JPH03218922A - Production of tl-containing multiple oxide superconductor - Google Patents
Production of tl-containing multiple oxide superconductorInfo
- Publication number
- JPH03218922A JPH03218922A JP1224211A JP22421189A JPH03218922A JP H03218922 A JPH03218922 A JP H03218922A JP 1224211 A JP1224211 A JP 1224211A JP 22421189 A JP22421189 A JP 22421189A JP H03218922 A JPH03218922 A JP H03218922A
- Authority
- JP
- Japan
- Prior art keywords
- composite oxide
- thallium
- oxide
- thin film
- intermediate composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 13
- 239000001301 oxygen Substances 0.000 claims abstract description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims abstract description 6
- 239000002131 composite material Substances 0.000 claims description 80
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 36
- 229910052716 thallium Inorganic materials 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000000470 constituent Substances 0.000 abstract description 12
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 231100000331 toxic Toxicity 0.000 abstract description 3
- 230000002588 toxic effect Effects 0.000 abstract description 3
- 239000010409 thin film Substances 0.000 description 34
- 239000000758 substrate Substances 0.000 description 31
- 239000000463 material Substances 0.000 description 28
- 239000013078 crystal Substances 0.000 description 23
- 239000000843 powder Substances 0.000 description 16
- WKMKTIVRRLOHAJ-UHFFFAOYSA-N oxygen(2-);thallium(1+) Chemical compound [O-2].[Tl+].[Tl+] WKMKTIVRRLOHAJ-UHFFFAOYSA-N 0.000 description 12
- 229910003438 thallium oxide Inorganic materials 0.000 description 11
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 229910014454 Ca-Cu Inorganic materials 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 238000011276 addition treatment Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003746 solid phase reaction Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910002370 SrTiO3 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 150000003476 thallium compounds Chemical class 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 2
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000238366 Cephalopoda Species 0.000 description 1
- PSFDQSOCUJVVGF-UHFFFAOYSA-N Harman Natural products C12=CC=CC=C2NC2=C1C=CN=C2C PSFDQSOCUJVVGF-UHFFFAOYSA-N 0.000 description 1
- 230000005668 Josephson effect Effects 0.000 description 1
- 229910000909 Lead-bismuth eutectic Inorganic materials 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 1
- 101000650578 Salmonella phage P22 Regulatory protein C3 Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910003808 Sr-Cu Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 101001040920 Triticum aestivum Alpha-amylase inhibitor 0.28 Proteins 0.000 description 1
- JZKFIPKXQBZXMW-UHFFFAOYSA-L beryllium difluoride Chemical compound F[Be]F JZKFIPKXQBZXMW-UHFFFAOYSA-L 0.000 description 1
- 229910001633 beryllium fluoride Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は複合酸化物系超電導体の新規な製造方法に関す
るものであり、特に、Tl −Ba−Ca−Cu系の複
合酸化物超電導体のようなタリウムを含む複合酸化物超
電導体の新規な製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel method for manufacturing composite oxide superconductors, and in particular, to a method for producing composite oxide superconductors such as Tl-Ba-Ca-Cu composite oxide superconductors. The present invention relates to a new method for producing a complex oxide superconductor containing thallium.
従来の技術
電子の相転移であるといわれる超電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。即ち、超電導下では、超電導体に電流
を流しても電力損失が全く無く、密度の高い電流が永久
に流れ続ける。例えば、超電導技術を送電に応用すれば
、現在送電に伴って生じているといわれる約7%の送電
損失を大幅に減少できる。また、SQUIDを用いた微
弱な磁気を感知する計測分野、π中間子治療を用いた医
療の分野、さらには、高エネルギー物理実験装置などへ
の利用が期待されている。さらに、核融合、MHD発電
、磁気浮上電車、磁気推進船等の強力な磁場の発生が必
要な分野でも超電導体が要求されている。BACKGROUND OF THE INVENTION Superconductivity, which is said to be a phase transition of electrons, is a phenomenon in which the electrical resistance of a conductor becomes zero under certain conditions and exhibits complete diamagnetic properties. That is, under superconductivity, there is no power loss at all even when current is passed through a superconductor, and a high-density current continues to flow forever. For example, if superconducting technology is applied to power transmission, it will be possible to significantly reduce the approximately 7% transmission loss that currently occurs with power transmission. It is also expected to be used in the measurement field that uses SQUIDs to sense weak magnetism, the medical field that uses pi-meson therapy, and even high-energy physical experiment equipment. Furthermore, superconductors are also required in fields that require the generation of strong magnetic fields, such as nuclear fusion, MHD power generation, magnetic levitation trains, and magnetic propulsion ships.
また、超電導材料は各種の電子素子への応用も提案され
ている。代表的なものとしては、超電導材料どうしを弱
く接合した場合に印加電流によつて量子効果が巨視的に
現れるジョセフソン効果を利用した素子が挙げられる。Furthermore, applications of superconducting materials to various electronic devices have also been proposed. A typical example is an element that utilizes the Josephson effect, in which quantum effects appear macroscopically when superconducting materials are weakly bonded together by an applied current.
トンネル接合型ジョセフソン素子は、超電導材料のエネ
ルギーギャップが小さいことから、極めて高速な低電力
消費のスイッチング素子として期待されている。また、
電子回路の集債度が高くなるにつれて単位面積当たりの
消費電力が冷却能力の限界に達するものと見られている
。そこで超高速計算機には超電導素子の開発が要望され
ている。Tunnel junction type Josephson devices are expected to be extremely high-speed switching devices with low power consumption because the energy gap of superconducting materials is small. Also,
As the number of electronic circuits increases, the power consumption per unit area is expected to reach the limit of cooling capacity. Therefore, there is a need for the development of superconducting elements for ultra-high-speed computers.
しかし、過去10年間、超電導材料の超電導臨界温度T
cはNb3Geの23Kを越えることができなかった。However, in the past 10 years, the superconducting critical temperature T of superconducting materials
c could not exceed 23K of Nb3Ge.
高温超電導体の存在は、ベドノーツェおよびミューラー
による複合酸化物系高Tc超電導材料の発見によって明
らかにされた(Bednorz, Muller,”
Z.Phys, ’”B64, 1986年、189
頁)。The existence of high-temperature superconductors was revealed by the discovery of complex oxide-based high Tc superconducting materials by Bednorz and Muller (Bednorz, Muller, "
Z. Phys, '”B64, 1986, 189
page).
これまでにも複合酸化物系のセラミック材料が超電導特
性を示すということ自体は知られていた。It has been known for some time that composite oxide ceramic materials exhibit superconducting properties.
