【発明の詳細な説明】[Detailed description of the invention]
本発明は、炭素繊維束の電気メツキ方法に関す
るものである。
本発明によれば、色調むらのない金属被覆炭素
繊維束を得ることができ、また、炭素繊維束表面
の金属皮膜に、こげ、条痕等の、いわゆるメツキ
欠陥のない金属被覆炭素繊維束を得ることができ
る。
近年、炭素繊維を強化繊維とした炭素繊維強化
複合材料の進歩は目覚ましいものがある。特に、
金属被覆炭素繊維は、これを熱硬化性樹脂、熱可
塑性樹脂、ゴム等の非導電性母材の強化繊維とし
て用いた場合、機械的特性に優れ、かつ、導電性
が著しく向上した複合材料を得ることができる。
最近、コンピユーター、デジタル機器等の発達
普及に伴ない、電磁波障害、高周波障害が大きな
問題となつてきており、電磁波等に対する、しや
へい材、いわゆるEMIシールド材(EMI:
Electro Magnetic Interference、電磁波障害)
として、金属被覆炭素繊維をフイラーとした複合
材料が注目されている。特に、ポリアミド、ポリ
エチレン、ポリプロピレン、ポリスチレン、ポリ
塩化ビニル、ポリカーボネート、ポリアセター
ル、ポリサルホン、アクリロニトリル・ブタジエ
ン・スチレン樹脂、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、ポリフエニレ
ンオキサイド等の熱可塑性樹脂を母材とした金属
被覆炭素繊維強化熱可塑性樹脂複合材料、及び、
エポキシ樹脂、不飽和ポリエステル樹脂、フエノ
ール樹脂等の熱硬化性樹脂を母材とした金属被覆
炭素繊維強化熱硬化性樹脂複合材料は、良好な機
械的特性、形成性を併有する優れたEMIシール
ド材である。
金属被覆炭素繊維の被覆金属を母材とした炭素
繊維強化金属複合材料は、軽量構造材料、導電材
料、摺動材料として優れたものである。
炭素繊維束に金属を被覆する方法に、電気メツ
キ法がある。この方法により、炭素繊維束のよう
な単繊維集合体に対して、単繊維の1本1本に均
一にメツキを施すためには、全ての単繊維の1本
1本に均等に通電が行なわれなければならない
が、これは実際上極めて困難である。
炭素繊維束に通電を行なう方法として、例え
ば、金属性ローラーに通電し炭素繊維束とローラ
ーとの接触により通電させる方法が考えられる
が、単繊維1本1本をローラーと接触させるのは
実際上不可能であり、ローラーと接触している炭
素繊維を介して繊維同志の接触によりローラーと
接触していない炭素繊維に通電される。しかしな
がら、一般に炭素繊維の比抵抗は10-3Ω・cmであ
り、通常の金属の比抵抗10-6Ω・cmに比べ著しく
抵抗が大きい。したがつて、炭素繊維束への通電
を空気中で行なつた場合、炭素繊維とローラー間
での接触抵抗が大きく発熱を伴ない、また、空気
中の酸素により、更には、炭素繊維とローラー間
で発生したスパークに伴い発生したオゾンによ
り、被覆された金属が酸化され、その結果、金属
被覆炭素繊維束の色調むら、及び、金属被膜に、
こげ・条痕等の、いわゆるメツキ欠陥が発生す
る。被覆された金属が酸化されると、金属被覆炭
素繊維束の比抵抗が大きくなり、EMIシールド
材とした場合、効果が低下する。
そこで、本発明は、上記欠点を解消し、色調む
ら、メツキ欠陥のない炭素繊維束を得る電気メツ
キ方法を提案するものである。
本発明は下記のとおりである。
(1) 炭素繊維束に連続的に電気メツキを行なうに
当り、メツキ浴出側のメツキ浴外において導電
性ローラーを電解質溶液浴中に設置し、該ロー
ラーを介して繊維束に通電し、炭素繊維束を陰
極としてメツキ浴内で電気メツキを行なうこと
を特徴とする炭素繊維束の電気メツキ方法。
ここで炭素繊維束とは、100本程度以上の単繊
維の連続繊維からなる炭素繊維束又は黒鉛繊維束
を意味する。炭素繊維束に通電する方法は、導電
性ローラー、例えば、金属性ローラーに通電し、
ローラー表面での炭素繊維束との接触により行な
う。導電性ローラーは、ローラー全体又は少なく
ともローラーと炭素繊維との接触部分が、メツキ
浴出側のメツキ浴外において電解質溶液浴中に設
置される。
電解質溶液としては、繊維に対し不活性のもの
であれば、特に制限されないが、メツキ液と同一
成分のものを使用するのが好ましい。これはメツ
キ浴中に他の電解質を持ち込まないためである。
メツキ浴が2以上ある場合の最終メツキ浴の出側
又は単独メツキ浴の出側に、通電用陰極が設けら
れている場合には、電解質をメツキ浴と同一組成
にする必要はない。
本発明における導電性ローラーの設置場所は、
メツキ浴出側である。繊維束とローラーの接触部
分が電解質溶液中にあるため、接触抵抗による発
熱が押えられ、また、発熱を伴なつても酸素を断
つた状態であるので、高温酸化、オゾン酸化等に
より被覆金属が酸化されることはない。
したがつて、金属被覆炭素繊維束の色調むら、
及び、こげ、条痕等の、いわゆるメツキ欠陥のな
い金属被覆炭素繊維束を得ることができる。本発
明による電気メツキ方法は、通常の電気メツキが
可能なCu、Ni、Cr、Zn、Cd、Pb、Sn、Au、
Ag、及び、それらの合金のメツキに適用できる。
炭素繊維束を電気メツキする際、通電用接触ロ
ールに電解液を浴びせかけ、繊維を冷却する方法
が提案されている(特開昭58−169532号公報)。
この方法は、電気メツキの際に負荷される高電
流によつて、電気メツキ浴から出た繊維が熱によ
つて破壊するのを防止するための冷却方法であ
