Nothing Special   »   [go: up one dir, main page]

JPH03215504A - Crosslinked polymer particle - Google Patents

Crosslinked polymer particle

Info

Publication number
JPH03215504A
JPH03215504A JP2010520A JP1052090A JPH03215504A JP H03215504 A JPH03215504 A JP H03215504A JP 2010520 A JP2010520 A JP 2010520A JP 1052090 A JP1052090 A JP 1052090A JP H03215504 A JPH03215504 A JP H03215504A
Authority
JP
Japan
Prior art keywords
group
weight
ethylenically unsaturated
parts
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010520A
Other languages
Japanese (ja)
Other versions
JP2884653B2 (en
Inventor
Kishio Shibafuji
柴藤 岸夫
Osamu Oe
大江 収
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP2010520A priority Critical patent/JP2884653B2/en
Publication of JPH03215504A publication Critical patent/JPH03215504A/en
Application granted granted Critical
Publication of JP2884653B2 publication Critical patent/JP2884653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To prepare crosslinked polymer particles excellent in the compatibility and useful as a flowability-controlling agent of a coating material by reacting a crosslinkable alpha,beta-ethylenically unsatd. monomer, another alpha,beta-ethylenically unsatd. monomer, and a crosslinker in a specified wt. ratio in a specific way. CONSTITUTION:3-80wt.% crosslinkable alpha,beta-ethylenically unsatd. monomer (A) (e.g. acetoacetoxyethyl methacrylate), 30-95wt.% other alpha,beta-ethylenically unsatd. monomer (B), and 2-50wt.% crosslinker (C) reactive with component A (e.g. isophorone diisocyanate) are prepd. First, component A and component B are copolymerized by emulsion, suspension, or nonaq. dispersion polymn. to give polymer particles. Then, component C is incorporated into the particles and reacted with a polymerizable group of component A in the particles to crosslink, thus giving crosslinked polymer particles.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、相溶性に優れた塗料用流動性調節剤として有
用な架橋重合体微粒子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to crosslinked polymer fine particles useful as a fluidity modifier for paints with excellent compatibility.

(従来の技術) 近年、塗膜の耐久性は格段の進歩を遂げ、高度な性能か
得られるようになってきたが、それに伴い塗膜外観性に
おいても、特に自動車用塗料等の分野で高品位化か強く
要求されてきている。
(Conventional technology) In recent years, the durability of paint films has made great progress and it has become possible to obtain advanced performance. There is a strong demand for quality.

筐膜の外観品質を向上するには、被塗物表面の凹凸を隠
蔽し、且つ塗膜自身の平滑性を高めるために厚膜化の必
要がある。この際、被塗物の垂直部、水平部を問わずあ
らゆる部位で厚膜化を達成するためには、塗料中にはよ
く流動調節剤か用いられている。
In order to improve the appearance quality of the casing film, it is necessary to make the film thicker in order to hide the irregularities on the surface of the object to be coated and to improve the smoothness of the coating film itself. At this time, in order to achieve a thick film on all parts of the object to be coated, whether vertical or horizontal, a fluidity regulator is often used in the paint.

このような目的に対し、重合体微粒子(以下、単に粒子
と略すこともある。)は、塗料中て粒子間相互作用によ
り構造粘性を付与できることから古くから注目され、応
用されている。この際、重合体微粒子内部か三次元架橋
されていると、非水系塗料中でも溶解することなく、安
定な粒子形態を保つことができ、その結果、高度な流動
調節作用を安定して発揮できるという利点があり、塗料
のタレ止めや、金属顔料の配向調整剤として応用されて
いる。
For such purposes, polymer fine particles (hereinafter sometimes simply referred to as particles) have been attracting attention and being applied for a long time because they can impart structural viscosity through interparticle interaction in paints. At this time, if the inside of the polymer fine particles is three-dimensionally cross-linked, it is possible to maintain a stable particle morphology without dissolving even in non-aqueous paints, and as a result, it is possible to stably exhibit a high level of flow control effect. It has many advantages and is used to prevent paint from sagging and as an alignment agent for metal pigments.

例えば、特開昭53− 133233号公報や同53−
 133234号公報には、I2−ヒドロキシステアリ
ン酸の5モル縮合体構造を側鎖に持つくし型共重合体を
分散安定剤として、α,β−エチレン性不飽和単量体を
非水系分散重合を行なうことにより得られる重合体微粒
子を、塗料のタレ止め剤や金属顔料の配向調整剤として
用いる例が開示されている。ここで得られる重合体微粒
子の内部は、エポキシ基含有α,β−エチレン性不飽和
単量体とカルボキシル基含有α,β−エチレン性不飽和
単量体とのエステル化反応により三次元架橋せしめられ
ている。
For example, Japanese Unexamined Patent Publication No. 53-133233 and Japanese Unexamined Patent Publication No. 53-133-
133234 discloses that α,β-ethylenically unsaturated monomers are subjected to non-aqueous dispersion polymerization using a comb-shaped copolymer having a 5-mole condensate structure of I2-hydroxystearic acid in the side chain as a dispersion stabilizer. Examples have been disclosed in which the polymer fine particles obtained by this method are used as anti-sagging agents for paints and alignment adjusting agents for metal pigments. The interior of the polymer fine particles obtained here is three-dimensionally crosslinked by an esterification reaction between an epoxy group-containing α,β-ethylenically unsaturated monomer and a carboxyl group-containing α,β-ethylenically unsaturated monomer. It is being

また、米国特許第4290932号、同4377661
号、同4414357号、同4477536号および同
4598111号にはα,β−エチレン性不飽和単量体
を乳化重合せしめ粒子表面にイオン性基を有する重合体
微粒子を得たのち、該粒子を非水系に転換し、同様に塗
料のタレ止め剤や金属顔料の配向調整剤として用いる例
が開示されている。ここで得られる重合体微粒子の内部
は、多官能α,β−エチレン性不飽和単量体を共重合す
ることにより三次元架橋せしめられている。
Also, US Patent Nos. 4,290,932 and 4,377,661
No. 4414357, No. 4477536, and No. 4598111, after emulsion polymerization of α,β-ethylenically unsaturated monomers was carried out to obtain fine polymer particles having ionic groups on the surface of the particles, the particles were Examples have been disclosed in which it is converted into an aqueous system and similarly used as an anti-sagging agent for paints and an alignment control agent for metal pigments. The interior of the polymer fine particles obtained here is three-dimensionally crosslinked by copolymerizing a polyfunctional α,β-ethylenically unsaturated monomer.

また、米国特許第4540740号および同46110
26号でも、乳化重合で重合体微粒子を得たのち、噴霧
乾燥または非水系転換処理後、塗料のタレ止め剤や金属
顔料の配向調整剤として用いる例が開示されている。こ
こで得られる粒子の内部は、エポキシ基含有α,β−エ
チレン性不飽和単量体とスルホン酸基含有α,β−エチ
レン性不飽和単量体とのエステル化反応にて三次元架橋
せしめられている。
Also, U.S. Patent Nos. 4,540,740 and 46,110
No. 26 also discloses an example in which fine polymer particles are obtained by emulsion polymerization, and then used as an anti-sagging agent for paints or an orientation adjuster for metal pigments after spray drying or non-aqueous conversion treatment. The interior of the particles obtained here is three-dimensionally crosslinked through an esterification reaction between an epoxy group-containing α,β-ethylenically unsaturated monomer and a sulfonic acid group-containing α,β-ethylenically unsaturated monomer. It is being

(発明か解決しようとする課題) しかしながら、米国特許第4290932号、同437
7661号、同4414357号、同4477536号
および同4598111号の方法では、粒子内部の三次
元架橋のために用いた多官能α.β−エチレン性不飽和
単量体は、全ての二重結合か共重合されるわけではなく
、かなりの部分は未反応のまま粒子表面に配向している
。このような粒子は、表面にα,β−エチレン性不飽和
基を有するため、塗料中に用いた場合、バインダーとの
相溶性が不十分となり、特にポリエステル系樹脂等のア
クリル樹脂と相溶しにくい塗料系では、粒子か凝集しブ
ツを形成することかある。
(Invention or problem to be solved) However, US Patent Nos. 4,290,932 and 437
In the methods of No. 7661, No. 4414357, No. 4477536, and No. 4598111, polyfunctional α. Not all of the double bonds of the β-ethylenically unsaturated monomer are copolymerized, and a considerable portion remains unreacted and oriented on the particle surface. Since such particles have α,β-ethylenically unsaturated groups on their surfaces, when used in paints, they have insufficient compatibility with binders, and are especially compatible with acrylic resins such as polyester resins. In difficult paint systems, particles may aggregate to form lumps.

また、特開昭53−133233号、同53−1332
34号公報、米国特許第4540740号および同46
11026号の方法では、相互に反応できる官能基を有
するα,β−エチレン性不飽和単量体の組み合わせを用
いて、ラジカル重合による粒子の形成と、エステル化反
応による粒子内の三次元架橋を行っている。
Also, JP-A-53-133233, JP-A No. 53-1332
No. 34, U.S. Pat. No. 4,540,740 and U.S. Pat. No. 4,540,740
In the method of No. 11026, a combination of α,β-ethylenically unsaturated monomers having functional groups that can react with each other is used to form particles through radical polymerization and three-dimensional crosslinking within the particles through an esterification reaction. Is going.

この方法でも、エステル化反応の方がラジカル重合より
も速く進行した場合、粒子表面にα,β−エチレン性不
飽和基が残存する可能性があり、塗料用バインダーとの
相溶性が不十分となることが多かった。
Even with this method, if the esterification reaction proceeds faster than the radical polymerization, α,β-ethylenically unsaturated groups may remain on the particle surface, resulting in insufficient compatibility with the paint binder. It often happened.

(課題を解決するための手段) 本発明者らは、このような問題点を解決する方法につい
て鋭意研究した結果、ラジカル重合による重合体微粒子
の形成後、該微粒子内部に架橋剤を含浸し、三次元架橋
せしめることにより、粒子表面には殆どα.β−エチレ
ン性不飽和基は存在せず、しかも粒子内部か高度に三次
元架橋した重合体微粒子を製造でき、該粒子か幅広い塗
料用バインダーに対して優れた相溶性を示すことを見い
出し、本発明を完成するに至った。
(Means for Solving the Problems) As a result of intensive research into methods for solving these problems, the present inventors found that after forming polymer fine particles by radical polymerization, impregnating the inside of the fine particles with a crosslinking agent, By three-dimensional crosslinking, almost all α. We discovered that it is possible to produce fine polymer particles that do not contain β-ethylenically unsaturated groups and that are highly three-dimensionally crosslinked inside the particles, and that these particles exhibit excellent compatibility with a wide range of paint binders. The invention was completed.

すなわち、本発明はα,β−エチレン性不飽和単量体の
乳化重合、懸濁重合または非水系分散重合のいずれかか
ら選ばれる重合方法により製造せしめられる重合体微粒
子において、該粒子内部が次の反応により架橋されるこ
とを特徴とする架橋重合体微粒子である。すなわち、下
記成分、(a)架橋性官能基を有するα,β− エチレン性不飽和単量体  3−80重量%(bl他の
α,β−エチレン性 不飽和単量体      30−95重量%(c)(a
)成分と反応できる基を 有する架橋剤       2−50重量%のうちまず
、(a)成分と(b)成分を乳化重合、懸濁重合または
、非水系分散重合のいずれかから選ばれる重合方法によ
り重合せしめることにより微粒子を得た後、続いて該微
粒子中に(c)成分を包含させ(al成分中の架橋性官
能基と反応する。
That is, the present invention provides fine polymer particles produced by a polymerization method selected from emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization of α,β-ethylenically unsaturated monomers, in which the interior of the particles is as follows: These are crosslinked polymer fine particles characterized by being crosslinked by the reaction of That is, the following components: (a) 3-80% by weight of α,β-ethylenically unsaturated monomer having a crosslinkable functional group (30-95% by weight of other α,β-ethylenically unsaturated monomers) (c) (a
) 2-50% by weight of the crosslinking agent having a group capable of reacting with the component, component (a) and component (b) are first polymerized by a polymerization method selected from emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization. After obtaining fine particles by polymerization, component (c) is subsequently incorporated into the fine particles (reacts with the crosslinkable functional group in the Al component).

本発明の架橋重合体微粒子は、0.Ol〜50μmの範
囲の平均粒径を有し、乳化重合法、懸濁重合法または非
水系分散重合法等の公知の重合方法により容易に合成す
ることができる。
The crosslinked polymer fine particles of the present invention have 0. It has an average particle size in the range of 1 to 50 μm, and can be easily synthesized by known polymerization methods such as emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization.