例えば、米国特許第3, 932, 315号には、B
a−PbBi系の複合酸化物が超電導特性を示すという
ことが記載されており、また、特開昭60−173,
885号公報にはBa−Bi系の複合酸化物が超電導特
性を示すということが記載されている。しかし、これま
でに知られていた複合酸化物超電導材料のT。は、10
K以下と全般的に極めて低く、超電導現象を得るには高
価且つ稀少な液体ヘリウム(沸点4. 2 K )の使
用が不可避であった。For example, U.S. Pat. No. 3,932,315 states that B.
It has been described that a-PbBi-based composite oxides exhibit superconducting properties, and also in JP-A-60-173,
Publication No. 885 describes that a Ba-Bi-based composite oxide exhibits superconducting properties. However, the T of the complex oxide superconducting materials known so far. is 10
K or less, which is generally extremely low, and in order to obtain superconducting phenomena it was necessary to use expensive and rare liquid helium (boiling point 4.2 K).
ベドノーツおよびミューラーによって発見された酸化物
超電導体は(La, Ba) 2Cu 0 4で、これ
は、K2NIF4型酸化物と呼ばれるもので、従来から
知られていたべロブス力イト型超電導酸化物と結晶構造
が似ているが、そのTcは従来の超電導材料に比べて飛
躍的に高い約30Kという値である。その後、数多くの
複合酸化物系高温超電導体が報告され、高温超電導体の
実用化の可能性が出てきた。The oxide superconductor discovered by Bednotes and Mueller is (La, Ba) 2Cu 0 4, which is called a K2NIF4 type oxide, and has a crystal structure similar to the previously known Belobusteito type superconducting oxide. are similar, but its Tc is about 30K, which is dramatically higher than that of conventional superconducting materials. Since then, many complex oxide-based high-temperature superconductors have been reported, and the possibility of practical application of high-temperature superconductors has emerged.
チュー達はYBazCu3 Ch−xで表わされる90
Kクラスの臨界温度を示すYBCOといわれる別の系の
複合酸化物を報告している(Physical Rev
iewLetters, (58)肌908頁198
7年)。前田達はBISr −Ca−Cu一系の別の超
電導複合酸化物を報告している(Japanese
Journalof Applied Physic
s,(27)2. 1209 〜12lO頁)。Chus are represented by YBazCu3 Ch-x90
have reported another type of composite oxide called YBCO that exhibits a K-class critical temperature (Physical Rev.
iewLetters, (58) skin 908 pages 198
7 years). Maeda et al. have reported another superconducting composite oxide based on BISr-Ca-Cu (Japanese
Journal of Applied Physics
s, (27)2. 1209-12lO).
タリウム系の複合酸化物も100 K以上の超電導体で
ある。本出願人は特願昭62−185739号および特
願昭62−185710号においていくつかのタリウム
系複合酸化物を開示しており、また、ハーマン達はAp
plied Physics Letter (52)
20 1738頁においてTI −Ba −Ca−
Co系を報告している。これらのタリウム系の複合酸化
物は上記YBCO系の複合酸化物よりも化学的に安定で
あるだけでなく、希土類元素を用いずに100 K以上
のTcが実現でき、従って、製造コストを下げることが
できるという利点がある。Thallium-based composite oxides are also superconductors of 100 K or higher. The present applicant has disclosed several thallium-based composite oxides in Japanese Patent Application No. 185739/1982 and Japanese Patent Application No. 185710/1982, and Harman et al.
Plied Physics Letter (52)
20 On page 1738 TI -Ba -Ca-
Co-based materials are reported. These thallium-based composite oxides are not only chemically more stable than the above-mentioned YBCO-based composite oxides, but also can achieve a Tc of 100 K or more without using rare earth elements, thus reducing manufacturing costs. It has the advantage of being able to
これらの複合酸化物超電導材料は、いずれも、一般に固
相反応によって製造することができる。All of these composite oxide superconducting materials can generally be manufactured by solid phase reaction.
すなわち、構成金属元素の酸化物または炭酸塩等の粉末
を構成金属元素が所定の原子比となるような比率で混合
した原料混合粉末を焼結することによって焼結体として
得ることができる。That is, a sintered body can be obtained by sintering a raw material mixed powder in which powders of oxides or carbonates of constituent metal elements are mixed in a ratio such that the constituent metal elements have a predetermined atomic ratio.
また、RFスパッタリング法、真空蒸着法、イオンプレ
ーティング法、MBE等の物理蒸着(PVD)法または
熱CVD法、プラズマCVD法、光Cν0法、!J O
Cν・D法等のCVD法を用いて基板上に薄膜として
成膜することができる。In addition, RF sputtering method, vacuum evaporation method, ion plating method, physical vapor deposition (PVD) method such as MBE, thermal CVD method, plasma CVD method, optical Cv0 method,! J.O.
A thin film can be formed on a substrate using a CVD method such as the CvD method.
しかし、上記のTI系の複合酸化物系超電導材料は、T
Iの蒸気圧が他の構成元素と大きく異なるために、組成
の正確な制御が困難である。しかも、T1蒸気には毒性
があるので、製造環境を汚染するという問題がある。従
って、タリウム系の複合酸化物を通常の面相反応法で取
扱うのは困難である。However, the above TI-based composite oxide superconducting material
Since the vapor pressure of I is significantly different from that of other constituent elements, it is difficult to accurately control the composition. Moreover, since T1 vapor is toxic, there is a problem in that it contaminates the manufacturing environment. Therefore, it is difficult to handle thallium-based composite oxides by the usual surface phase reaction method.
発明が解決しようとする課題
本発明の目的は、上記従来技術の問題点を解決し、特に
高い超電導臨界温度(Tc)を有する高い品質のタリウ
ム系複合酸化物超電導体、例えば、TIBa−Ca−C
u系の複合酸化物超電導体を、より容易且つ確実に製造
するための新規な方法を提供することにある。Problems to be Solved by the Invention An object of the present invention is to solve the problems of the prior art described above, and to develop a high quality thallium-based composite oxide superconductor having a particularly high superconducting critical temperature (Tc), such as TIBa-Ca- C
The object of the present invention is to provide a new method for manufacturing a U-based composite oxide superconductor more easily and reliably.