る。この公報では、電気メツキ浴から出た繊維を
冷却することによつて、炭素繊維と金属被膜との
接着強度の高い金属メツキ炭素繊維が得られるこ
とが記載されている。
このような電解液を浴びせかける方法による
と、繊維束内部への電解液の均一な浸透ができ
ず、電解液を多量に供給しようとすると、炭素繊
維にダメージを与える。
しかしながら、本発明のように、導電性ローラ
ーを電解質溶液浴中に設置し、繊維束に通電する
と、上記のような問題はなく、導電性ローラーの
設置場所はメツキ浴出側であるため、繊維自体の
通電抵抗による発熱も少なく緩和な条件で通電す
ることができる。しかも、金属メツキ炭素繊維が
導電性ローラーから離れる瞬間のスパークが完全
に防止され、これにより繊維表面の酸化を防止で
きる。このようなことについては、従来知られて
いない。
また、電解質溶液中において、非接触方式で炭
素繊維に通電する方法として、特開昭58−132126
号公報記載の方法が知られている。ここに記載さ
れた方法は、炭素繊維と母材との接着性を改良
し、炭素繊維の母材からの“すぬけ”を防止する
ため、電解質溶液中で炭素繊維を陽極として炭素
繊維を電解酸化処理する方法である。
この方法における炭素繊維の表面電解処理は、
炭素繊維の表面を酸化処理することによつて、官
能基を導入し、表面を化学的に活性化するもので
あつて、本発明のおけるごとき、炭素繊維表面に
金属被膜を形成する電気メツキ方法とは、全く技
術概念を異にする。
本発明は、金属メツキされた後の炭素繊維束が
導電性ローラーに接触して離れる際に生ずるスパ
ークによつて繊維表面の金属が酸化されて条痕等
の金属メツキ欠陥が発生するという、従来法にみ
る、金属メツキ炭素繊維固有の問題を解決する方
法である。このような方法は従来知られていな
い。
以下、本発明を図面を用いて説明する。
第1図は、本発明方法を行なう装置の例を示す
概略図である。第1図で炭素繊維束4は入側ニツ
プローラー5を経てメツキ浴10に入り、入側ガ
イドローラー7、出側ガイドローラー8を通り電
解質溶液浴2内の導電性ローラー1を経て出側ニ
ツプローラー6に導かれる。
炭素繊維束4は、電解質溶液浴2内の導電性ロ
ーラー1の表面との接触により通電され、メツキ
液3中で金属が被覆される。導電性ローラー1は
第1図のように別浴として電解質溶液浴2を設
け、少なくとも炭素繊維束4と導電性ローラー1
の接触部分が電解質溶液11中になるよう設置す
る。このように導電性ローラーを陰極として配置
して、炭素繊維束を電解質溶液中で通電すること
により、発熱が押えられ、また、被覆された金属
の酸化が防止されて、金属被覆炭素繊維束の色調
むら、金属被膜に、こげ、条痕等の、いわゆるメ
ツキ欠陥のない金属被覆炭素繊維束を得ることが
できる。
次に、本発明の実施例を比較例とともに示す。
実施例 1
直径7μの単繊維12000本からなる炭素繊維束を
第1図の装置を用い、連続的にニツケルメツキを
行なつた。
メツキ液組成は硫酸ニツケル150g/、塩化
アンモニウム15g/、硼酸15g/の普通浴
で、メツキ液のPHは6.0液温は25℃であつた。
炭素繊維束の走行速度は30cm/min、メツキ浴
滞在時間は5分、全電流は10Aで、メツキを行な
つた。結果を第1表に示す。
The present invention relates to a method of electroplating carbon fiber bundles. According to the present invention, it is possible to obtain a metal-coated carbon fiber bundle with no uneven color tone, and also to have a metal-coated carbon fiber bundle without so-called plating defects such as scorches and streaks on the metal coating on the surface of the carbon fiber bundle. Obtainable. In recent years, there has been remarkable progress in carbon fiber reinforced composite materials using carbon fiber as the reinforcing fiber. especially,
When metal-coated carbon fibers are used as reinforcing fibers for non-conductive base materials such as thermosetting resins, thermoplastic resins, and rubber, they can produce composite materials with excellent mechanical properties and significantly improved electrical conductivity. Obtainable. Recently, with the development and spread of computers, digital devices, etc., electromagnetic interference and high frequency interference have become a major problem.So-called EMI shielding materials (EMI:
Electro Magnetic Interference)
As a result, composite materials using metal-coated carbon fiber as a filler are attracting attention. In particular, metal coatings based on thermoplastic resins such as polyamide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polycarbonate, polyacetal, polysulfone, acrylonitrile-butadiene-styrene resin, polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, etc. carbon fiber reinforced thermoplastic resin composite material, and
Metal-coated carbon fiber-reinforced thermosetting resin composite materials made of thermosetting resins such as epoxy resins, unsaturated polyester resins, and phenolic resins are excellent EMI shielding materials that have good mechanical properties and formability. It is. Carbon fiber-reinforced metal composite materials made of metal-coated carbon fibers as a base material are excellent as lightweight structural materials, conductive materials, and sliding materials. Electroplating is a method for coating carbon fiber bundles with metal. With this method, in order to uniformly plate each single fiber in a single fiber aggregate such as a carbon fiber bundle, it is necessary to apply electricity evenly to each single fiber. However, this is extremely difficult in practice. One possible method for energizing a carbon fiber bundle is, for example, to energize a metal roller and bring the carbon fiber bundle into contact with the roller, but in practice it is difficult to bring each single fiber into contact with the roller. This is not possible, and the carbon fibers that are not in contact with the roller are energized by fiber-to-fiber contact through the carbon fibers that are in contact with the roller. However, the resistivity of carbon fibers is generally 10 -3 Ω·cm, which is significantly higher than the resistivity of ordinary metals, which is 10 -6 Ω·cm. Therefore, when the carbon fiber bundle is energized in the air, the contact resistance between the carbon fibers and the roller is large and heat is generated, and the oxygen in the air can cause the carbon fibers and the roller to The coated metal is oxidized by the ozone generated by the spark generated between the two, resulting in uneven color tone of the metal-coated carbon fiber bundle and damage to the metal coating.