例えば、乳化重合法では、ソープフリー乳化重合でも、
また、アニオン系界面活性剤、カチオン系界面活性剤、
非イオン系界面活性剤または両性イオン系界面活性剤を
用いた重合でも可能であり、通常の条件下、すなわち1
0〜50重量%の不揮発分濃度、40〜95゜Cの温度
、3〜lO時間の反応時間で重合することができる。こ
こで、不揮発分濃度が10重量%未満の場合、粒子の製
造効率が悪いため、また、50重量%を越える場合、重
合中に粒子が凝集するため好ましくない。重合温度が4
0゜C未満の場合、粒子形成が不十分となり、95゜C
を越える場合、気相中で粒子か凝集するため好ましくな
い。
For example, in the emulsion polymerization method, even in soap-free emulsion polymerization,
In addition, anionic surfactants, cationic surfactants,
Polymerization using nonionic surfactants or zwitterionic surfactants is also possible and under normal conditions, i.e. 1
Polymerization can be carried out at a nonvolatile concentration of 0 to 50% by weight, a temperature of 40 to 95°C, and a reaction time of 3 to 10 hours. Here, if the nonvolatile content concentration is less than 10% by weight, the production efficiency of the particles is poor, and if it exceeds 50% by weight, the particles will aggregate during polymerization, which is not preferable. Polymerization temperature is 4
If the temperature is less than 0°C, particle formation will be insufficient;
If it exceeds this, the particles will aggregate in the gas phase, which is undesirable.

反応時間か3時間未満の場合、粒子形成が不十分となり
、10時間を越える場合、塩析により粒子か凝集するこ
とがあるため好ましくない。
If the reaction time is less than 3 hours, particle formation will be insufficient, and if it exceeds 10 hours, the particles may aggregate due to salting out, which is not preferable.

また、懸濁重合法では、ゼラチン、デンプン、メチルセ
ルロース、ポリビニルアルコール等の安定剤の存在下で
、通常の条件下、すなわち、lO〜50重量%の不揮発
分濃度、40〜95゜Cの温度、 l〜lO時間の反応
時間で重合することができる。ここで、不揮発分濃度か
lO重量%未満の場合、粒子の製造効率か悪いため、ま
た50重量%を越える場合、粒子の平均粒径が50μm
を越え、塗料中に添加した際、却って塗膜外観性か低下
することがあるため好ましくない。重合温度か40゜C
未満の場合、粒子形成が不十分となり、95゜Cを越え
る場合、気相中で粒子が凝集するため好ましくない。反
応時間が1時間未満の場合、粒子形成が不十分となり、
lO時間を越える場合は反応完結後の無意味なエネルギ
ー浪費となるだけであり、好ましくない。
In addition, in the suspension polymerization method, in the presence of a stabilizer such as gelatin, starch, methylcellulose, or polyvinyl alcohol, under normal conditions, i.e., a nonvolatile concentration of lO to 50% by weight, a temperature of 40 to 95°C, Polymerization can be carried out in a reaction time of 1 to 10 hours. Here, if the nonvolatile content concentration is less than 10% by weight, the production efficiency of the particles is poor, and if it exceeds 50% by weight, the average particle size of the particles is 50 μm.
When added to a paint in excess of this amount, the appearance of the paint film may actually deteriorate, which is undesirable. Polymerization temperature: 40°C
If it is less than 95°C, particle formation will be insufficient, and if it exceeds 95°C, the particles will aggregate in the gas phase, which is not preferable. If the reaction time is less than 1 hour, particle formation will be insufficient;
If the reaction time exceeds 1O time, this is not preferable since it will only result in a meaningless waste of energy after the reaction is completed.

さらに非水系分散重合法では、高ブチルエーテル化メラ
ミン樹脂、長浦長アルキド樹脂、低極性グラフト基を持
つくし型共重合体等の分散安定剤の存在下、非極性媒体
中で、通常の条件下、すなわちlO〜70重量%の不揮
発分濃度、40〜140゜Cの温度、2〜10時間の反
応時間で重合することかできる。ここで、不揮発分濃度
かlO重量%未満の場合、粒子の製造効率が悪いため、
また70重量%を越える場合、重合中に粒子か凝集する
ため好ましくない。重合温度が40゜C未満の場合、粒
子形成が不十分となり、140゜Cを越える場合、重合
中に粒子が融着し易くなるため好ましくない。反応時間
が2時間未満の場合、粒子形成が不十分となり、lO時
間を越える場合は、反応完結後の無意味なエネルギー浪
費となるだけであり、好ましくない。
Furthermore, in the non-aqueous dispersion polymerization method, under normal conditions in a non-polar medium in the presence of a dispersion stabilizer such as a highly butyl etherified melamine resin, Nagaura Naga alkyd resin, or a comb copolymer having a low polar graft group, That is, polymerization can be carried out at a nonvolatile content concentration of 10 to 70% by weight, a temperature of 40 to 140°C, and a reaction time of 2 to 10 hours. Here, if the nonvolatile content concentration is less than 10% by weight, the production efficiency of particles is poor;
Moreover, if it exceeds 70% by weight, the particles will aggregate during polymerization, which is not preferable. If the polymerization temperature is less than 40°C, particle formation will be insufficient, and if it exceeds 140°C, the particles will tend to fuse during polymerization, which is not preferred. If the reaction time is less than 2 hours, particle formation will be insufficient, and if it exceeds 10 hours, it will simply be a meaningless waste of energy after the reaction is completed, which is not preferable.

本発明の架橋重合体微粒子の主成分は、例えば以下に示
すα,β−エチレン性不飽和単量体の1種または2種以
上の共重合により形成することができる。すなわち (i)非官能性α,β−エチレン性不飽和単量体メチル
(メタ)アクリレート、エチル(メタ)アクリレート、
n−プロビル(メタ)アクリレート、イソプロビル(メ
タ)アクリレート、n一ブチル(メタ)アクリレート、
イソブチル(メタ)アクリレート、sec−ブチル(メ
タ)アクリレート、n−ヘキシル(メタ)アクリレート
、シクロヘキシル(メタ)アクリレート、ベンジル(メ
タ)アクリレート、2−エチルヘキシル(メタ)アクリ
レート、ステアリル(メタ)アクリレート、スチレン、
α−メチルスチレン、p−ビニルトルエン、(メタ)ア
クリロニトリル、テトラシクロ(4.  4,  0,
  l2゜6. 1 7. 10)ドデシル−3−(メ
タ)アクリレート、(ii)水酸基含有α,β−エチレ
ン性不飽和単量体 2−ヒドロキシエチル(メタ)アクリレート、2−ヒド
ロキシブ口ピル(メタ)アクリレート、3−ヒドロキシ
ブ口ビル(メタ)アクリレート、2−ヒドロキシブチル
(メタ)アクリレート、3−ヒドロキシブチル(メタ)
アクリレート、4−ヒドロキシブチル(メタ)アクリレ
ート、ジベンタエリスリトールヘキサ(メタ)アクリレ
ート、2−ヒドロキシエチル(メタ)アクリレートのε
一カブロラクトン(1−10Ji体)付加体、2−ヒド
ロキシブロビル(メタ)アクリレーl・のε一カブロラ
クトン(1〜1041体)付加体、 (ii)エポキシ基含有α,β−エチレン性不飽和単量
体 グリシジル(メタ)アクリレート、メチルグリシジル(
メタ)アクリレート、ビニルグリシジルエーテル ( iv )アミド基含有α,β−エチレン性不飽和単
量体 アクリルアミド、メタクリルアミド (V)アミノメチロール基含有α,β−エチレン性不飽
和単量体 N−メチロール(メタ)アクリルアミド(vi)アルキ
ル化アミノメチルエーテル基含有αβ−エチレン性不飽
和単量体 N−メトキシメチル(メタ)アクリルアミド、N−ブト
キシメチル(メタ)アクリルアミド、メチルアクリルア
ミドグリコレートメチルエーテル (vi)イソシアネート基含有α,β−エチレン性不飽
和単量体 イソシアネートエチル(メタ)アクリレート、m−イ゛
ノプロベニルーα.α−ジメチルベンジルイソシアネー
ト、イソホロンジイソシアネートの2−ヒドロキシエチ
ル(メタ)アクリレートまたは2−ヒドaキシブ口ビル
(メタ)アクリレートとのハーフブロック体、I,6−
へキサメチレンジイソシアネートの2−ヒドロキシエチ
ル(メタ)アクリレートまたは2−ヒドロキシブ口ビル
(メタ)アクリレートとのハーフブロック体、トリレン
ジイソシアネートと2−ヒドロキシエチル(メタ)アク
リレート、または2−ヒドロキシブ口ピル(メタ)アク
リレートとのハーフブロック体 (vi)シクロカーボネート基含有α,β−エチレン性
不飽和単量体 4−(メタ)アクリロイル才キシメチルー123ジオキ
ソラン−2一オン、4−(メタ)アクリロイルオキシエ
チル−1.  3−ジオキソランー2−オン (ix)アセトアセトキシ基含有α,β−エチレン性不
飽和単量体 2−アセトアセトキシエチル(メタ)アクリレ一ト、2
−アセトアセトキシブ口ピル(メタ)アクリレート、 (X)アミノ基含有α,β−エチレン性不飽和単量体 N−t−ブチルアミノエチルメタクリレート(xi)カ
ルボキシル基含有α,β−エチレン性不飽和単量体 (メタ)アクリル酸、マレイン酸、無水マレイン酸、イ
タコン酸、クロトン酸、フマル酸上記のα,β−エチレ
ン性不飽和単量体の組成比は、所望の用途に要求される
屈折率、硬度、強度、靭性、ガラス転移温度、官能基濃
度、耐酸性、耐アルカリ性等に応じて任意に選ぶことが
できるが、乳化重合および懸濁重合の際には、低極性単
量体を主成分として高極性単量体をブレンドし、非水系
分散重合の際には、高極性単量体を主成分として低極性
単量体をブレンドするよう配慮すればより安定な粒子形
成か可能となる。
The main component of the crosslinked polymer fine particles of the present invention can be formed, for example, by copolymerizing one or more of the α,β-ethylenically unsaturated monomers shown below. That is, (i) non-functional α,β-ethylenically unsaturated monomer methyl (meth)acrylate, ethyl (meth)acrylate,
n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate,
Isobutyl (meth)acrylate, sec-butyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, stearyl (meth)acrylate, styrene,
α-methylstyrene, p-vinyltoluene, (meth)acrylonitrile, tetracyclo(4.4, 0,
l2゜6. 1 7. 10) Dodecyl-3-(meth)acrylate, (ii) Hydroxyl group-containing α,β-ethylenically unsaturated monomer 2-hydroxyethyl (meth)acrylate, 2-hydroxybubutyr (meth)acrylate, 3-hydroxy Buchibiru (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)
ε of acrylate, 4-hydroxybutyl (meth)acrylate, diventaerythritol hexa(meth)acrylate, 2-hydroxyethyl (meth)acrylate
monocabrolactone (1-10Ji form) adduct, ε-cabrolactone (1-1041 form) adduct of 2-hydroxybrobyl(meth)acrylate l, (ii) epoxy group-containing α,β-ethylenically unsaturated monomer mer glycidyl (meth)acrylate, methylglycidyl (
meth)acrylate, vinyl glycidyl ether (iv) amide group-containing α,β-ethylenically unsaturated monomer acrylamide, methacrylamide (V) aminomethylol group-containing α,β-ethylenically unsaturated monomer N-methylol ( meth)acrylamide (vi) Alkylated aminomethyl ether group-containing αβ-ethylenically unsaturated monomer N-methoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, methylacrylamide glycolate methyl ether (vi) Isocyanate group-containing α,β-ethylenically unsaturated monomer isocyanate ethyl (meth)acrylate, m-inoprobenyl α. α-dimethylbenzyl isocyanate, a half block of isophorone diisocyanate with 2-hydroxyethyl (meth)acrylate or 2-hydroxybutyl (meth)acrylate, I,6-
Half-block of hexamethylene diisocyanate with 2-hydroxyethyl (meth)acrylate or 2-hydroxybutyl (meth)acrylate, tolylene diisocyanate and 2-hydroxyethyl (meth)acrylate, or 2-hydroxybutyr Half block product with (meth)acrylate (vi) Cyclocarbonate group-containing α,β-ethylenically unsaturated monomer 4-(meth)acryloyloxymethyl-123dioxolane-2-one, 4-(meth)acryloyloxyethyl -1. 3-dioxolan-2-one (ix) acetoacetoxy group-containing α,β-ethylenically unsaturated monomer 2-acetoacetoxyethyl (meth)acrylate, 2
-acetoacetoxibacetyl (meth)acrylate, (X) amino group-containing α,β-ethylenically unsaturated monomer Nt-butylaminoethyl methacrylate (xi) carboxyl group-containing α,β-ethylenically unsaturated monomer Monomers (meth)acrylic acid, maleic acid, maleic anhydride, itaconic acid, crotonic acid, fumaric acid The composition ratio of the above α,β-ethylenically unsaturated monomers is determined according to the refractive index required for the desired application. The monomer can be selected arbitrarily depending on the ratio, hardness, strength, toughness, glass transition temperature, functional group concentration, acid resistance, alkali resistance, etc., but during emulsion polymerization and suspension polymerization, low polar monomers are It is possible to form more stable particles by blending a high polar monomer as the main component, and by taking care to blend the high polar monomer as the main component with a low polar monomer during non-aqueous dispersion polymerization. Become.