課題を解決するための手段
本発明の提供するタリウムを含む複合酸化物超電導体の
製造方法は、複合酸化物超電導を構成するタリウム以外
の金属元素のみより成る中間複合酸化物を作り、この中
間複合酸化物をクリウムと酸素を含むガス雰囲気下また
は酸化タリウム蒸気の雰囲気下で800〜1000℃の
温度範囲で熱処理することによって酸化タリウムを上記
中間複合酸化物と反応させることを特徴としている。Means for Solving the Problems The method of manufacturing a complex oxide superconductor containing thallium provided by the present invention involves producing an intermediate complex oxide consisting only of metal elements other than thallium constituting the complex oxide superconductor; It is characterized in that thallium oxide is reacted with the intermediate composite oxide by heat treating the oxide in a temperature range of 800 to 1000° C. in a gas atmosphere containing chromium and oxygen or in an atmosphere of thallium oxide vapor.
上記の中間複合酸化物は、ブロックまたは成形体のよう
なバルク形状の母材でも、あるいは、基板上に形成され
た薄膜であってもよい。The above-mentioned intermediate composite oxide may be a bulk-shaped base material such as a block or a molded body, or a thin film formed on a substrate.
本発明は、タリウムを含む任意の複合酸化物に適用する
ことができる。本発明が適用可能な典型的なクリウム系
複合酸化物は下記一般式で表わされる:
Tl2(Ba,−q,Caq)IIICLIII Op
+rここで、m, n, Xおよびyはそれぞれ下記:
3≦m≦5、 2≦n≦4、
0<q<1、 −1≦r≦+1
の範囲を満足する数を表し、p = (6+m+n)/
2である。この系の複合酸化物の例としては下記の系を
挙げることができる:
Tl2Ba2Ca,Cu20g
T!2Ba2Ca2Cu3C)+o
これらの複合酸化物はC軸方向に上記の系の2倍の結晶
構造をもつものもある。これらの系のTcはそれぞれ1
00Kおよび125Kである。The present invention can be applied to any composite oxide containing thallium. A typical chromium-based composite oxide to which the present invention is applicable is represented by the following general formula: Tl2(Ba,-q,Caq)IIICLIII Op
+r where m, n, X and y are each as follows:
Represents a number that satisfies the following ranges: 3≦m≦5, 2≦n≦4, 0<q<1, -1≦r≦+1, p = (6+m+n)/
It is 2. Examples of complex oxides of this system include the following system: Tl2Ba2Ca, Cu20g T! 2Ba2Ca2Cu3C)+o Some of these composite oxides have a crystal structure twice that of the above system in the C-axis direction. The Tc of each of these systems is 1
00K and 125K.
本発明は上記以外のタリウム含有複合酸化物にも適用す
ることができる。その例としては、下記のような系を挙
げることができる:
TI −Sr−Ca−Cu−0系(75〜100K)T
I −Pb−Sr−Ca−Cu − 0系(80〜12
2 K)TI−Ba−(Y, Ca)一Cu − 0系
(92K)(TI, Ln)−Sr −Ca−Cu−0
系(80〜90K)(TI, La, Pb)−Sr
−Ca−Cu−○系(100 K)(Bi, TI)−
Sr −Cu−0系(90K)Pb−TI −Sr −
Cu − 0系(42K)しa −TI −Sr−Cu
−0系 (32K)Nd−TI −Sr −Cu −
0系(44K)(注) Lnはランタノイド元素
作用
既に述べたように、一般に、複合酸化物系の高温超電導
材料は、焼結法または蒸着法によって製造することがで
きるが、タリーウム系複合酸化物の場合には、各構成元
素の蒸気圧に大きな隔たりがあるため、従来方法では組
成の制御を有効に行うことが極めて困難であった。The present invention can also be applied to thallium-containing composite oxides other than those mentioned above. As an example, the following system may be mentioned: TI-Sr-Ca-Cu-0 system (75-100K)T
I-Pb-Sr-Ca-Cu-0 system (80-12
2K) TI-Ba-(Y, Ca)-Cu-0 system (92K) (TI, Ln)-Sr-Ca-Cu-0
System (80-90K) (TI, La, Pb)-Sr
-Ca-Cu-○ system (100 K) (Bi, TI)-
Sr -Cu-0 system (90K) Pb-TI -Sr -
Cu-0 series (42K) a-TI-Sr-Cu
-0 series (32K)Nd-TI -Sr -Cu -
0 series (44K) (Note) Ln is a lanthanoid element.As already mentioned, composite oxide-based high-temperature superconducting materials can generally be manufactured by sintering or vapor deposition, but thallium-based composite oxide In this case, it is extremely difficult to control the composition effectively using conventional methods because there is a large difference in the vapor pressure of each constituent element.
本発明方法の特徴は、最終目的物の複合酸化物を直接合
成するのではなく、先ず、タリウムを含まない中間複合
酸化物を作り、これをさらに酸化タリウムを反応させる
ことによって最終目的物の複合酸化物を得る点にある。The feature of the method of the present invention is that instead of directly synthesizing the final target composite oxide, an intermediate composite oxide containing no thallium is first made, and this is further reacted with thallium oxide to synthesize the final target composite oxide. The point is to obtain oxides.
すなわち、本発明の方法では、第1段階で、蒸気圧が極
端に高いタリウムを除いた他の構成元素のみで先ず中間
複合酸化物を作り、次に、第2段階で、この中間複合酸
化物にさらに酸化タリウムを添加する。That is, in the method of the present invention, in the first step, an intermediate composite oxide is first made using only the other constituent elements except thallium, which has an extremely high vapor pressure, and then, in the second step, this intermediate composite oxide is Furthermore, thallium oxide is added to.
この中間複合酸化物は、ブロックまたは成形体のような
バルク形状の母材でも、基板上に形成された薄膜であっ
てもよい。しかし、本発明の方法では、タリウムが後で
添加されるので、超電導層は主として中間複合酸化物の
表面付近に形成される。従って、中間複合酸化物は薄膜
が好ましい。This intermediate composite oxide may be a bulk-shaped base material such as a block or molded body, or a thin film formed on a substrate. However, in the method of the present invention, since thallium is added later, the superconducting layer is mainly formed near the surface of the intermediate composite oxide. Therefore, the intermediate composite oxide is preferably a thin film.
また、上記中間複合酸化物は結晶質でも非晶質でもよい
が、上記中間複合酸化物を非晶質とすることによって、
最終的に得られるTI系複合酸化物超電導体の品質が向
上させることができるする。Further, the intermediate composite oxide may be crystalline or amorphous, but by making the intermediate composite oxide amorphous,
The quality of the finally obtained TI-based composite oxide superconductor can be improved.
