number Publication Date
JPH0321080A true JPH0321080A (en) 1991-01-29

Family

ID=15591237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1154757A Pending JPH0321080A (en) 1989-06-19 1989-06-19 Manufacturing method for laminated type solar cell

Country Status (1)

Country Link
JP (1) JPH0321080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336623A (en) * 1992-03-02 1994-08-09 Showa Shell Sekiyu K.K. Process for producing integrated solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336623A (en) * 1992-03-02 1994-08-09 Showa Shell Sekiyu K.K. Process for producing integrated solar cell

Similar Documents

Publication Publication Date Title
JP3490964B2 (en) Photovoltaic device
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US4718947A (en) Superlattice doped layers for amorphous silicon photovoltaic cells
US20100132774A1 (en) Thin Film Silicon Solar Cell Device With Amorphous Window Layer
JPS6249672A (en) Amorphous photovoltaic element
JPH05243596A (en) Manufacture of laminated type solar cell
JP2003258279A (en) Multi-junction thin film solar cell and manufacturing thereof
JP2001267598A (en) Laminated solar cell
JPS6334634B2 (en)
JP2004260014A (en) Multilayer type thin film photoelectric converter
JPH04130671A (en) Photovoltaic device
JP3236306B2 (en) Enhanced short-circuit current using broadband gap n-layer in pin amorphous silicon photovoltaic cells
JP4032610B2 (en) Non-single crystal thin film solar cell manufacturing method
WO2022156101A1 (en) Solar cell stack passivation structure and preparation method therefor
JPS62234379A (en) Semiconductor device
JP2675754B2 (en) Solar cell
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
JPH11274527A (en) Photovoltaic device
JP2002016271A (en) Thin-film photoelectric conversion element
JPS6074685A (en) Photovoltaic device
JPH0321080A (en) Manufacturing method for laminated type solar cell
JPS61135167A (en) Thin-film solar cell
JP2744680B2 (en) Manufacturing method of thin film solar cell
JP4253966B2 (en) Amorphous thin film solar cell
JPH0282655A (en) Manufacture of photovolatic device