前記α,β−エチレン性不飽和単量体の重合開始剤には
、例えば、ペンゾイルベルオキシド、2,4−ジクロル
ベンゾイルペル才キシド、t−プチルベルオキシ−2−
エチルヘキサノエート、tブチルペルオキシベンゾエー
ト、ジクミルペルオキシド等の有機過酸化物、アゾビス
イソブチロニトリル、アゾビス−2,4−ジメチルバレ
ロニトリル、ジメチル−2,2′−アゾビスイソブチレ
ート、2,2゛−アゾビス(2−アミジノプロパン)二
塩酸塩、4,4′−アゾビス(4−シアノ吉草酸)等の
アゾ化合物、過硫酸カリウム、過硫酸ナトリウム、過硫
酸アンモニウム等の無機過酸化物等が好ましい化合物と
して、1種または2種以上の混合物として用いることが
できる。もちろんこの際、第一鉄塩、酸性亜硫酸ナトリ
ウム、N, N−ジメチルアニリン等を併用したレドッ
クス系とすることも可能である。上記の重合開始剤の含
有割合は、重合方法、重合条件、共重合成分の種類等に
より異なるが、好ましくは、全α,β−エチレン性不飽
和単量体100重量部に対して、0.1〜10重量部の
範囲で用いることか望ましい。ここで、重合開始剤が0
.1重量部未満の場合、粒子形成か不十分となり、IO
重合部を越える場合、重合中に粒子が凝集し易くなるた
め好ましくない。また、上記の重合開始剤の選択は任意
であるが、より好ましくは乳化重合時に水溶性重合開始
剤を、また懸濁重合および非水系分散重合時には油溶性
重合開始剤を選べば容易に安定な粒子を形成することが
できる。
Examples of the polymerization initiator for the α,β-ethylenically unsaturated monomer include penzoylperoxide, 2,4-dichlorobenzoylperoxide, and t-butylberoxy-2-
Organic peroxides such as ethylhexanoate, t-butylperoxybenzoate, dicumyl peroxide, azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, dimethyl-2,2'-azobisisobutyrate, Azo compounds such as 2,2′-azobis(2-amidinopropane) dihydrochloride and 4,4′-azobis(4-cyanovaleric acid), inorganic peroxides such as potassium persulfate, sodium persulfate, ammonium persulfate, etc. These compounds can be used singly or as a mixture of two or more. Of course, in this case, it is also possible to use a redox system in which ferrous salt, acidic sodium sulfite, N,N-dimethylaniline, etc. are used in combination. The content ratio of the above-mentioned polymerization initiator varies depending on the polymerization method, polymerization conditions, type of copolymerization components, etc., but is preferably 0.00 parts by weight based on 100 parts by weight of all α,β-ethylenically unsaturated monomers. It is desirable to use it in a range of 1 to 10 parts by weight. Here, the polymerization initiator is 0
.. If the amount is less than 1 part by weight, particle formation will be insufficient and IO
If it exceeds the polymerization part, the particles tend to aggregate during polymerization, which is not preferable. Although the above polymerization initiator can be selected arbitrarily, it is more preferable to select a water-soluble polymerization initiator for emulsion polymerization, and an oil-soluble polymerization initiator for suspension polymerization and non-aqueous dispersion polymerization to ensure stability. Particles can be formed.

本発明の架橋重合体微粒子の粒子内部の三次元架橋は、
以下の反応(a)〜(S)により達成することができる
The three-dimensional crosslinking inside the crosslinked polymer fine particles of the present invention is
This can be achieved by the following reactions (a) to (S).

(a)  アセトアセトキシ基含有α,β−エチレン性
不飽和単量体と重量平均分子量1000以下のアミノ樹
脂との縮合反応 ここでの反応は、次の操作により行なうことができる。
(a) Condensation reaction between an acetoacetoxy group-containing α,β-ethylenically unsaturated monomer and an amino resin having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(ix)のアセトアセトキシ基含有
α,β−エチレン性不飽和単量体を必須成分とし、必要
に応じて前記(i)〜(xi)の他のα,β−エチレン
性不飽和単量体を混合した組成で乳化重合、懸濁重合ま
たは非水系分散重合により重合体微粒子を形成せしめる
。その後、重量平均分子量1000以下のアミノ樹脂を
添加し、粒子中のアセトアセトキシ基と縮合反応を行な
う。ここで、アセトアセトキシ基含有α,β−エチレン
性不飽和単量体とアミノ樹脂の配合量は、特に限定され
るものではないが、好ましくは、架橋重合体微粒子の構
成材料総量中、前者は3〜80重量%、後者は2〜50
重量%の範囲内で用いられることが望ましい。アセトア
セトキシ基含有α,β−エチレン性不飽和単量体が3重
量%未満または、アミノ樹脂が2重量%未満の場合は、
粒子内の三次元架橋が不十分となり、所望の流動調節作
用を発揮しにくくなる一方、前者が80重量%を越える
が、後者が50重量%を越える場合は、粒子間架橋によ
る凝集か起こり易くなるためである。ここで重要なこと
は、アミノ樹脂の重量平均分子量か1000以下のもの
を選ばねばならないことてある。アミノ樹脂の重量平均
分子量か1000を越えると、該アミノ樹脂か重合体粒
子中に取り込まれ几くなり、粒子内の三次元架橋か不十
分となってしまう。かかるアミノ樹脂としは、例えば市
販品として、サイメル300、同30l1同303、同
327、同350、同1116、同1130 (三井サ
イアナミッド■製、商品名)、二カラックMW−30、
同MW−22A、同MX−40 、同MX−45  (
三和ケミカル■製、商品名)、レジミン730、同73
1、同735、同745、同746、同747、同75
3、755、同764(モンサンド■製、商品名)等の
アルキルエーテル化メラミン樹脂をあげることができる
That is, first, the acetoacetoxy group-containing α,β-ethylenically unsaturated monomer (ix) is used as an essential component, and other α,β-ethylenically unsaturated monomers (i) to (xi) are added as necessary. Fine polymer particles are formed by emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization using a composition in which saturated monomers are mixed. Thereafter, an amino resin having a weight average molecular weight of 1000 or less is added to perform a condensation reaction with the acetoacetoxy groups in the particles. Here, the blending amounts of the acetoacetoxy group-containing α,β-ethylenically unsaturated monomer and the amino resin are not particularly limited, but preferably the former is 3-80% by weight, the latter 2-50%
It is desirable to use within a range of % by weight. When the acetoacetoxy group-containing α,β-ethylenically unsaturated monomer is less than 3% by weight or the amino resin is less than 2% by weight,
Three-dimensional crosslinking within the particles becomes insufficient, making it difficult to exert the desired flow regulating effect. On the other hand, if the former exceeds 80% by weight but the latter exceeds 50% by weight, aggregation due to interparticle crosslinking is likely to occur. To become. What is important here is that the weight average molecular weight of the amino resin must be selected to be 1000 or less. If the weight average molecular weight of the amino resin exceeds 1000, the amino resin will be incorporated into the polymer particles and become stiff, resulting in insufficient three-dimensional crosslinking within the particles. Examples of such amino resins include commercially available products such as Cymel 300, Cymel 30l1, Cymel 303, Cymel 327, Cymel 350, Cymel 1116, Cymel 1130 (manufactured by Mitsui Cyanamid ■, trade name), Nicarac MW-30,
MW-22A, MX-40, MX-45 (
Manufactured by Sanwa Chemical ■, product name), Resimin 730, Resimin 73
1, 735, 745, 746, 747, 75
Examples include alkyl etherified melamine resins such as 3, 755, and 764 (manufactured by Monsando ■, trade name).

アセトアセトキシ基とアミノ樹脂の縮合反応は、通常6
0〜140゜Cの温度で反応するのが好ましい。反応温
度が60゜C未満では、粒子内架橋が不十分となり、反
応温度が140゜Cを越える場合は、重合体微粒子が海
着するため好ましくない。
The condensation reaction between an acetoacetoxy group and an amino resin is usually 6
Preferably, the reaction is carried out at a temperature of 0 to 140°C. If the reaction temperature is less than 60°C, intraparticle crosslinking will be insufficient, and if the reaction temperature exceeds 140°C, the fine polymer particles will settle on the sea, which is not preferable.

また、この際、p−トルエンスルホン酸、ドデシルベン
ゼンスルホン酸、ジノニルナフタレンスルホン酸、ジノ
ニルナフタレンジスルホン酸等の芳香族スルホン酸や、
脂肪族スルホン酸系界面活性剤の脱ナトリウム化、また
は脱カリウム化により得られる脂肪族スルホン酸や、リ
ン酸系触媒を添加して、縮合反応を促進することも可能
である。
In addition, at this time, aromatic sulfonic acids such as p-toluenesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalene disulfonic acid,
It is also possible to promote the condensation reaction by adding an aliphatic sulfonic acid obtained by desodiumization or depotassiumation of an aliphatic sulfonic acid surfactant, or a phosphoric acid catalyst.

(b)  アセトアセトキシ基含有α,β−エチレン性
不飽和単量体と重量平均分子量1000以下のポリイソ
シアネート化合物との付加反応 ここでの反応は、次の操作により行なうことができる。
(b) Addition reaction between an acetoacetoxy group-containing α,β-ethylenically unsaturated monomer and a polyisocyanate compound having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(ix)のアセトアセトキシ基含有
α,β−エチレン性不飽和単量体を必須成分とし、必要
に応じて前記(i)〜(xi)の他のα,β−エチレン
性不飽和単量体を混合した組成で乳化重合、懸濁重合ま
たは非水系分散重合により重合体微粒子を形成せしめる
。その後、重量平均分子量1000以下のポリイソシア
ネート化合物を添加し、粒子中のアセトアセトキシ基と
付加反応を行なう。ここで、アセトアセトキシ基含有α
,β−エチレン性不飽和単量体とポリ.イソシアネート
化合物の配合量は、特に限定されるものではないが、好
ましくは、前記(alと同様の理由から架橋重合体微粒
子の構成材料総量中、前者は3〜80重量%、後者は2
〜50重量%の範囲内で用いられることが望ましい。ま
た、ポリイソシアネート化合物の重量平均分子量は、前
記(a)と同様の理由から、1000以下のものを選ぶ
必要がある。
That is, first, the acetoacetoxy group-containing α,β-ethylenically unsaturated monomer (ix) is used as an essential component, and other α,β-ethylenically unsaturated monomers (i) to (xi) are added as necessary. Fine polymer particles are formed by emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization using a composition in which saturated monomers are mixed. Thereafter, a polyisocyanate compound having a weight average molecular weight of 1000 or less is added to carry out an addition reaction with the acetoacetoxy groups in the particles. Here, acetoacetoxy group-containing α
, β-ethylenically unsaturated monomer and poly. The blending amount of the isocyanate compound is not particularly limited, but preferably the former is 3 to 80% by weight and the latter is 2% by weight in the total amount of the constituent materials of the crosslinked polymer fine particles for the same reason as (al).
It is desirable to use it within the range of 50% by weight. Further, the weight average molecular weight of the polyisocyanate compound needs to be selected to be 1000 or less for the same reason as in (a) above.

かかるポリイソシアネート化合物としては、トリレンジ
イソシアネート、4.4′−ジフ羨ニルメタンジイソシ
アネート、キシリレンジイソシアネート、ヘキサメチレ
ンジイソシアネート、リジンジイソシアネート、4,4
゛−メチレンビス(シクロヘキシルイソシアネート)、
メチルシクロヘキサン2.  4 (2.  6) シ
イソシアネート、1.3−(イソシアナートメチル)シ
クロヘキサン、イソホロンジイソシアネート、トリメチ
ルへキサメチレンジイソシアネート、およびこれらのピ
ューレーット型3量体、イソシアヌレート型3′I#体
、トリメチロールプロパン、グリセリン、トリメチロー
ルエタン、ペンタエリスリトット等の低分子多価アルコ
ールとの付加体をあげることができる。
Such polyisocyanate compounds include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, 4,4
゛-Methylenebis(cyclohexyl isocyanate),
Methylcyclohexane2. 4 (2.6) Cyisocyanate, 1,3-(isocyanatomethyl)cyclohexane, isophorone diisocyanate, trimethylhexamethylene diisocyanate, and pureed trimer thereof, isocyanurate type 3'I# form, trimethylolpropane , glycerin, trimethylolethane, pentaerythritot, and other adducts with low-molecular polyhydric alcohols.