すなわち、結晶性の中間複合酸化物母材の場合には、そ
の内部に既に安定状態である結晶が形成されているので
、TIの添加と添加されたTIの拡散が不十分になる。That is, in the case of a crystalline intermediate composite oxide base material, crystals in a stable state have already been formed inside the base material, so that the addition of TI and the diffusion of the added TI become insufficient.
また、特に、Ba−Ca−Cuの複合酸化物の結晶には
複数の相が存在し、結晶性の母材中には互いに異なる相
の結晶粒が形成されるので、この母材にTIを添加した
場合には、最終製品中に異なる相または異なる組成のT
I系複合酸化物が混在し、均質な超電導体が得られ難い
。Furthermore, in particular, multiple phases exist in the crystal of the Ba-Ca-Cu composite oxide, and crystal grains of mutually different phases are formed in the crystalline base material, so TI is applied to this base material. If added, different phases or different compositions of T in the final product
I-based complex oxides are mixed, making it difficult to obtain a homogeneous superconductor.
非品質の中間複合酸化物を用いた場合には、中間複合酸
化物の品質および組成が全体に均一となる。また、非晶
質は熱力学的に不安定な状態であり、TIの添加と拡散
が効率良く行なえる。If a non-quality intermediate composite oxide is used, the quality and composition of the intermediate composite oxide will be uniform throughout. Furthermore, since the amorphous state is thermodynamically unstable, addition and diffusion of TI can be carried out efficiently.
クリウム以外の構成金属元素の中間複合酸化物を製造す
る第1段階は、従来公知の任意の固相反応法または蒸着
方法を用いることができる。In the first step of producing an intermediate composite oxide of a constituent metal element other than chromium, any conventionally known solid phase reaction method or vapor deposition method can be used.
中間複合酸化物として、バルク形状の母材を作る場合に
は固相反応法を利用する。この場合には、先ず、タリウ
ム以外の構成金属元素の化合物粉末、特に、これらの酸
化物、炭酸塩またはフッ化物の粉末を所定原子比となる
ように混合し、得られた原料混合粉末を焼結する。焼結
の前に仮焼一粉砕を数回反復するのが好ましい。この場
合、非晶質の焼結体を得るには、原料粉末を一旦150
0℃程度に溶融した後急冷すればよい。タリウム以外の
構成金属元素の場合には、極端に蒸気圧の相違するもの
がないので、この焼結は通常の操作で行うことができる
。When producing a bulk-shaped base material as an intermediate composite oxide, a solid phase reaction method is used. In this case, first, compound powders of constituent metal elements other than thallium, especially powders of their oxides, carbonates, or fluorides, are mixed at a predetermined atomic ratio, and the obtained raw material mixed powder is sintered. conclude. It is preferable to repeat calcination and pulverization several times before sintering. In this case, in order to obtain an amorphous sintered body, the raw material powder is heated to
What is necessary is to melt it to about 0°C and then rapidly cool it. In the case of constituent metal elements other than thallium, there is no extreme difference in vapor pressure, so this sintering can be performed by normal operations.
既に述べたように、タリウムを除く元素により形成され
る中間複合酸化物は、上記のような焼結体であってもよ
いが、本発明のTIの添加方法では、添加したタリウム
は中間複合酸化物の主として表面付近で反応するので、
中間複合酸化物としては?膜がより有利である。As already mentioned, the intermediate composite oxide formed from elements other than thallium may be a sintered body as described above, but in the TI addition method of the present invention, the added thallium is not an intermediate composite oxide. Because the reaction mainly occurs near the surface of the object,
What about intermediate composite oxides? Membranes are more advantageous.
中間複合酸化物として薄膜を用いる場合には、物理蒸着
(PVD)法または化学的蒸着(CVD)法を用いる。When using a thin film as the intermediate composite oxide, a physical vapor deposition (PVD) method or a chemical vapor deposition (CVD) method is used.
物理蒸着法としてRFマクネトロンスパッタリング法、
真空蒸着法、イオンプレーティング法を用いる場合には
、蒸発源またはターゲ7}の金属元素の原子比は各元素
の蒸着速度および基板に対する結合力の差に応じて調節
する。この蒸発源またはターゲットは金属元素および/
またはその酸化物または炭酸塩の粉末原料を粉末焼結法
によって焼結した焼結体か、この焼結体を粉砕して得ら
れる焼結粉末にするのが好ましい。また、この蒸発源ま
たはターゲットは複数に分けることもできる。分子線エ
ビタキシー(MBB)法を用いる場合には構成金属元素
またはその酸化物をKセルを用いて蒸発させる。この場
合には、必要に応じて酸素を蒸着雰囲気中に別途供給す
る。RF McNetron sputtering method as physical vapor deposition method,
When a vacuum evaporation method or an ion plating method is used, the atomic ratio of the metal elements in the evaporation source or the target 7 is adjusted depending on the evaporation rate of each element and the difference in bond strength to the substrate. This evaporation source or target is a metal element and/or
Alternatively, it is preferable to use a sintered body obtained by sintering a powder raw material of an oxide or carbonate thereof by a powder sintering method, or a sintered powder obtained by pulverizing this sintered body. Moreover, this evaporation source or target can also be divided into multiple parts. When using the molecular beam epitaxy (MBB) method, the constituent metal elements or their oxides are evaporated using a K cell. In this case, oxygen is separately supplied into the deposition atmosphere as required.
この中間複合酸化物薄膜を形成する基板はMgO、Zr
O■、SrTi03、いNb03、LiTa03、La
A103、LaGa03等の単結晶にするのが好ましい
。さらに、LiAlO+、?Cab3、KTaO+、C
aF2、BeF2、csz, ysz等を用いることも
できる。シリコン単結晶を用いる場合には、その表面上
jコ,1gOや ZrO■等のバッファ一層を形成して
かり中間複合酸化物薄膜を形成するのが好ましい。The substrate on which this intermediate composite oxide thin film is formed is made of MgO, Zr
O■, SrTi03, Nb03, LiTa03, La
It is preferable to use a single crystal such as A103 or LaGa03. Furthermore, LiAlO+,? Cab3, KTaO+, C
aF2, BeF2, csz, ysz, etc. can also be used. When a silicon single crystal is used, it is preferable to form a single layer of a buffer such as 1gO or ZrO on its surface to form an intermediate composite oxide thin film.