So-called plating defects such as scorches and streaks occur. When the coated metal is oxidized, the resistivity of the metal-coated carbon fiber bundle increases, reducing its effectiveness when used as an EMI shielding material. Therefore, the present invention proposes an electroplating method that eliminates the above-mentioned drawbacks and obtains carbon fiber bundles free of color tone unevenness and plating defects. The present invention is as follows. (1) When electroplating a carbon fiber bundle continuously, a conductive roller is installed in an electrolyte solution bath outside the plating bath on the plating bath outlet side, and electricity is applied to the fiber bundle through the roller, and the carbon fiber bundle is electroplated. A method for electroplating carbon fiber bundles, characterized in that electroplating is performed in a plating bath using the fiber bundle as a cathode. Here, the carbon fiber bundle means a carbon fiber bundle or a graphite fiber bundle consisting of about 100 or more single continuous fibers. A method of energizing a carbon fiber bundle is to energize a conductive roller, for example, a metal roller,
This is done by contacting the carbon fiber bundle with the roller surface. The entire conductive roller or at least the contact portion between the roller and the carbon fibers is placed in an electrolyte solution bath outside the plating bath on the plating bath outlet side. The electrolyte solution is not particularly limited as long as it is inert to the fibers, but it is preferable to use one having the same components as the plating solution. This is to prevent other electrolytes from being brought into the plating bath.
If a current-carrying cathode is provided on the outlet side of the final plating bath or the outlet side of a single plating bath when there are two or more plating baths, the electrolyte does not need to have the same composition as the plating bath. The installation location of the conductive roller in the present invention is as follows:
This is the exit side of the bath. Since the contact area between the fiber bundle and the roller is in the electrolyte solution, heat generation due to contact resistance is suppressed, and even if heat is generated, oxygen is cut off, so the coated metal is protected from high temperature oxidation, ozone oxidation, etc. It cannot be oxidized. Therefore, the color tone unevenness of the metal-coated carbon fiber bundle,
Furthermore, it is possible to obtain a metal-coated carbon fiber bundle free from so-called plating defects such as scorches and streaks. The electroplating method according to the present invention can be applied to Cu, Ni, Cr, Zn, Cd, Pb, Sn, Au, which can be electroplated normally.
Applicable to plating of Ag and their alloys. When electroplating carbon fiber bundles, a method has been proposed in which the fibers are cooled by pouring an electrolytic solution onto an energizing contact roll (Japanese Unexamined Patent Publication No. 169532/1982). This method is a cooling method for preventing the fibers coming out of the electroplating bath from being destroyed by heat due to the high current applied during electroplating. This publication describes that metal-plated carbon fibers with high adhesive strength between the carbon fibers and the metal coating can be obtained by cooling the fibers discharged from the electroplating bath. According to such a method of spraying the electrolytic solution, the electrolytic solution cannot penetrate uniformly into the inside of the fiber bundle, and if a large amount of electrolytic solution is supplied, it will damage the carbon fibers. However, as in the present invention, when a conductive roller is installed in an electrolyte solution bath and electricity is applied to the fiber bundle, the above problem does not occur, and since the conductive roller is installed on the plating bath outlet side, the fiber bundle is It generates less heat due to its own current-carrying resistance, and can be energized under mild conditions. Furthermore, sparks at the moment the metal-plated carbon fiber leaves the conductive roller are completely prevented, thereby preventing oxidation of the fiber surface. This kind of thing has not been previously known. In addition, as a method for energizing carbon fibers in an electrolyte solution in a non-contact manner,