アセトアセトキシ基とポリイソシアネート化合物との付
加反応は、通常室温〜140゜Cの温度で反応するのが
好ましい。反応温度が140℃を越える場合、重合体微
粒子が融着するため好ましくない。また、この際、ジメ
チルラウリルアミン、ジメチルベンジルアミン等の三級
アミン、ジブチル錫ジラウレート、テトラブチルチタネ
ート等の金属エステル化物を添加して、付加反応を促進
することも可能である。
The addition reaction between the acetoacetoxy group and the polyisocyanate compound is usually preferably carried out at a temperature of room temperature to 140°C. If the reaction temperature exceeds 140°C, it is not preferable because the polymer particles will fuse together. Further, at this time, it is also possible to accelerate the addition reaction by adding a tertiary amine such as dimethyllaurylamine or dimethylbenzylamine, or a metal ester such as dibutyltin dilaurate or tetrabutyl titanate.

(c)  アセトアセトキシ基含有α,β−エチレン性
不飽和単量体とホルムアルデヒドとの縮合反応ここでの
反応は、次の操作により行なうことができる。すなわち
、まず前記fa)と同様の方法で重合体微粒子を形成せ
しめる。その後、ホルムアルデヒドを添加し、粒子中の
アセトアセトキシ基と縮合反応を行なう。ここで、アセ
トアセトキシ基含有α,β−エチレン性不飽和単量体と
ホルムアルデヒドの配合量は、特に限定されるものでは
ないが、好ましくは前記(a)と同様の理由から架橋重
合体微粒子の構成材料総量中、前者は3〜80重量%、
後者は2〜50重量%の範囲内で用いられることが望ま
しい。
(c) Condensation reaction between an acetoacetoxy group-containing α,β-ethylenically unsaturated monomer and formaldehyde The reaction here can be carried out by the following operation. That is, first, polymer fine particles are formed by the same method as in fa) above. Thereafter, formaldehyde is added to perform a condensation reaction with the acetoacetoxy groups in the particles. Here, the blending amount of the acetoacetoxy group-containing α,β-ethylenically unsaturated monomer and formaldehyde is not particularly limited, but preferably for the same reason as in (a) above, The former accounts for 3 to 80% by weight of the total amount of constituent materials;
The latter is preferably used in an amount of 2 to 50% by weight.

アセトアセトキシ基とホルムアルデヒドとの付加反応は
前記(a)と同様の理由から通常60〜140℃の温度
で反応するのが好ましい。また、この際、水酸化ナトリ
ウム、水酸化カリウム、ジメチルベンジルアミン等の塩
基性触媒を添加して縮合反応を促進することも可能であ
る。
The addition reaction between an acetoacetoxy group and formaldehyde is preferably carried out at a temperature of usually 60 to 140° C. for the same reason as in (a) above. Moreover, at this time, it is also possible to add a basic catalyst such as sodium hydroxide, potassium hydroxide, dimethylbenzylamine, etc. to promote the condensation reaction.

(d)  アセトアセトキシ基含有α.β−エチレン性
不飽和単量体と重量平均分子量1000以下の多官能α
,β一不飽和カルボニル化合物とのマイケル付加反応 ここでの反応は、次の操作により行なうことかできる。
(d) Acetoacetoxy group-containing α. β-ethylenically unsaturated monomer and polyfunctional α with a weight average molecular weight of 1000 or less
, Michael addition reaction with a β-unsaturated carbonyl compound The reaction here can be carried out by the following operation.

すなわち、まず前記唾)と同様の方法で重合体微粒子を
形成せしめる。その後、重量平均分子量1000以下の
多官能α,β一不飽和カルボニル化合物を添加し、ナト
リウムメトキシド、ナトリウムエトキシド、ナトリウム
ブトキシド等の触媒の存在下、前記(alと同様の理由
から60〜140゜Cの温度で粒子中のアセトアセトキ
シ基とマイケル付加反応を行なう。ここで、アセトアセ
トキシ基含有α,β−エチレン性不飽和単量体と多官能
α,β一不飽和カルボニル化合物の配合量は、特に限定
されるものではないが、好ましくは前記(a)と同様の
理由から架橋重合体微粒子の構成材料総量中、前者は3
〜80重量%、後者は2〜50重量%の範囲内で用いら
れることか望ましい。また、多官能α,β一不飽和カル
ボニル化合物の重量平均分子量は前記(a)と同様の理
由から1000以下のものを選ぶ必要かある。
That is, first, polymer fine particles are formed in the same manner as in the above-mentioned saliva). Thereafter, a polyfunctional α,β monounsaturated carbonyl compound having a weight average molecular weight of 1000 or less is added, and in the presence of a catalyst such as sodium methoxide, sodium ethoxide, sodium butoxide, etc. A Michael addition reaction is carried out with the acetoacetoxy groups in the particles at a temperature of °C.Here, the blending amount of the acetoacetoxy group-containing α,β-ethylenically unsaturated monomer and the polyfunctional α,β monounsaturated carbonyl compound is Although not particularly limited, the former preferably accounts for 3 in the total amount of constituent materials of the crosslinked polymer fine particles for the same reason as (a) above.
-80% by weight, and the latter is preferably used in a range of 2-50% by weight. Further, it is necessary to select a weight average molecular weight of the polyfunctional α,β monounsaturated carbonyl compound of 1000 or less for the same reason as in (a) above.

かかる多官能α,β一不飽和力ルポニル化合物としては
、例えば、エチレングリコールジ(メタ)アクリレート
、、ジエチレングリコールジ(メタ)アクリレート、ト
リエチレングリコールジ(メタ)アクリレート、1.4
−ブタンジオールジ(メタ)アクリレート、l,6−ヘ
キサンジ才−ルジ(メタ)アクリレート、ネオペンチル
グリコールジ(メタ)アクリレート、テトラエチレング
リコールジ(メタ)アクリレート、テトラブロビレング
リコールジ(メタ)アクリレート、トリブロビレングリ
コールジ(メタ)アクリレート、トリメチロールブロバ
ントリ(メタ)アクリレート、ペンタエリスリトールト
リ(メタ)アクリレート、ジペンタエリスリトール(メ
タ)アクリレート等があげられる。
Examples of such polyfunctional α,β monounsaturated polyponyl compounds include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, 1.4
-butanediol di(meth)acrylate, l,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, tetrabrobylene glycol di(meth)acrylate, Examples include tribrobylene glycol di(meth)acrylate, trimethylolbroban tri(meth)acrylate, pentaerythritol tri(meth)acrylate, and dipentaerythritol(meth)acrylate.

(e)  アセトアセトキシ基含有α.β−エチレン性
不飽和単量体と重量平均分子量1000以下のボリエポ
キシ化合物との付加反応 ここでの反応は、次の操作により行なうことかできる。
(e) Acetoacetoxy group-containing α. Addition reaction between a β-ethylenically unsaturated monomer and a polyepoxy compound having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(a)と同様の方法で重合体微粒子
を形成せしめる。その後、重量平均分子量1000以下
のポリエポキシ化合物を添加し、粒子中のアセトアセト
キシ基と付加反応を行なう。ここでアセトアセトキシ基
含有α,β−エチレン性不飽和単量体とボリエポキシ化
合物の配合量は、特に限定されるものではないが、好ま
しくは前記(a)と同様の理由から、架橋重合体微粒子
の構成材料総量中、前者は3〜80重量%、後者は2〜
50重量%の範囲内で用いられることか望ましい。また
、ポリエポキシ化合物の重量平均分子量は、前記(a)
と同様の理由から、1000以下のものを選ぶ必要があ
る。
That is, first, polymer fine particles are formed by the same method as in (a) above. Thereafter, a polyepoxy compound having a weight average molecular weight of 1000 or less is added to carry out an addition reaction with the acetoacetoxy groups in the particles. Here, the blending amount of the acetoacetoxy group-containing α,β-ethylenically unsaturated monomer and the polyepoxy compound is not particularly limited, but preferably for the same reason as (a) above, the crosslinked polymer fine particles Of the total amount of constituent materials, the former accounts for 3 to 80% by weight, and the latter accounts for 2 to 80% by weight.
It is desirable to use it within the range of 50% by weight. In addition, the weight average molecular weight of the polyepoxy compound is as described in (a) above.
For the same reason, it is necessary to choose one with a value of 1000 or less.

かかるポリエポキシ化合物としては、ビスフェノールA
型エポキサイド、ノボラック系エポキサイド、アルキル
フェノールジグリシジルエーテル、テトラグリシドキシ
テトラフエニルエタン、フェノールフタレインエポキサ
イド、レゾルシンエボキサイド、多クロルジフエニルエ
ーテル、多ブロムジフエニルエーテル、ポリグリコール
系エボキサイド、グリセリントリグリシジル、ジグリシ
ジルアジベート、ジグリシジルセバテート、ジグリシジ
ルフタレート、ダイマー酸ジグリシジルエステル、テト
ラグリシジルアミノジフェニルメタン、トリグリシジル
メラミン、トリグリシジルシアヌレート等をあげること
かできる。
Such polyepoxy compounds include bisphenol A
type epoxide, novolak epoxide, alkylphenol diglycidyl ether, tetraglycidoxytetraphenylethane, phenolphthalein epoxide, resorcinol epoxide, polychlorodiphenyl ether, polybrominated diphenyl ether, polyglycol epoxide, glycerin triglycidyl , diglycidyl adibate, diglycidyl sebatate, diglycidyl phthalate, dimer acid diglycidyl ester, tetraglycidyl amino diphenylmethane, triglycidyl melamine, triglycidyl cyanurate and the like.

アセトアセトキシ基とポリエポキシ化合物との付加反応
は、前記(a)と同様の理由から、通常60〜140゜
Cの温度で反応するのが好ましい。
The addition reaction between the acetoacetoxy group and the polyepoxy compound is preferably carried out at a temperature of usually 60 to 140°C for the same reason as in (a) above.

また、この際、ジメチルラウリルアミン、ジメチルベン
ジルアミン、テトラメチルアンモニウムクロライド、テ
トラエチルアンモニウムクロライド等の触媒を添加して
、付加反応を促進することも可能である。
Further, at this time, it is also possible to add a catalyst such as dimethyllaurylamine, dimethylbenzylamine, tetramethylammonium chloride, tetraethylammonium chloride, etc. to promote the addition reaction.

(f)アルキル化アミノメチルエーテル基含有α,β−
エチレン性不飽和単量体の自己縮合反応ここでの反応は
、次の操作により行なうことができる。すなわち、まず
前記(vi)のアルキル化アミノメチルエーテル基含有
α,β−エチレン性不飽和単量体を必須成分とし、必要
に応じて前記(i)〜(xi)の他のα.β−エチレン
性不飽和単量体を混合した組成で乳化重合、懸濁重合ま
たは非水系分散重合により重合体微粒子を形成せしめる
。その後、自己縮合触媒として、p一トルエンスルホン
酸、ドデシルベンゼンスルホン酸、ジノニルナフタレン
スルホン酸、ジノニルナフタレンジスルホン酸等の芳香
族スルホン酸や、脂肪族スルホン酸系界面活性剤の脱ナ
トリウム化、または脱カリウム化により得られる脂肪族
スルホン酸や、リン酸系化合物を添加して、通常60〜
140゜Cの温度で反応し、粒子中のアルキル化アミノ
メチルエーテル基の自己縮合反応を行なう。ここで、反
応温度が60゜C未満では粒子内架橋が不十分となり、
反応温度か140゜Cを越える場合は、重合体微粒子が
融着するため好ましくない。また、アルキル化アミノメ
チルエーテル基含有α,β−エチレン性不飽和単量体の
配合量は、特に限定されるものではないが、好ましくは
、架橋重合体微粒子の構成材料総量中、3〜80重量%
の範囲で用いられることが望ましい。なぜなら、3重i
jk%未満の場合は、粒子内の三次元架橋か不十分とな
り、80重量%を越える場合は、粒子間架橋による凝集
が起こり易《なるためである。
(f) Alkylated aminomethyl ether group-containing α,β-
Self-condensation reaction of ethylenically unsaturated monomer The reaction here can be carried out by the following operation. That is, first, the above-mentioned (vi) alkylated aminomethyl ether group-containing α,β-ethylenically unsaturated monomer is used as an essential component, and if necessary, the above-mentioned other α. Fine polymer particles are formed by emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization using a composition in which a β-ethylenically unsaturated monomer is mixed. After that, as a self-condensation catalyst, aromatic sulfonic acids such as p-toluenesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalene disulfonic acid, and aliphatic sulfonic acid surfactants are used to desodiumize, Or by adding aliphatic sulfonic acid obtained by depotassium or a phosphoric acid compound, usually 60~
The reaction is carried out at a temperature of 140°C to carry out a self-condensation reaction of the alkylated aminomethyl ether groups in the particles. Here, if the reaction temperature is less than 60°C, intraparticle crosslinking will be insufficient,
If the reaction temperature exceeds 140°C, the polymer particles will fuse together, which is not preferable. The amount of the alkylated aminomethyl ether group-containing α,β-ethylenically unsaturated monomer is not particularly limited, but is preferably 3 to 80% of the total amount of the constituent materials of the crosslinked polymer fine particles. weight%
It is desirable to use it within the range of . Because triple i
If it is less than jk%, three-dimensional crosslinking within the particles will be insufficient, and if it exceeds 80% by weight, aggregation due to interparticle crosslinking will easily occur.