最終的に得られる複合酸化物超電導体は、一般にその電
気抵抗に結晶異方性を有し、結晶のa軸およびb軸に規
定される面に平行な方向には電流が流れ易く、C軸に平
行な方向には流れ難い。従って、複合酸化物系超電導材
料薄膜を形成する場合には、希望する電流方向に応じた
結晶配向性を付与することが好ましい。The finally obtained composite oxide superconductor generally has crystal anisotropy in its electrical resistance, and current tends to flow in the direction parallel to the plane defined by the a-axis and b-axis of the crystal, and the C-axis It is difficult to flow in a direction parallel to . Therefore, when forming a composite oxide-based superconducting material thin film, it is preferable to impart crystal orientation according to the desired current direction.
例えば、M g O単結晶基板またはSrTi03単結
晶基板の(100)面を成膜面として用いると、この成
膜面上に形成された複合酸化物超電導体薄膜は結晶のC
軸が基板成膜面に対し垂直または垂直に近い角度となる
ため、特に臨界電流密度Jcにおいて優れた特性の薄膜
が得られる。また、SrTiO3基板の{110}面を
用いて結晶のC軸を基板と平行にすることにより、膜の
深さ方向に高電流密度を得ることも可能である。For example, if the (100) plane of an M g O single crystal substrate or an SrTi03 single crystal substrate is used as a film formation surface, the composite oxide superconductor thin film formed on this film formation surface will be
Since the axis is perpendicular or at an angle close to perpendicular to the substrate film-forming surface, a thin film with excellent properties can be obtained, particularly at the critical current density Jc. Furthermore, by using the {110} plane of the SrTiO3 substrate and making the C axis of the crystal parallel to the substrate, it is also possible to obtain a high current density in the depth direction of the film.
また、MgOおよびSrTiO3は、熱膨脹率が複合酸
化物系超電導材料に近いので、成膜過程における加熱/
冷却を含む熱履歴により薄膜に有害な応力が生じること
もない。In addition, since MgO and SrTiO3 have a coefficient of thermal expansion close to that of composite oxide superconducting materials, heating/
Thermal history, including cooling, does not create harmful stresses in the thin film.
具体的には、例えばBa−Ca−Cu−’0系の中間複
合酸化物の非品質薄膜薄膜を製造する場合には、上記で
説明した13a −(:a−Cuの複合酸化物ブロック
またはそれを粉砕した粉末をターゲットとしてスパッタ
リングによってMgOの単結晶基板上にBaCa−Cu
−0系の中間複合酸化物の薄膜を形成する際に、蒸着時
の基板温度を600℃以下の範囲の温度にする。Specifically, for example, when manufacturing a non-quality thin film of a Ba-Ca-Cu-'0-based intermediate composite oxide, the 13a-(:a-Cu composite oxide block described above or its BaCa-Cu was deposited on a MgO single crystal substrate by sputtering using a powder obtained by pulverizing BaCa-Cu as a target.
When forming a thin film of -0-based intermediate composite oxide, the substrate temperature during vapor deposition is set to a temperature in the range of 600° C. or lower.
第2段階では、こうして得られた中間複合酸化物の薄膜
にさらにタリウムを添加して反応させる。In the second step, thallium is further added to the thus obtained intermediate composite oxide thin film and reacted.
この操作は上記で得られた中間複合酸化物のブロックま
たは薄膜を、タリウムと酸素を含むガス雲囲気または酸
化タリウム蒸気の雰囲気下で800〜1000℃の温度
範囲で熱処理することによって行う。This operation is carried out by heat-treating the block or thin film of the intermediate composite oxide obtained above in a temperature range of 800 to 1000° C. in a gas cloud containing thallium and oxygen or in an atmosphere of thallium oxide vapor.
具体的には、密閉されたチャンバー中に中間複合酸化物
を載置し、このチャンパー内で、タリウム蒸気と酸素ガ
スまたは酸化クリウム蒸気雰.囲気を作り、中間複合酸
化物を加熱する。酸化タリウム蒸気は、例えば酸化タリ
ウム粉末を加熱することによって発生させることができ
る。Specifically, an intermediate composite oxide is placed in a sealed chamber, and thallium vapor and oxygen gas or chromium oxide vapor atmosphere is placed in the chamber. Create an atmosphere and heat the intermediate composite oxide. Thallium oxide vapor can be generated, for example, by heating thallium oxide powder.
この場合の中間複合酸化物の加熱温度は800〜100
0℃の範囲に保つことが好ましい。この加熱温度が80
0℃未満では中間複合酸化物が活性化しないので、酸化
タリウム蒸気と中間複合酸化物が十分に反応しない。逆
に、加熱温度が1000℃を越えると、タリウム原子が
中間複合酸化物から再び飛び出すため目的とするタリウ
ム系複合酸化物が得られない。In this case, the heating temperature of the intermediate composite oxide is 800 to 100
It is preferable to maintain the temperature within the range of 0°C. This heating temperature is 80
Since the intermediate composite oxide is not activated below 0°C, the thallium oxide vapor and the intermediate composite oxide do not react sufficiently. On the other hand, if the heating temperature exceeds 1000°C, thallium atoms will jump out of the intermediate composite oxide again, making it impossible to obtain the desired thallium-based composite oxide.
一般に、中間複合酸化物の加熱温度よりも、蒸発源であ
るタリウム化合物の加熱温度を高くするのが好ましい。Generally, it is preferable to heat the thallium compound, which is the evaporation source, higher than the heating temperature of the intermediate composite oxide.
また、適当なフラックスを使用して、蒸発源であるタリ
ウム化合物の蒸気圧を高くすることもできる。このタリ
ウム蒸気雲囲気での加熱処理は一般に1分〜5時間行う
のが好ましい。Furthermore, the vapor pressure of the thallium compound, which is the evaporation source, can be increased by using a suitable flux. It is generally preferable to carry out the heat treatment in the thallium vapor cloud for 1 minute to 5 hours.
なお、最終的な複合酸化物超電導体の酸素含有量を制御
する目的で、上記の熱処理雰囲気内の酸素分圧は高くし
ておくのが好ましい。この酸素分圧は最終製品の複合酸
化物超電導体の種類によって適宜選択することができる
が、一般には1気圧程度である。Note that, in order to control the oxygen content of the final composite oxide superconductor, it is preferable to keep the oxygen partial pressure in the heat treatment atmosphere high. This oxygen partial pressure can be appropriately selected depending on the type of composite oxide superconductor of the final product, but is generally about 1 atmosphere.
以下、添付図面を用いて、本発明方法を実施するのに用
いることのできる装置を説明する。The apparatus that can be used to carry out the method of the present invention will now be described with reference to the accompanying drawings.
第1図は、本発明方法を実施するために一実施例の装置
の構成を概念図である。FIG. 1 is a conceptual diagram of the configuration of an apparatus according to an embodiment for carrying out the method of the present invention.