The method described in the above publication is known. The method described here involves electrolyzing carbon fibers in an electrolyte solution using the carbon fibers as anodes in order to improve the adhesion between the carbon fibers and the base material and to prevent the carbon fibers from "sneaking" from the base material. This is a method of oxidation treatment. The surface electrolytic treatment of carbon fiber in this method is
An electroplating method for forming a metal film on the surface of carbon fibers, as in the present invention, which involves oxidizing the surface of carbon fibers to introduce functional groups and chemically activating the surface. The technical concept is completely different. The present invention overcomes the conventional method in which the metal on the fiber surface is oxidized by the sparks generated when the carbon fiber bundle after metal plating comes into contact with a conductive roller and separates, causing metal plating defects such as streaks. This is a method that solves the problems inherent to metal-plated carbon fibers. Such a method has not been previously known. Hereinafter, the present invention will be explained using the drawings. FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the invention. In FIG. 1, the carbon fiber bundle 4 enters the plating bath 10 via the inlet nip roller 5, passes through the inlet guide roller 7 and the outlet guide roller 8, passes through the conductive roller 1 in the electrolyte solution bath 2, and then enters the outlet nip roller 10. Guided by Prowler 6. The carbon fiber bundle 4 is energized by contact with the surface of the conductive roller 1 in the electrolyte solution bath 2, and is coated with metal in the plating solution 3. The conductive roller 1 is provided with an electrolyte solution bath 2 as a separate bath as shown in FIG.
The contact portion of the electrolyte solution 11 is placed in the electrolyte solution 11. By arranging the conductive roller as a cathode and energizing the carbon fiber bundle in an electrolyte solution, heat generation is suppressed, and oxidation of the coated metal is prevented, resulting in the formation of a metal-coated carbon fiber bundle. It is possible to obtain a metal-coated carbon fiber bundle free of so-called plating defects such as color tone unevenness, scorching, streaks, etc. on the metal coating. Next, examples of the present invention will be shown together with comparative examples. Example 1 A carbon fiber bundle consisting of 12,000 single fibers each having a diameter of 7 μm was continuously nickel-plated using the apparatus shown in FIG. The composition of the plating solution was a normal bath containing 150 g of nickel sulfate, 15 g of ammonium chloride, and 15 g of boric acid.The pH of the plating solution was 6.0 and the temperature of the solution was 25.degree. Plating was carried out at a running speed of the carbon fiber bundle of 30 cm/min, a residence time in the plating bath of 5 minutes, and a total current of 10 A. The results are shown in Table 1.
【表】
この結果によれば、本発明の実施例1の場合、
ニツケル被覆炭素繊維束の比抵抗値は小さく、得
られた製品には、色調むら、及び、こげ、条痕等
の、いわゆるメツキ欠陥は認められなかつた。
実施例1で得られた製品を強化材とした樹脂複
合材料又は金属複合材料は、EMIシールド材、
軽量構造材料、導電材料等として優れた性能のも
のであつた。[Table] According to the results, in the case of Example 1 of the present invention,
The specific resistance value of the nickel-coated carbon fiber bundle was small, and the resulting product was free of so-called plating defects such as color unevenness, burnt spots, and streaks. The resin composite material or metal composite material reinforced with the product obtained in Example 1 can be used as an EMI shielding material,
It had excellent performance as a lightweight structural material, conductive material, etc.
【図面の簡単な説明】[Brief explanation of drawings]
第1図は、本発明方法を行なう装置の例を示す
概略図である。
1:導電性ローラー、2:電解質溶液浴、3:
メツキ液、4:炭素繊維束、5:入側ニツプロー
ラー、6:出側ニツプローラー、7:入側ガイド
ーラー、8:出側ガイドローラー、9:陽極金
属、10:メツキ浴、11:電解質溶液。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the invention. 1: Conductive roller, 2: Electrolyte solution bath, 3:
Plating liquid, 4: Carbon fiber bundle, 5: Inlet nip roller, 6: Outlet nip roller, 7: Inlet guide roller, 8: Outlet guide roller, 9: Anode metal, 10: Plating bath, 11: Electrolyte solution .