(g)アルキル化アミノメチルエーテル基含有α,β−
エチレン性不飽和単量体と重量平均分子量1000以下
のポリオールとの縮合反応ここでの反応は、次の操作に
より行なうことがてきる。すなわち、まず前記(f)と
同様の方法で重合体微粒子を形成せしめる。その後、重
量平均分子量1000以下のポリオールを添加し、粒子
中のアルキル化アミノメチルエーテル基と縮合反応(エ
ーテル交換反応)を、前記(f)と同様の触媒下、およ
び同様の条件で反応を行なう。ここで、アルキル化アミ
ノメチルエーテル基含有α,β−エチレン性不飽和単量
体とポリオールの配合量は、特に限定されるものではな
いが好ましくは前記(f)と同様の理由から、前者は3
〜80重jl%、後者は2〜50重ji %の範囲内で
用いられることか望ましい。また、ポリオールの重量平
均分子量は、該ポリオールを粒子中に安定に取り込み易
くするため、1000以下のものを選ぶ必要がある。
(g) Alkylated aminomethyl ether group-containing α,β-
Condensation reaction between an ethylenically unsaturated monomer and a polyol having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation. That is, first, polymer fine particles are formed by the same method as in (f) above. Thereafter, a polyol having a weight average molecular weight of 1000 or less is added, and a condensation reaction (ether exchange reaction) with the alkylated aminomethyl ether group in the particles is performed under the same catalyst and under the same conditions as in (f) above. . Here, the blending amounts of the alkylated aminomethyl ether group-containing α,β-ethylenically unsaturated monomer and the polyol are not particularly limited, but preferably for the same reason as (f) above, the former is 3
The latter is preferably used in a range of 2 to 50% by weight. Further, the weight average molecular weight of the polyol needs to be selected to be 1000 or less in order to facilitate stable incorporation of the polyol into the particles.

かかるポリオールとしては、エチレングリコール、プロ
ピレングリコール、l、3−プチレングリコール、ジエ
チレングリコール、ジプロピレングリコール、トリエチ
レングリコール、グリセリン、ボリエチレングリコール
200、同300、同400、同600、ユニ才−ルD
400、同70(商品名、日本油脂■製ポリエチレング
リコールおよびボリブロピレングリコール)等のポリエ
ーテル類、ブラクセル205、同208、同303、同
305、同308(商品名、ダイセル化学工業■製ポリ
カブロラクトン)、K−フレックス188(商品名、キ
ング社製エステルジオール)等のエステルポリオール類
、およびフレキソレッツUD−320  (商品名、キ
ング社製ウレタンジオール)、ウレタンジ才−ルLIP
−14−4(商品名、オート化学工業■製ウレタンジオ
ール)等のウレタンジオール類をあげることができる。
Examples of such polyols include ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, glycerin, polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400, polyethylene glycol 600, and Uniole D.
Polyethers such as 400, 70 (trade name, polyethylene glycol and polypropylene glycol manufactured by Nippon Oil & Fats Corporation), Blaxel 205, 208, 303, 305, 308 (trade name, polycarbonate manufactured by Daicel Chemical Industries, Ltd.) brolactone), ester polyols such as K-Flex 188 (trade name, ester diol manufactured by King Company), and ester polyols such as Flexolets UD-320 (trade name, urethane diol manufactured by King Company), urethane diol LIP
Urethane diols such as -14-4 (trade name, urethane diol manufactured by Auto Kagaku Kogyo ■) can be mentioned.

(5) シクロカーボネート基含有α,β−エチレン性
不飽和単量体と重量平均分子量1000以下のボリアミ
ノ化合物との付加反応 ここでの反応は、次の操作により行なうことかできる。
(5) Addition reaction between a cyclocarbonate group-containing α,β-ethylenically unsaturated monomer and a polyamino compound having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(vi)のシクロカーボネート基含
有α,β−エチレン性不飽和単量体を必須成分とし、必
要に応じて前記(i)〜(xi)の他のα.β−エチレ
ン性不飽和単量体を混合した組成で乳化重合、懸濁重合
または非水系分散重合により重合体微粒子を形成せしめ
る。その後、重量平均分子量1000以下のボリアミノ
化合物を添加し、粒子中のシクロカーボネ−1・基と付
加反応を行なう。ここで、シクロカーボネート基含有α
,β−エチレン性不飽和単量体とポリアミノ化合物の配
合量は、特に限定されるものではないが、好ましくは、
架橋重合体微粒子の構成材料総量中、前者は3〜80重
量%、後者は2〜50重量%の範囲内で用いれることが
望ましい。なぜなら、シクロカーボネート基含有α,β
−エチレン性不飽和単量体か3重量%未満またはボリア
ミノ化合物か2重量%未満の場合は、粒子内の三次元架
橋か不十分となり、所望の流動調節作用を発揮しにくく
なる一方、前者が80重1k%を越えるが、後者が50
重量%を越える場合は、粒子間架橋による凝集か起こり
易くなるためである。またポリアミノ化合物の重量平均
分子量は、該ボリアミノ化合物を粒子中に安定に取り込
み易くするため、 1000以下のものを選ぶ必要かある。
That is, first, the cyclocarbonate group-containing α,β-ethylenically unsaturated monomer (vi) is used as an essential component, and if necessary, the other α, β-ethylenically unsaturated monomers (i) to (xi) are added as necessary. Fine polymer particles are formed by emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization using a composition in which a β-ethylenically unsaturated monomer is mixed. Thereafter, a polyamino compound having a weight average molecular weight of 1000 or less is added to carry out an addition reaction with the cyclocarbonate-1 group in the particles. Here, cyclocarbonate group-containing α
, β-ethylenically unsaturated monomer and polyamino compound are not particularly limited, but preferably,
The former is preferably used in an amount of 3 to 80% by weight, and the latter is preferably used in an amount of 2 to 50% by weight in the total amount of constituent materials of the crosslinked polymer fine particles. This is because α, β containing cyclocarbonate groups
- If the amount of the ethylenically unsaturated monomer is less than 3% by weight or the polyamino compound is less than 2% by weight, the three-dimensional crosslinking within the particles will be insufficient, making it difficult to exert the desired flow regulating effect, while the former 80 weight exceeds 1k%, but the latter is 50
This is because if it exceeds % by weight, aggregation due to interparticle crosslinking is likely to occur. Further, the weight average molecular weight of the polyamino compound needs to be selected to be 1000 or less in order to make it easy to stably incorporate the polyamino compound into the particles.

かかるボリアミノ化合物としては、エチレンジアミン、
ジエチレントリアミン、トリエチレンテ1・ラミン、デ
1・ラエチレンペンタミン、mへキサメチレントリアミ
ン、エポメート、l,3−アミノメチルシク口ヘキサン
、l,6−へキサメチレンジアミン、m−フェニレンジ
アミン、ジアミノジフェニルメタン、ジアミノジフェニ
ルスルホン、4,  7. 10−1−リスオキサトフ
デカンー1−13−ジアミン、ビス(3−アミノブロビ
ル)ポリデトラハイド口フラン等をあげることができる
Such polyamino compounds include ethylenediamine,
Diethylenetriamine, triethylenethe1-lamin, de1-laethylenepentamine, m-hexamethylenetriamine, epomate, l,3-aminomethylcyclohexane, l,6-hexamethylenediamine, m-phenylenediamine, diaminodiphenylmethane, Diaminodiphenylsulfone, 4, 7. Examples include 10-1-lisoxatofudecane-1-13-diamine, bis(3-aminobrobyl) polydetrahydride furan, and the like.

シクロカーボネート基とボリアミノ化合物の付加反応は
、通常室温〜140゜Cの温度て反応するのが好ましい
。反応温度か140゜Cを越える場合は、重合体微粒子
が融着するため好ましくない。
The addition reaction between a cyclocarbonate group and a polyamino compound is usually preferably carried out at a temperature of room temperature to 140°C. If the reaction temperature exceeds 140°C, the polymer particles will fuse together, which is not preferable.

(i)  水酸基含有α,β−エチレン性不飽和単量体
と重量平均分子ffilOOO以下のアミノ樹脂との縮
合反応 ここでの反応は、次の操作により行なうことができる。
(i) Condensation reaction between a hydroxyl group-containing α,β-ethylenically unsaturated monomer and an amino resin having a weight average molecular weight of ffilOOOO or less The reaction here can be carried out by the following operation.

すなわち、まず前記(ii)の水酸基含有α,β−エチ
レン性不飽和単量体を必須成分とし、必要に応じて前記
(i)〜(xi)の他のα,β−エチレン性不飽和単量
体を混合した組成で、乳化重合、懸濁重合または非水系
分散重合により重合体微粒子を形成せしめる。その後、
重量平均分子jll000以下のアミノ樹脂を添加し、
粒子中の水酸基と縮合反応を行な・う。
That is, first, the hydroxyl group-containing α,β-ethylenically unsaturated monomer of (ii) is used as an essential component, and if necessary, other α,β-ethylenically unsaturated monomers of the above (i) to (xi) are added. Polymer fine particles are formed by emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization using a composition in which polymers are mixed. after that,
Adding an amino resin with a weight average molecular weight of 000 or less,
Performs a condensation reaction with the hydroxyl groups in the particles.

ここで、水酸基含有α,β−エチレン性不飽和単量体と
アミノ樹脂の配合量は、特に限定されるものではないが
、好ましくは、前記(a)と同様の理由から架橋重合体
微粒子の構成材料総量中、前者は3〜80重量%、後者
は2〜50重量%の範囲内で用いられることか望ましい
。また、アミノ樹脂の種類および水酸基との反応条件は
、前記(a)と全く同様にすることができる。
Here, the blending amount of the hydroxyl group-containing α,β-ethylenically unsaturated monomer and the amino resin is not particularly limited, but preferably, for the same reason as in (a) above, the amount of the crosslinked polymer fine particles is It is desirable that the former be used in an amount of 3 to 80% by weight, and the latter in an amount of 2 to 50% by weight, based on the total amount of the constituent materials. Further, the type of amino resin and the reaction conditions with the hydroxyl group can be exactly the same as in (a) above.

(j)  水酸基含有α,β−エチレン性不飽和単量体
と重量平均分子量1000以下のポリイソシアネート化
合物との付加反応 ここでの反応は、次の操作により行なうことができる。
(j) Addition reaction between a hydroxyl group-containing α,β-ethylenically unsaturated monomer and a polyisocyanate compound having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(i)と同様の方法で重合体微粒子
を形成せしめる。その後、重量平均分子ffi1000
以下のポリイソシアネート化合物を添加し、粒子中の水
酸基と付加反応を行なう。ここで、水酸基含有α,β−
エチレン性不飽和単量体とポリイソシアネート化合物の
配合量は、特に限定されるものではないが、好ましくは
、前記(a)と同様の理由から架橋重合体微粒子の構成
材料総量中、前者は3〜80重量%、後者は2〜50重
量%の範囲内で用いられることが望ましい。また、ポリ
イソシアネート化合物の種類および水酸基との反応条件
は、前記(b)と全く同様にすることかできる。
That is, first, polymer fine particles are formed in the same manner as in (i) above. Then, the weight average molecule ffi1000
The following polyisocyanate compound is added to carry out an addition reaction with the hydroxyl groups in the particles. Here, hydroxyl group-containing α, β-
The blending amounts of the ethylenically unsaturated monomer and the polyisocyanate compound are not particularly limited, but for the same reason as (a) above, the former is preferably 3% of the total amount of constituent materials of the crosslinked polymer fine particles. -80% by weight, and the latter is preferably used in a range of 2-50% by weight. Further, the type of polyisocyanate compound and the reaction conditions with the hydroxyl group can be exactly the same as in (b) above.

(k)  イソシアネート基含有α,β−エチレン性不
飽和単量体と重量平均分子量1000以下のポリオール
との付加反応 ここでの反応は、次の操作により行なうことかできる。
(k) Addition reaction between an isocyanate group-containing α,β-ethylenically unsaturated monomer and a polyol having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following procedure.

すなわち、まず前記(vj)のイソシアネート基含有α
,β−エチレン性不飽和単l体を必須成分とし、必要に
応じて前記(i)〜(xi)の他のα,β−エチレン性
不飽和単量体を混合した組成で乳化重合、懸濁重合また
は非水系分散重合により重合体微粒子を形成せしめる。
That is, first, the isocyanate group-containing α of the above (vj)
, β-ethylenically unsaturated monomer is an essential component, and if necessary, other α,β-ethylenically unsaturated monomers of the above (i) to (xi) are mixed. Fine polymer particles are formed by turbidity polymerization or non-aqueous dispersion polymerization.