この装置は、弁9により閉鎖可能な供給孔7と、弁10
により閉鎖可能な排出口8とを備えた気密な炉1内に、
基板ホルダ4と、タリウム含有化合物11を収容するボ
ート5と、このボート5を加熱するヒータ6とを有して
いる。また、炉1の外部にはヒータ2が設けられていて
、炉全体を加熱することができるように構成されている
。また、ボート5と基板ホルダ4とは対面して配置され
ており、ボート5から揮発したタリウムを含む蒸気が効
率良く母材に到達するように構成されている。なお炉1
には加圧安全弁が備えられている。The device has a supply hole 7 which can be closed by a valve 9 and a valve 10.
In an airtight furnace 1 equipped with an outlet 8 that can be closed by
It has a substrate holder 4, a boat 5 that accommodates a thallium-containing compound 11, and a heater 6 that heats the boat 5. Further, a heater 2 is provided outside the furnace 1, and is configured to be able to heat the entire furnace. Further, the boat 5 and the substrate holder 4 are arranged to face each other, so that the vapor containing thallium volatilized from the boat 5 efficiently reaches the base material. Furnace 1
is equipped with a pressurized safety valve.
本発明方法を実施する場合には、タリウム以外の構成金
属元素の複合酸化物のブロックまたは薄膜よりなる中間
複合酸化物3を上記基板ホルダ4に固定し、上記ボート
5中にタリウム含有化合物、例えば、酸化タリウム粉末
を収容した後、一旦、炉中を排気した後、ハルブ10を
閉じ、弁9を開けて炉中に酸素ガスを導入する。この弁
9を閉じた後、ヒータ6を付勢してボート5中のタリウ
ム含有化合物を蒸発させとともに、炉1の外部のヒータ
2を付勢して中間複合酸化物3を加熱する。この加熱時
間は1分から3時間でよい。When carrying out the method of the present invention, an intermediate composite oxide 3 consisting of a block or thin film of a composite oxide of a constituent metal element other than thallium is fixed to the substrate holder 4, and a thallium-containing compound, e.g. After accommodating the thallium oxide powder, the furnace is once evacuated, the hull 10 is closed, and the valve 9 is opened to introduce oxygen gas into the furnace. After closing the valve 9, the heater 6 is energized to evaporate the thallium-containing compound in the boat 5, and the heater 2 outside the furnace 1 is energized to heat the intermediate composite oxide 3. This heating time may be 1 minute to 3 hours.
以下に実施例を挙げて本発明をより具体的に詳述するが
、以下の開示は本発明の一実施例に過ぎず、本発明の技
術的範囲を何ら限定するものではない。The present invention will be described in more detail with reference to examples below, but the disclosure below is merely one example of the present invention and does not limit the technical scope of the present invention in any way.
実施例1
先ず、本発明で使用する母材を以下のようにして作成し
た。Example 1 First, a base material used in the present invention was prepared as follows.
BaSCaおよびCuの各酸化物粉末を、Ba:Ca:
Cu?原子比が2:2:3となるように混合して得た混
合粉末を焼結して焼結体をターゲットとして、マグネト
ロンスパッタリング法により、MgO単結晶基板上に薄
膜を形成した。この薄膜は!.IgO単結晶の(110
)面上に形成した。成膜条件は以下の通りである。Each oxide powder of BaSCa and Cu was prepared as Ba:Ca:
Cu? The mixed powder obtained by mixing at an atomic ratio of 2:2:3 was sintered, and a thin film was formed on an MgO single crystal substrate by magnetron sputtering using the sintered body as a target. This thin film! .. IgO single crystal (110
) was formed on the surface. The film forming conditions are as follows.
基板温度 :800℃
圧力 : 0.01 〜0.1Torr
(Ar/0■=1:1)
高周波電力密度 : 100 W膜厚
:0.2μm
次に、上記のようにして得られたBa −Ca−Cuの
中間複合酸化物薄膜を母材3として第1図に示した装置
の基板ホルダー4に下方に向けて固定した。Substrate temperature: 800℃ Pressure: 0.01 ~ 0.1Torr
(Ar/0■=1:1) High frequency power density: 100 W Film thickness
:0.2 μm Next, the Ba-Ca-Cu intermediate composite oxide thin film obtained as described above was fixed as the base material 3 to the substrate holder 4 of the apparatus shown in FIG. 1, facing downward.
また、ボート5中には酸化タリウムの粉末を収容した。In addition, thallium oxide powder was stored in the boat 5.
続いて、炉1内を一端排気した後、弁10を閉じ、弁9
を開放して炉内に酸素を満たした。次いで、ヒータ2に
より炉内を970℃に加熱し、ヒータ6によりボート5
を1000℃まで加熱し、ボート5が1000℃に達し
た後、5分間この温度を保持してからヒータを止めた。Subsequently, after evacuating the inside of the furnace 1, the valve 10 is closed, and the valve 9 is closed.
The furnace was opened and filled with oxygen. Next, the inside of the furnace is heated to 970°C by heater 2, and the boat 5 is heated by heater 6.
was heated to 1000°C, and after the boat 5 reached 1000°C, this temperature was maintained for 5 minutes and then the heater was turned off.
以上のような処理を経た!.lgO単結晶基板3を炉か
ら取り出して、超電導臨界温度を測定した。After the above process! .. The IgO single crystal substrate 3 was taken out of the furnace and the superconducting critical temperature was measured.
上記処理を経た!.IgO単結晶基板3をクライオスタ
ント中で液体ヘリウムに浸し、一旦8Kまで冷却して試
料が超電導を示すことを&li認した後、昇温しで、試
料が常態と同じ電気抵抗を示す温度(Tc)を測定した
。The above process has been completed! .. IgO single crystal substrate 3 is immersed in liquid helium in a cryostand, and once cooled down to 8K, it is confirmed that the sample exhibits superconductivity, and then the temperature is raised to a temperature at which the sample exhibits the same electrical resistance as normal (Tc ) was measured.
こうして測定された試料の超電導臨界温度は、110
Kであった。The superconducting critical temperature of the sample thus measured was 110
It was K.
実施例2 中間複合酸化物の製造 先ず、中間複合酸化物を以下のようにして作製した。Example 2 Production of intermediate composite oxide First, an intermediate composite oxide was produced as follows.
Ba, CaおよびCuの各酸化物粉末を、Ba:Ca
:Cuの原子比が2+2:3となるように混合して得た
混合粉末を900℃で2時間焼結して焼結体を作った。Each oxide powder of Ba, Ca and Cu was converted into Ba:Ca
:The mixed powder obtained by mixing Cu in an atomic ratio of 2+2:3 was sintered at 900° C. for 2 hours to produce a sintered body.