その後、前記(額に記載の重量平均分子量1000以下
のポリオールを添加し、粒子中のイソシアネート基と付
加反応を行なう。ここで、イソシアネート基含有α,β
−エチレン性不飽和単量体とポリオールの配合量は、特
に限定されるものではないが、好ましくは、前記(a)
と同様の理由から架橋重合体微粒子の構成材料総量中、
前者は3〜80重量%、後者は2〜50重量%の範囲内
で用いられることが望ましい。
Thereafter, a polyol having a weight average molecular weight of 1000 or less as described above is added and an addition reaction is carried out with the isocyanate groups in the particles.
- The blending amount of the ethylenically unsaturated monomer and polyol is not particularly limited, but preferably the above (a)
For the same reason as above, in the total amount of constituent materials of crosslinked polymer fine particles,
The former is preferably used in an amount of 3 to 80% by weight, and the latter is preferably used in an amount of 2 to 50% by weight.

イソシアネート基とポリ才一ルとの付加反応は、通常室
温〜140゜Cの温度で反応するのが好ましい。反応温
度か140゜Cを越える場合、重合体微粒子が融着する
ため好ましくない。また、この際、ジメチルラウリルア
ミン、ジメチルベンジルアミン等の三級アミン、ジブチ
ル錫ジラウレート、テトラブチルチタネート等の金属エ
ステル化物を添加して、付加反応を促進することも可能
である。
The addition reaction between the isocyanate group and the polyester is usually preferably carried out at a temperature of room temperature to 140°C. If the reaction temperature exceeds 140°C, the polymer particles will fuse together, which is not preferable. Further, at this time, it is also possible to accelerate the addition reaction by adding a tertiary amine such as dimethyllaurylamine or dimethylbenzylamine, or a metal ester such as dibutyltin dilaurate or tetrabutyl titanate.

(1)イソシアネート基含有α,β−エチレン性不飽和
単量体と重量平均分子量iooo以下のポリメルカプト
化合物との付加反応 ここでの反応は、次の操作により行なうことかできる。
(1) Addition reaction between an isocyanate group-containing α,β-ethylenically unsaturated monomer and a polymercapto compound having a weight average molecular weight of iooo or less The reaction here can be carried out by the following operation.

すなわち、まず前記(k)と同様の方法で重合体微粒子
を形成せしめる。その後、重量平均分子量1000以下
のポリメルカプト化合物を添加し、粒子中のイソシアネ
ート基と付加反応を行なう。ここで、イソシアネート基
含有α,β−エチレン性不飽和単量体とボリメルカブト
化合物の配合量は、特に限定されるものではないが、好
ましくは、前記(a)と同様の理由から架橋重合体微粒
子の構成材料総量中、前者は3〜80重量%、後者は2
〜50重量%の範囲内で用いられることが望ましい。ま
た、ポリメルカプト化合物の重量平均分子量は、前記(
a)と同様の理由から、1000以下のものを選ぶ必要
がある。
That is, first, polymer fine particles are formed by the same method as in (k) above. Thereafter, a polymercapto compound having a weight average molecular weight of 1000 or less is added to carry out an addition reaction with the isocyanate groups in the particles. Here, the blending amount of the isocyanate group-containing α,β-ethylenically unsaturated monomer and the borimerkabuto compound is not particularly limited, but preferably crosslinked polymer fine particles are used for the same reason as in (a) above. Of the total amount of constituent materials, the former accounts for 3 to 80% by weight, and the latter accounts for 2% by weight.
It is desirable to use it within the range of 50% by weight. In addition, the weight average molecular weight of the polymercapto compound is as described above (
For the same reason as a), it is necessary to select a value of 1000 or less.

かかるポリメルカプト化合物としては、例えば、エタン
ジ才一ル、1.  3−ブロバンジチ才一ル、1,4−
ブタンジオール、エチレングリコールジチオグリコレー
ト、l,  4−ブタンジオールジチオプロビオネート
、トリメチロールプロパントリス(チオグリコレート)
、トリメチロールプロパントリス(β−チオブロビオネ
ート)、ペンタエリスリトールテトラキス(チオグリコ
レート)、ペンタエリスリトールテトラキス(β−チオ
ブロビオネート)等をあげることができる。
Examples of such polymercapto compounds include ethanedil, 1. 3- Brobanjichi Saiichiru, 1,4-
Butanediol, ethylene glycol dithioglycolate, l,4-butanediol dithioprobionate, trimethylolpropane tris(thioglycolate)
, trimethylolpropane tris (β-thiobrobionate), pentaerythritol tetrakis (thioglycolate), pentaerythritol tetrakis (β-thiobrobionate), and the like.

イソシアネート基とポリメルカプト基の付加反応は、前
者(klと同様の理由から通常室温〜l40゜Cの温度
て反応するのが好ましい。
The addition reaction between an isocyanate group and a polymercapto group is preferably carried out at a temperature of usually room temperature to 140°C for the same reason as the former (kl).

(ホ) イソシアネート基含有α,β−エチレン性不飽
和単量体と重量平均分子量1000以下のポリアミノ化
合物との付加反応 ここでの反応は、次の操作により行なうことができる。
(e) Addition reaction between an isocyanate group-containing α,β-ethylenically unsaturated monomer and a polyamino compound having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(k)と同様の方法で重合体微粒子
を形成せしめる。その後、前記(hlに記載の重量平均
分子量1000以下のポリアミノ化合物を添加し、粒子
中のイソシアネート基と付加反応を行なう。ここで、イ
ソシアネート基含有α,β−エチレン性不飽和単量体と
ボリアミノ化合物の配合量は、特に限定されるものでは
ないが、好ましくは、前記(a)と同様の理由から架橋
重合体微粒子の構成材料総量中、前者は3〜80重量%
、後者は2〜50重量%の範囲内で用いられることが望
ましい。
That is, first, polymer fine particles are formed by the same method as in (k) above. Thereafter, a polyamino compound having a weight average molecular weight of 1000 or less as described in (hl) is added, and an addition reaction is carried out with the isocyanate groups in the particles. The compounding amount of the compound is not particularly limited, but preferably, for the same reason as (a) above, the former is 3 to 80% by weight based on the total amount of the constituent materials of the crosslinked polymer fine particles.
The latter is preferably used in an amount of 2 to 50% by weight.

イソシアネート基とボリアミノ化合物の付加反応は、通
常室温で容易に反応することかできる。
The addition reaction between an isocyanate group and a polyamino compound can usually be carried out easily at room temperature.

(nl  エポキシ基含有α,β−エチレン性不飽和単
量体と重量平均分子量1000以下のボリアミノ化合物
との付加反応 ここでの反応は、次の操作により行なうことかできる。
(nl Addition reaction between an epoxy group-containing α,β-ethylenically unsaturated monomer and a polyamino compound having a weight average molecular weight of 1000 or less) The reaction here can be carried out by the following operation.

すなわち、まず前記(ii)のエポキシ基含有α,β−
エチレン性不飽和単量体を必須成分とし、必要に応じて
前記(i)〜(xi)の他のα,β−エチレン性不飽和
単量体を混合した組成で乳化重合、懸濁重合または非水
系分散重合により、重合体微粒子を形成せしめる。
That is, first, the epoxy group-containing α,β-
Emulsion polymerization, suspension polymerization or Fine polymer particles are formed by non-aqueous dispersion polymerization.

その後、前記(社)に記載の重量平均分子量1000以
下のボリアミノ化合物を添加し、粒子中のエポキシ基と
付加反応を行なう。ここで、エポキシ基含有α,β−エ
チレン性不飽和単量体とボリアミノ化合物の配合量は、
特に限定されるものではないが、好ましくは、前記圓と
同様の理申から架橋重合体微粒子の構成材料総量中、前
者は3〜80重量%、後者は2〜50重量%の範囲内で
用いられることが望ましい。
Thereafter, a polyamino compound having a weight average molecular weight of 1000 or less as described in the above-mentioned company is added to carry out an addition reaction with the epoxy groups in the particles. Here, the blending amounts of the epoxy group-containing α,β-ethylenically unsaturated monomer and the polyamino compound are:
Although not particularly limited, the former is preferably used in an amount of 3 to 80% by weight, and the latter is used in an amount of 2 to 50% by weight based on the same theory as the above-mentioned En. It is desirable that

エポキシ基とポリアミノ化合物の付加反応は前記(h)
と同様の理由から、通常室温〜140゜Cの温度で反応
するのか好ましい。
The addition reaction between an epoxy group and a polyamino compound is described in (h) above.
For the same reason, it is usually preferable to react at a temperature of room temperature to 140°C.

(0)エポキシ基含有α,β〜エチレン性不飽和単量体
と重量平均分子量1000以下のポリカルポン酸化合物
との付加反応 ここでの反応は、次の操作により行なうことができる。
(0) Addition reaction of an epoxy group-containing α,β to ethylenically unsaturated monomer and a polycarboxylic acid compound having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(n)と同様の方法で重合体微粒子
を形成せしめる。その後、重量平均分子量1000以下
のポリカルボン酸化合物を添加し、粒子中のエポキシ基
と付加反応を行なう。ここで、エポキシ基含有α,β−
エチレン性不飽和単量体とポリカルボン酸化合物の配合
量は、特に限定されるものではないが、好ましくは、架
橋重合体微粒子の構成材料総量中、前者は3〜80重量
%、後者は2〜50重量%の範囲内で用いられることが
望ましい。なぜなら、エポキシ基含有α,β−エチレン
性不飽和単量体が3重量%未満またはポリカルボン酸化
合物か2重量%未満の場合は、粒子内の三次元架橋か不
十分となり、所望の流動調節作用を発揮しにくくなる一
方,前者が80重量%を越えるが、後者か50重景%を
越える場合は、粒子間架橋による凝集が起こり易くなる
ためである。また、ポリカルボン酸化合物の重量平均分
子量は、該ポリカルボン酸化合物を粒子中に安定に取り
込み易くするため、1000以下のものを選ぶ必要かあ
る。
That is, first, polymer fine particles are formed by the same method as in (n) above. Thereafter, a polycarboxylic acid compound having a weight average molecular weight of 1000 or less is added to carry out an addition reaction with the epoxy groups in the particles. Here, epoxy group-containing α, β-
The blending amount of the ethylenically unsaturated monomer and the polycarboxylic acid compound is not particularly limited, but preferably the former is 3 to 80% by weight and the latter is 2% by weight based on the total amount of the constituent materials of the crosslinked polymer fine particles. It is desirable to use it within the range of 50% by weight. This is because if the epoxy group-containing α,β-ethylenically unsaturated monomer is less than 3% by weight or the polycarboxylic acid compound is less than 2% by weight, the three-dimensional crosslinking within the particles will be insufficient, resulting in the desired flow control. This is because if the former exceeds 80% by weight, but the latter exceeds 50% by weight, aggregation due to interparticle crosslinking becomes more likely to occur. Further, the weight average molecular weight of the polycarboxylic acid compound needs to be selected to be 1000 or less in order to facilitate the stable incorporation of the polycarboxylic acid compound into the particles.

る。Ru.

かかるポリカルボン酸化合物としては、例えばフタル酸
、無水フタル酸、テレフタル酸、イソフタル酸、ヘキサ
ヒドロ無水フタル酸、無水トリメリット酸、トリメリッ
ト酸、ピロメリット酸、3,6−エンドメチレンテトラ
ヒド口無水フタル酸、ジフェノール酸、セバチン酸、ダ
イマー酸、テトラヒドロフタル酸、テトラヒド口無水フ
タル酸、ヘキサヒドロフタル酸、アジピン酸、マレイン
酸、フマル酸、コハク酸、アゼライン酸、セバシン酸、
無水マレイン酸等の多塩基酸類およびこれらの多塩基酸
と多価アルコールから誘導されるポリカルボン酸エステ
ル等をあげることができる。
Examples of such polycarboxylic acid compounds include phthalic acid, phthalic anhydride, terephthalic acid, isophthalic acid, hexahydrophthalic anhydride, trimellitic anhydride, trimellitic acid, pyromellitic acid, 3,6-endomethylenetetrahydride anhydride, etc. Phthalic acid, diphenolic acid, sebacic acid, dimer acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, adipic acid, maleic acid, fumaric acid, succinic acid, azelaic acid, sebacic acid,
Examples include polybasic acids such as maleic anhydride and polycarboxylic acid esters derived from these polybasic acids and polyhydric alcohols.

エポキシ基とポリカルポン酸化合物の付加反応は、通常
60〜140゜Cの温度で反応するのが好ましい。反応
温度が60゜C未満では、粒子内架橋が不十分となり、
反応温度が140゜Cを越える場合は、重合体微粒子が
融着するため好ましくない。また、この際、前記tel
に記載の触媒を添加して、付加反応を促進するとこも可
能である。
The addition reaction between an epoxy group and a polycarboxylic acid compound is usually preferably carried out at a temperature of 60 to 140°C. If the reaction temperature is less than 60°C, intraparticle crosslinking will be insufficient,
If the reaction temperature exceeds 140°C, the polymer fine particles will fuse together, which is not preferable. In addition, at this time, the tel
It is also possible to accelerate the addition reaction by adding the catalyst described in .