こうして得られた焼結体を粉砕して得られる焼結体粉末
をターゲットとして用いて、RFマグネトロンスパッタ
リング法により、MgO単結晶基板上に中間複合酸化物
の薄膜を形成した。この薄膜は基板温度を変えて}4g
O単結晶の(100)面上に形成した。成膜条件は以下
の通りである。Using the sintered body powder obtained by pulverizing the sintered body thus obtained as a target, a thin film of the intermediate composite oxide was formed on an MgO single crystal substrate by RF magnetron sputtering method. This thin film was made by changing the substrate temperature to 4g
It was formed on the (100) plane of an O single crystal. The film forming conditions are as follows.
基板温度 : 第1表に記載
スパッタガス圧力 : 5X10 ”Torrスパッ
タガx : Ar+02 (02 20%)高
周波電力密度 : 0.64 W/cm2膜厚
:1μm
基板温度を変えて得られた各薄膜の結晶性をX線回折パ
ターンにより判断した。Substrate temperature: Listed in Table 1 Sputtering gas pressure: 5×10” Torr sputtering gas: Ar+02 (02 20%) High frequency power density: 0.64 W/cm2 Film thickness
: 1 μm The crystallinity of each thin film obtained by changing the substrate temperature was determined by the X-ray diffraction pattern.
第2図(a)および(b)は、上記のようにして成膜し
た薄膜の典型的なX線回折パターンの一部の概念図であ
り、第2図(a)は、いわば結晶性の低い薄膜、即ち非
晶質薄膜のX線回折パターンであり、第2図ら)は結晶
性の高い薄膜のX線回折パターンである。Figures 2(a) and (b) are conceptual diagrams of a part of a typical X-ray diffraction pattern of a thin film formed as described above, and Figure 2(a) shows a so-called crystalline X-ray diffraction pattern. This is the X-ray diffraction pattern of a thin film with low crystallinity, that is, an amorphous thin film, and the X-ray diffraction pattern of a thin film with high crystallinity is shown in FIG.
本実施例では、結晶性Xcを、第2図(a)、(b)に
示すように、X線回折パターンの同一回折角における回
折強度の面積の比(S/So)の百分率、すなわち、
Xc 一(S/SO)X 100
て評価し、Xc <10の状態を非品質とした。In this example, the crystallinity Xc is defined as the percentage of the area ratio (S/So) of the diffraction intensity at the same diffraction angle of the X-ray diffraction pattern, as shown in FIGS. 2(a) and (b). Xc - (S/SO)X 100 was evaluated, and a state where Xc <10 was defined as non-quality.
なお、soは十分に結晶性の高い800℃で成膜した薄
膜のX線回折パターンの場合の回折強度の面積であり、
Sはそれと同一な成膜条件で得られた薄膜の対応するX
線回折パターンの回折強度の面積である。結果は第1表
にまとめて示してある。In addition, so is the area of the diffraction intensity in the case of the X-ray diffraction pattern of a thin film formed at 800 ° C. with sufficiently high crystallinity,
S is the corresponding X of the thin film obtained under the same deposition conditions.
It is the area of the diffraction intensity of the line diffraction pattern. The results are summarized in Table 1.
第1表
次に、
上記の方法を用いて2系列の試料を作成した。第1系列
の試料は、Ba−Ca−Cuの中間複合酸化物薄膜を3
50℃の基板温度で成膜した非晶質の薄膜であり、第2
系列の試料は、Ba−Ca−Cuの中間複合酸化物薄膜
を650℃の基板温度で成膜した結晶質の薄膜である。Table 1 Next, two series of samples were prepared using the above method. The first series of samples consists of three intermediate composite oxide thin films of Ba-Ca-Cu.
It is an amorphous thin film formed at a substrate temperature of 50°C, and the second
The samples in this series are crystalline thin films formed by depositing Ba-Ca-Cu intermediate composite oxide thin films at a substrate temperature of 650°C.
これら2系列の試料に対して以下のタリウム添加操作を
行った。The following thallium addition operation was performed on these two series of samples.
先ず、上記の350℃の基板温度で成膜した非晶質の薄
膜を有するMgO単結晶基板3を第1図に示した装置の
基板ホルダ4に下方に向けて固定し、ボート5中には酸
化タリウム(T1203)粉末11の粉末を収容した。First, an MgO single-crystal substrate 3 having an amorphous thin film formed at the substrate temperature of 350° C. is fixed facing downward in the substrate holder 4 of the apparatus shown in FIG. Powder of thallium oxide (T1203) powder 11 was contained.
次いで、炉1内を一端排気した後、弁10を閉じ、弁9
を開放して炉内に酸素を満たした。続いて、ヒータ2に
より炉内を880℃に加熱し、ヒータ6によりボート5
を1000℃まで加熱し、ボート5が1000℃に達し
た後、5分間この温度を保持して炉内を71203蒸気
で満たし、続いて、ヒータ2により炉内を下記第2表に
示す温度を熱処理温度に加熱して、この温度を1時間保
持した。その後、炉の温度をさらに850℃に3時間保
持した。Next, after evacuating the inside of the furnace 1, the valve 10 is closed, and the valve 9 is closed.
The furnace was opened and filled with oxygen. Next, the inside of the furnace is heated to 880°C by heater 2, and the boat 5 is heated by heater 6.
is heated to 1000°C, and after the boat 5 reaches 1000°C, this temperature is maintained for 5 minutes to fill the furnace with 71203 steam, and then the heater 2 is used to bring the inside of the furnace to the temperature shown in Table 2 below. It was heated to the heat treatment temperature and held at this temperature for 1 hour. Thereafter, the temperature of the furnace was further maintained at 850° C. for 3 hours.
以上のような処理を経た〜1g○単結晶基板3を炉から
取り出して、超電導臨界温度を測定した。The ~1g◯ single crystal substrate 3 that had undergone the above treatment was taken out of the furnace and the superconducting critical temperature was measured.
上記処理を経た八,Ig○単結晶基阪3をクライオスタ
ット中で液体ヘリウムに浸し、一旦8Kまで冷却し、試
料が超電導を示すことを確S忍した。The Ig○ single crystal base 3 subjected to the above treatment was immersed in liquid helium in a cryostat and once cooled to 8K, confirming that the sample exhibited superconductivity.