(p)エポキシ基含有α,β−エチレン性不飽和単量体
と重量平均分子量1000以下のポリメルカプト化合物
との付加反応 ここでの反応は、次の操作により行なうことができる。
(p) Addition reaction between an epoxy group-containing α,β-ethylenically unsaturated monomer and a polymercapto compound having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(n)と同様の方法で重合体微粒子
を形成せしめる。その後、前記(11に記載の重量平均
分子量1000以下のポリメルカプト化合物を添加し、
粒子中のエポキシ基と付加反応を行なう。ここで、エポ
キシ基含有α,β−エチレン性不飽和単量体とボリメル
カブト化合物の配合量は、特に限定されるものではない
が、好ましくは、前記(0)と同様の理由から、架橋重
合体微粒子の構成材料総量中、前者は3〜80重量%、
後者は2〜50重量%の範囲内で用いられることが望ま
しい。
That is, first, polymer fine particles are formed by the same method as in (n) above. Then, adding the polymercapto compound having a weight average molecular weight of 1000 or less as described in (11),
Performs an addition reaction with the epoxy groups in the particles. Here, the blending amount of the epoxy group-containing α,β-ethylenically unsaturated monomer and the borimerkabuto compound is not particularly limited, but preferably, for the same reason as (0) above, a crosslinked polymer is used. The former accounts for 3 to 80% by weight of the total amount of constituent materials of the fine particles;
The latter is preferably used in an amount of 2 to 50% by weight.

エポキシ基とポリメルカプト化合物の付加反応は、通常
室温〜140゜Cの温度て反応するのか好ましい。反応
温度か140゜Cを越える場合、重合体微粒子が融着す
るため好ましくない。
The addition reaction between an epoxy group and a polymercapto compound is preferably carried out at a temperature of usually room temperature to 140°C. If the reaction temperature exceeds 140°C, the polymer particles will fuse together, which is not preferable.

(Q)  アミノ基含有α,β−エチレン性不飽和単量
体と重量平均分子量1000以下のポリイソシアネート
化合物との付加反応 ここでの反応は、次の操作により行なうことができる。
(Q) Addition reaction between amino group-containing α,β-ethylenically unsaturated monomer and polyisocyanate compound having a weight average molecular weight of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(X)のアミノ基含有α,β−エチ
レン性不飽和単量体を必須成分とし、必要に応じて前記
(i)〜(xi)のα,β−エチレン性不飽和単量体を
混合した組成で乳化重合、懸濁重合または非水系分散重
合により重合体微粒子を形成せしめる。その後、前記(
b)に記載の重量平均分子量1000以下のポリイソシ
アネート化合物を添加し、粒子中のアミノ基と付加反応
を行なう。ここで、アミノ基含有α,β−エチレン性不
飽和単量体とポリイソシアネート化合物の配合量は、特
に限定されるものではないが、好ましくは、前記(a)
と同様の理由から、架橋重合体微粒子の構成材料総量中
、前者は3〜80重量%、後者は2〜50重量%の範囲
内で用いられることが望ましい。
That is, first, the amino group-containing α,β-ethylenically unsaturated monomer (X) is used as an essential component, and if necessary, the α,β-ethylenically unsaturated monomers (i) to (xi) are added as necessary. Fine polymer particles are formed by emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization using a mixed composition of the polymers. Then, the above (
The polyisocyanate compound described in b) having a weight average molecular weight of 1000 or less is added to carry out an addition reaction with the amino groups in the particles. Here, the blending amounts of the amino group-containing α,β-ethylenically unsaturated monomer and the polyisocyanate compound are not particularly limited, but are preferably
For the same reason, it is desirable that the former be used in an amount of 3 to 80% by weight, and the latter be used in an amount of 2 to 50% by weight in the total amount of constituent materials of the crosslinked polymer fine particles.

アミノ基とポリイソシアネート化合物の付加反応は、通
常室温で容易に反応することかできる。
The addition reaction between an amino group and a polyisocyanate compound can usually be carried out easily at room temperature.

(r)  アミノ基含有α,β−エチレン性不飽和単量
体と重■平均分子itooo以下のポリエポキシ化合物
との付加反応 ここでの反応は、次の操作により行なうことができる。
(r) Addition reaction between an amino group-containing α,β-ethylenically unsaturated monomer and a polyepoxy compound having a weight average molecular weight of less than itoo The reaction here can be carried out by the following operation.

すなわち、まず前記(Q+と同様の方法で重合体微粒子
を形成せしめる。その後、曲記(e)に記載の重量平均
分子量1000以下のポリエポキシ化合物を添加し、粒
子中のアミノ基と付加反応を行なう。ごこて、アミノ基
含有α,βエチレン性不飽和単量体とボリエポキシ化合
物の配合量は、特に限定されるものではないが、好まし
くは、前記(a)と同様の理由から、架橋重合体微粒子
の構成材料総量中、前者は3〜80重量%、後者は2〜
50重量%の範囲内で用いられることか望ましい。
That is, first, polymer fine particles are formed in the same manner as in (Q+). Thereafter, a polyepoxy compound having a weight average molecular weight of 1000 or less as described in curve (e) is added to cause an addition reaction with the amino groups in the particles. The amount of the amino group-containing α,β ethylenically unsaturated monomer and the polyepoxy compound is not particularly limited, but preferably for the same reason as (a) above, crosslinking is carried out. The former accounts for 3 to 80% by weight, and the latter accounts for 2 to 80% by weight of the total amount of constituent materials of the polymer fine particles.
It is desirable to use it within the range of 50% by weight.

アミノ基とポリエポキシ化合物の付加反応は、前記(I
1)と同様の理由から、通常室温〜140゜Cの温度て
反応するのか好ましい。
The addition reaction between an amino group and a polyepoxy compound is carried out using the above (I
For the same reason as 1), it is usually preferable to react at a temperature of room temperature to 140°C.

(S)  カルポギシル基含有α,β−エチレン性不飽
和単量体と重量平均分子星1000以下のボリエポキシ
化合物との付加反応 ここでの反応は、次の操作により行なうことができる。
(S) Addition reaction between a carpogycyl group-containing α,β-ethylenically unsaturated monomer and a polyepoxy compound having a weight average molecular star of 1000 or less The reaction here can be carried out by the following operation.

すなわち、まず前記(xi)のカルポキシ基含有α,β
−エチレン性不飽和単量体を必須成分とし、必要に応じ
て前記(i)〜(x)の他のα,β−エチレン性不飽和
単量体を混合した組成で乳化重合、懸濁重合または非水
系分散重合により重合体微粒子を形成せしめる。その後
、前記(e)に記載の重量平均分子量1000以下のポ
リエポキシ化合物を添加し、粒子中のカルボキシル基と
付加反応を行なう。ここで、カルボキシル基含有α,β
−エチレン性不飽和単量体とポリエポキシ化合物の配合
量は、特に限定されるものではないが、好ましくは、前
記(a)と同様の理由から、架橋重合体微粒子の構成材
料総量中、前者は3〜80重量%、後者は2〜50重二
%の範囲内で用いられることか望ましい。
That is, first, the carpoxy group-containing α, β of (xi)
- Emulsion polymerization or suspension polymerization with a composition in which an ethylenically unsaturated monomer is an essential component, and other α,β-ethylenically unsaturated monomers as described in (i) to (x) are mixed as necessary. Alternatively, fine polymer particles are formed by non-aqueous dispersion polymerization. Thereafter, the polyepoxy compound having a weight average molecular weight of 1000 or less as described in (e) above is added to carry out an addition reaction with the carboxyl groups in the particles. Here, carboxyl group-containing α, β
- The blending amounts of the ethylenically unsaturated monomer and the polyepoxy compound are not particularly limited, but preferably, for the same reason as in (a) above, the former is It is desirable to use the latter in an amount of 3 to 80% by weight, and the latter in an amount of 2 to 50% by weight.

カルボキシル基とポリエポキシ化合物との付加反応は、
前記(a)と同様の理由から、通常60〜140゜Cの
温度で反応するのが好ましい。また、この際、前記(e
)に記載の触媒を添加して、付加反応を促進することも
可能である。
The addition reaction between a carboxyl group and a polyepoxy compound is
For the same reason as (a) above, it is usually preferable to carry out the reaction at a temperature of 60 to 140°C. In addition, at this time, the above (e
It is also possible to accelerate the addition reaction by adding the catalyst described in ).

以上のようにして得られた架橋重合体微粒子は、水系ま
たは非水系塗料に添加して用いられる。この際、乳化重
合または懸濁重合により合成された粒子では水系塗料に
はそのまま添加することかできるが、非水系筐料に適用
するには水分を除く必要がある。この方法としては、噴
霧乾燥による方法と非水分散系に転換する方法の二通り
かある。
The crosslinked polymer fine particles obtained as described above are used by being added to an aqueous or non-aqueous paint. At this time, particles synthesized by emulsion polymerization or suspension polymerization can be added to water-based paints as they are, but in order to be applied to non-aqueous casings, it is necessary to remove water. There are two methods for this: spray drying and conversion to a non-aqueous dispersion system.

ところが、噴霧乾燥法では、乾燥の際に架橋重合体微粒
子が凝集しやすく、本発明の効果を発揮しにくくするた
め好ましくない。
However, the spray drying method is not preferable because the crosslinked polymer fine particles tend to aggregate during drying, making it difficult to exhibit the effects of the present invention.

一方、非水分散系に転換する方法では、粒子凝集が起こ
りにくいためより好ましい方法と言える。
On the other hand, the method of converting to a non-aqueous dispersion system is a more preferable method because particle aggregation is less likely to occur.

この方法としては、水系分散液に20゜Cにおける水の
溶解度か5重量%以下の有機溶剤を加え、その後に有機
酸アミン塩を添加し静置することにより系は有機層と水
層の二層に分離する。
In this method, an organic solvent with a solubility in water at 20°C or less than 5% by weight is added to the aqueous dispersion, and then an organic acid amine salt is added and left to stand, thereby creating a system with two layers: an organic layer and an aqueous layer. Separate into layers.

ここで使用される20゜Cにおける水の溶解度か5重量
%以下である有機溶剤は、単一溶剤あるいは混合溶剤の
いずれも使用可能であるが、単一溶剤系で使用する場合
はアルコール系溶剤あるいはケトン系溶剤を使用するの
が望ましく、他の溶剤、例えば脂肪族系溶剤や芳香族系
溶剤等の非極性溶剤を単独で用いた場合には架橋重合体
微粒子が凝集することがあるため好ましくない。単一溶
剤系,として使用可能な20゜Cにおける水の溶解度が
5重量%以下のアルコール系溶剤としては、例えば2一
エチルーl−プチルアルフール、3−へブチルアルコー
ル、1一才クチルアルコール、2−オクチルアルコール
、2−エチルヘキシルアルコール、■一ノニルアルコー
ル、3,5.5−}リメチル−1−ヘキシルアルコール
、l一デシルアルコール、l−ウンデシルアルコール、
1−ドデシルアルコールなどがあり、ケトン系溶剤とし
ては例えば、メチルn−プロビルケトン、メチルiso
−プロビルケトン、ジエチルケトン、メチルn−プチル
ケトン、メチルiso−プチルケトン、メチルn一ペン
チルケトン、ジn−プロビルケトン、ジiso−プチル
ケトン、エチルn−ブチルケトンなどかあるが、本発明
はこれらに限定されるものではなく、またこれらの溶剤
を単独でなく2種以上を任意の割合で混合して用いるこ
ともてきる。
The organic solvent used here whose solubility in water at 20°C is 5% by weight or less can be either a single solvent or a mixed solvent, but when used in a single solvent system, an alcohol-based solvent can be used. Alternatively, it is preferable to use a ketone solvent; if other solvents, for example non-polar solvents such as aliphatic solvents or aromatic solvents, are used alone, the crosslinked polymer fine particles may aggregate, so this is preferable. do not have. Examples of alcohol-based solvents having water solubility of 5% by weight or less at 20°C that can be used as a single solvent system include, for example, 21-ethyl-l-butylalfur, 3-hebutyl alcohol, 11-butyl alcohol, 2-octyl alcohol, 2-ethylhexyl alcohol, monononyl alcohol, 3,5.5-}limethyl-1-hexyl alcohol, l-decyl alcohol, l-undecyl alcohol,
Examples of ketone solvents include 1-dodecyl alcohol, methyl n-propyl ketone, methyl iso
-propyl ketone, diethyl ketone, methyl n-butyl ketone, methyl iso-butyl ketone, methyl n-pentyl ketone, di-n-propyl ketone, diiso-butyl ketone, ethyl n-butyl ketone, etc., and the present invention applies to these. The solvents are not limited, and these solvents may be used not only alone but as a mixture of two or more in any proportion.