また、臨界電流密度は、液体窒素により試料を冷却して
77Kで測定した( A / CIII )。In addition, the critical current density was measured at 77 K by cooling the sample with liquid nitrogen (A/CIII).
各系列の中間複合酸化物薄膜に対して処理温度を変えて
上記の手順によってT1添加処理を施した。The intermediate composite oxide thin film of each series was subjected to T1 addition treatment according to the above procedure while changing the treatment temperature.
処理温度と試料の評価とを第2表に示す。Table 2 shows the treatment temperature and sample evaluation.
第2表
発明の効果
以上説明したように、本発明に係る超電導体の作製方法
では、毒性がなく比較的取り扱いの容易な元素によって
母材を作製した後、これを密閉された空間中でタリウム
と酸素を含む蒸気の存在下で熱処理することによって超
電導体とする。Table 2 Effects of the Invention As explained above, in the method for producing a superconductor according to the present invention, a base material is produced from an element that is non-toxic and relatively easy to handle, and then thallium is added to the base material in a sealed space. It is made into a superconductor by heat treatment in the presence of steam containing oxygen and oxygen.
従って、毒性のあるしかも蒸気圧の高いタリウムの拡散
が防止されると共に、精密な元素組成制御のちとに容易
に超電導体を作製することができる。Therefore, diffusion of thallium, which is toxic and has a high vapor pressure, is prevented, and superconductors can be easily produced after precise elemental composition control.
また、TIを添加する母財を非品質とした場合に:よ、
母材ゐ均質性が高くなり、T1の拡散が効率良く均一に
行なえるので、得られるTI系超電導体も品質の高いも
のが得られる。Also, when the base material to which TI is added is of non-quality:
Since the homogeneity of the base material is increased and T1 can be diffused efficiently and uniformly, the obtained TI-based superconductor can also be of high quality.
また、本発明方法では、Tl添加処理に長時間を必要と
しないので、線材を母材としてT1添加処理を連続処理
とすることiこよって、大量のあるいは長尺O製品を製
造することも可能である。Furthermore, since the method of the present invention does not require a long time for the Tl addition treatment, it is also possible to manufacture large quantities or long O products by performing the T1 addition treatment continuously using the wire rod as the base material. It is.
第1図は、本発明の超電導体の製造方法で使用可能な装
置の一実施例の概念図であり、第2図(a)および(b
)は、中間複合酸化物試料から得られる典型的なX線回
折パターンの概念図である。
口主な参照番号〕
1 ・・・・炉、 2 ・・・・ ヒータ、3
・・・・中間複合酸化物、
4 ・・・・基板ホルダ、5 ・・・・ボート、6 ・
・・・ ヒータ、 7・・・・供給孔、8・・・・
排出孔、 9、10・・・・弁、11・・・・TI蒸
発源
・特許出願人FIG. 1 is a conceptual diagram of an embodiment of a device that can be used in the superconductor manufacturing method of the present invention, and FIG. 2 (a) and (b)
) is a conceptual diagram of a typical X-ray diffraction pattern obtained from an intermediate composite oxide sample. Main reference number〕 1...Furnace, 2...Heater, 3
...Intermediate composite oxide, 4 ...Substrate holder, 5 ...Boat, 6.
... Heater, 7... Supply hole, 8...
Discharge hole, 9, 10... Valve, 11... TI evaporation source/patent applicant
Claims (1)
おいて、 複合酸化物超電導を構成するタリウム以外の金属元素の
みより成る中間複合酸化物を作り、この中間複合酸化物
をタリウムと酸素を含むガスの雰囲気下で800〜10
00℃の温度範囲で熱処理することによってタリウムを
上記中間複合酸化物と反応させることを特徴とする方法
。(1) In a method for manufacturing a complex oxide superconductor containing thallium, an intermediate complex oxide is made consisting only of metal elements other than thallium, which constitutes the complex oxide superconductor, and this intermediate complex oxide is mixed with a gas containing thallium and oxygen. 800-10 in an atmosphere of
A method characterized in that thallium is reacted with the intermediate composite oxide by heat treatment in a temperature range of 00°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1224211A JPH03218922A (en) | 1988-08-30 | 1989-08-30 | Production of tl-containing multiple oxide superconductor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-216035 | 1988-08-30 | ||
JP21603588 | 1988-08-30 | ||
JP1-27304 | 1989-02-06 | ||
JP1224211A JPH03218922A (en) | 1988-08-30 | 1989-08-30 | Production of tl-containing multiple oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03218922A true JPH03218922A (en) | 1991-09-26 |
Family
ID=26521190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1224211A Pending JPH03218922A (en) | 1988-08-30 | 1989-08-30 | Production of tl-containing multiple oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03218922A (en) |
-
1989
- 1989-08-30 JP JP1224211A patent/JPH03218922A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2664066B2 (en) | Superconducting thin film and method for producing the same | |
US5814583A (en) | Superconducting thin film and a method for preparing the same | |
US4942152A (en) | Process for preparting a bismuth-type compound oxide superconductor | |
US6605569B2 (en) | Mg-doped high-temperature superconductor having low superconducting anisotropy and method for producing the superconductor | |
JP2501620B2 (en) | Preparation method of superconducting thin film | |
JPH02167820A (en) | Method for forming tl-base multiple oxide superconducting thin film | |
JPH0286014A (en) | Composite oxide superconducting thin film and film forming method | |
US5206214A (en) | Method of preparing thin film of superconductor | |
JPH03218922A (en) | Production of tl-containing multiple oxide superconductor | |
AU622473B2 (en) | Process for preparing a thallium-type compound oxide superconductor | |
EP0366510B1 (en) | Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system | |
JP2645730B2 (en) | Superconducting thin film | |
JP2668532B2 (en) | Preparation method of superconducting thin film | |
JPH01100021A (en) | Superconducting thin film | |
JP2525852B2 (en) | Preparation method of superconducting thin film | |
JPH01176216A (en) | Production of superconducting thin film of compound oxide | |
JPH02160623A (en) | Production of bi-system complex oxide superconductor | |
JP2577056B2 (en) | Preparation method of composite oxide superconducting thin film | |
JPH0244029A (en) | Production of thin oxide superconducting film | |
JPH02199056A (en) | Bi-sr-ca-cu multiple oxide superconductor | |
JPH02237082A (en) | Semiconductor substrate provided with superconductor thin film and manufacture thereof | |
JPH02389A (en) | Semiconductor substrate with superconductor layer | |
JPH0195414A (en) | Formation of superconducting thin film | |
JPH02120231A (en) | Production of superconducting thin film of oxide | |
JPH0195418A (en) | Formation of superconducting thin film |