2種以上の溶剤を混合して用いる場合にはーアルコール
系溶剤あるいはケトン系溶剤のうち少なくとも一つを含
み、20゜Cにおける水の溶解度が5重量%以下になる
ように溶剤組成を調整すれば良く、この際使用すること
のできる溶剤として、アルコール系溶剤としては前述の
アルコール系溶剤以外に、例えばn−ブチルアルコール
、n−ペンチルアルコール、n−ヘキシルアルコール、
secブチルアルコール、iso−ブチルアルコール、
2一ベンチルアルコール、3−ペンチルアルコール、2
−メチル−1−ブチルアルコール、4−メチル−2−ペ
ンタノール等があり、ケトン系溶剤としては前述のケト
ン系溶剤以外にメチルエチルケトン等がある。アルコー
ル系溶剤、ケトン系溶剤以外の有機溶剤としては、脂肪
族系溶剤、芳香族系溶剤、エステル系溶剤を用いること
が可能であり、脂肪族溶剤としては例えば、nペンタン
、n−へキサン、n−へブタン、シクロヘキサン、メチ
ルシクロヘキサン、エチルシクロヘキサン等がある。
When using a mixture of two or more solvents, the solvent composition should be adjusted so that it contains at least one of alcohol-based solvents or ketone-based solvents, and the solubility of water at 20°C is 5% by weight or less. In addition to the above-mentioned alcoholic solvents, examples of alcoholic solvents that can be used at this time include n-butyl alcohol, n-pentyl alcohol, n-hexyl alcohol,
sec butyl alcohol, iso-butyl alcohol,
2-bentyl alcohol, 3-pentyl alcohol, 2
-Methyl-1-butyl alcohol, 4-methyl-2-pentanol, etc., and examples of ketone solvents include methyl ethyl ketone in addition to the above-mentioned ketone solvents. As organic solvents other than alcohol solvents and ketone solvents, aliphatic solvents, aromatic solvents, and ester solvents can be used. Examples of aliphatic solvents include n-pentane, n-hexane, Examples include n-hebutane, cyclohexane, methylcyclohexane, and ethylcyclohexane.

芳香族溶剤としては例えば、ベンゼン、トルエン、キシ
レン等がある。エステル系溶剤としては、例えば酢酸エ
チル、酢酸n−プロビル、酢酸isoプロビル、酢酸n
−ブチル、酢酸iso−ブチル、酢酸sec−ブチル等
があるが、本発明はこれらに限定されるものではない。
Examples of aromatic solvents include benzene, toluene, and xylene. Examples of ester solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, and n-propyl acetate.
-butyl, iso-butyl acetate, sec-butyl acetate, etc., but the present invention is not limited thereto.

添加する有機酸アミン塩に使用される有機酸としては、
有機カルボン酸類、有機スルホン酸類、有機リン酸類等
がある。かかる例として、有機カルボン酸類としては、
ギ酸、酢酸、ブロピ才ン酸等があり、有機スルホン酸類
としては、メタンスルホン酸、エタンスルホン酸等があ
り、有機リン酸類としては、モノメチルリン酸、モノエ
チルリン酸、ジメチルリン酸、ジエチルリン酸等がある
The organic acids used in the organic acid amine salt to be added include:
These include organic carboxylic acids, organic sulfonic acids, and organic phosphoric acids. As examples of such organic carboxylic acids,
Examples of organic sulfonic acids are methanesulfonic acid, ethanesulfonic acid, etc.; organic phosphoric acids include monomethyl phosphoric acid, monoethyl phosphoric acid, dimethyl phosphoric acid, diethyl phosphoric acid, etc. There is.

一方、アミンとしては、1級アミン、2級アミ゛ン、3
級アミンのいずれも使用可能であり、かかる例として、
1級アミンとしては、モノエチルアミン、iso−プロ
ビルアミン、n−プチルアミン等があり、2級アミンと
しては、ジメチルアミン、ジエチルアミン、ジエタノー
ルアミン等があり、3級アミンとしては、トリエチルア
ミン、l・リプロビルアミン、ジメチルエタノールアミ
ン、ビリジン等かあるが、本発明はこれらに限定される
ものではない。
On the other hand, amines include primary amines, secondary amines, tertiary amines,
Any of the class amines can be used, such examples include
Primary amines include monoethylamine, iso-probylamine, n-butylamine, etc., secondary amines include dimethylamine, diethylamine, diethanolamine, etc., and tertiary amines include triethylamine, l-liprobyl, etc. Examples include amine, dimethylethanolamine, and pyridine, but the present invention is not limited thereto.

上記の有機酸とアミンとの組合せからなる有機酸アミン
塩は所定量の有機酸とアミンを常温で混合することによ
り容易に製造される。
An organic acid amine salt consisting of the above combination of an organic acid and an amine can be easily produced by mixing a predetermined amount of an organic acid and an amine at room temperature.

上記の非水系分散系に転換する方法によると、架橋重合
体微粒子は添加された有機酸アミン塩により、粒子表面
に存在する界面活性剤の電気二重層形成による水中ての
電気的安定化か阻害され、有機層に分散される。分離し
た水を除去した後、有機溶剤層中に存在する残留水分は
、該有機溶剤層に、才ルトギ酸メチル、オルトギ酸エチ
ル、才ルト酢酸メチル、オルト酢酸エチル等のオルトカ
ルポン酸エステルを加えた後加温して分解するが、常圧
下で共沸蒸留を行なうが、あるいは760 mmt{g
未満において50〜100゜Cの温度範囲で減圧脱水を
行なうことにより完全除去することかできる。
According to the above method of converting to a non-aqueous dispersion system, the added organic acid amine salt inhibits the electrical stabilization of the crosslinked polymer particles in water due to the formation of an electric double layer of the surfactant present on the particle surface. and dispersed in the organic layer. After removing the separated water, residual water present in the organic solvent layer is removed by adding orthocarboxylic acid esters such as methyl orthoformate, ethyl orthoformate, methyl orthoacetate, and ethyl orthoacetate to the organic solvent layer. It is then decomposed by heating, but azeotropic distillation is carried out under normal pressure, or 760 mmt {g
It can be completely removed by dehydration under reduced pressure in a temperature range of 50 to 100°C.

ここで、架橋重合体微粒子を非水分散系に転換する際、
粒子表面に固定されている界面活性剤や、重合開始剤切
片を、塩基性または酸性触媒下で加水分解し、粒子表面
より除去することも可能である。かかる粒子では、粒子
表面を非イオン化できる・ため、塗膜性能に、例えば耐
水性低下等の悪影響を何ら及ぼすことなく高品質塗膜を
得ることかできる。
Here, when converting the crosslinked polymer fine particles into a non-aqueous dispersion system,
It is also possible to hydrolyze the surfactant and polymerization initiator fragments fixed on the particle surface under a basic or acidic catalyst and remove them from the particle surface. With such particles, since the particle surface can be non-ionized, a high-quality coating film can be obtained without any adverse effects on coating performance, such as a decrease in water resistance.

本発明の架橋重合体微粒子を塗料中に用いる場合、例え
ばアクリル樹脂、ポリエステル樹脂、アルキド樹脂、エ
ポキシ樹脂、エポキシエステル樹脂、シリコン樹脂、フ
ッ素樹脂、ポリウレタン樹脂、メラミン樹脂、尿素樹脂
、ペンゾグアナミン樹脂、フェノール樹脂、キシレン樹
脂、トルエン樹脂、塩化ビニル樹脂、フェノキシ樹脂、
繊維素系樹脂等を相溶性を考慮しながら任意に選択して
混合することかできる。この際、架橋重合体微粒子は塗
料に少量添加して、垂直塗装時の流れ止め、金属顔料の
配向性向上等の流動性調節添加剤として用いる外、塗料
の主成分として用いることができる。又、塗料製造にあ
たっては、前記の混合される樹脂を用いて、通常の塗料
製造に用いられる機器、例えばボールミル、ペイントシ
ェイカーサンドミル、ロールミル、ニーダー等を用いて
、通常の添加方法で混合することにより製造できる。
When using the crosslinked polymer fine particles of the present invention in a paint, for example, acrylic resin, polyester resin, alkyd resin, epoxy resin, epoxy ester resin, silicone resin, fluororesin, polyurethane resin, melamine resin, urea resin, penzoguanamine resin. , phenolic resin, xylene resin, toluene resin, vinyl chloride resin, phenoxy resin,
Cellulose resins and the like can be arbitrarily selected and mixed while considering compatibility. At this time, the crosslinked polymer fine particles can be added in small amounts to the paint and used as a fluidity controlling additive for preventing flow during vertical coating, improving the orientation of metal pigments, etc., and can also be used as the main component of the paint. In addition, in the production of paint, the resins to be mixed are mixed using equipment used in normal paint production, such as a ball mill, paint shaker sand mill, roll mill, kneader, etc., using a normal addition method. Can be manufactured.

この時、必要に応じて、顔料、染料、ガラスフレーク、
アルミニウムペースト等の着色剤の他、塗料に通常用い
れる添加剤、例えば顔料分散剤、粘度調節剤、レベリン
グ剤、硬化触媒、ゲル化防止剤、紫外線吸収剤、ラジカ
ル捕捉剤などを加えることもできる。
At this time, add pigments, dyes, glass flakes,
In addition to colorants such as aluminum paste, additives commonly used in paints, such as pigment dispersants, viscosity modifiers, leveling agents, curing catalysts, anti-gelling agents, ultraviolet absorbers, and radical scavengers, can also be added. .

以上のようにして得られた塗料は、例えばlコートソリ
ッドカラー 1コートメタリックカラー2コートlベー
クソリッドカラ− 2コート1べ一クメタリックカラー
、3コート2ベークソリッドカラ− 3コート2ベーク
メタリックカラー等の形態で、通常の塗装方法、例えば
エアスプレー塗り、エアレススプレー塗り、静電塗り、
浸し塗りなとによって通常の被塗物、例えば金属やその
他の無機材料、プラスチックやその他の有機材料に塗装
し、通常の焼付条件である60〜200゜Cで0.5〜
60分間の焼付乾燥時間で、優れた塗膜か得られる。
The paints obtained as described above are, for example, 1 coat solid color, 1 coat metallic color, 2 coats l bake solid color, 2 coats 1 bake metallic color, 3 coats 2 bake solid color, 3 coats 2 bake metallic color, etc. in the form of conventional coating methods such as air spray coating, airless spray coating, electrostatic coating,
Dip coating is used to coat ordinary objects, such as metals and other inorganic materials, plastics and other organic materials, and the temperature is 0.5 to 200 degrees Celsius under normal baking conditions of 60 to 200 degrees Celsius.
A 60 minute bake drying time produces an excellent coating.

(発明の効果) 以上のように、本発明の架橋重合体微粒子は、該粒子表
面に全くα,β−エチレン性不飽和基が存在せず、且つ
粒子内部は高度に三次元架橋しているため、幅広い塗料
用バインダーに対して優れた相溶性を示すことかできる
。その結果、該粒子を添加した塗料では、優れた流動調
節効果が得られ、外観品質に優れた厚膜塗膜を得ること
ができる。
(Effects of the Invention) As described above, the crosslinked polymer fine particles of the present invention have no α,β-ethylenically unsaturated groups on the particle surface, and the interior of the particles is highly three-dimensionally crosslinked. Therefore, it can exhibit excellent compatibility with a wide range of paint binders. As a result, the coating material to which the particles are added has an excellent flow control effect, and a thick coating film with excellent appearance quality can be obtained.

(実施例) 次に、製造例、比較例によって本発明を更に詳細に説明
する。尚、例中、部は重量部、%は重量%てある。
(Example) Next, the present invention will be explained in more detail with reference to manufacturing examples and comparative examples. In the examples, parts are parts by weight, and % is weight %.

(乳化重合例) 製造例A 界面活性剤水溶液 脱イオン水          380. 0  部ラ
ビゾールB90(後述)5.5  部重合開始剤水溶液
−1 脱イオン水          10.0  部過硫酸
アンモニウム       0.3  部α,β−エチ
レン性不飽和単量体混合物アセトアセトキシエチル メタクリレート(後述)22. 5  部n−プチルメ
タクリレート    66.4  部重合開始剤水溶液
−2 脱イオン水          10.0  部過硫酸
アンモニウム       0.3  部架橋剤 イソホロンジイソシアネート   11.1  部触媒 ジブチル錫ジラウレート      0.5  部撹拌
装置、還流冷却器、滴下ロ−ト(2本)、窒素導入管お
よび温度計を備えたフラスコに界面活性剤水溶液を仕込
み、窒素気流下80゜Cに昇温し重合開始剤水溶液−1
を加えた。再度80℃に昇温した後、フラスコ内の混合
物を80±2゜Cに保ちなからα,β−エチレン性不飽
和単量体混合物を3時間かけて滴下した。該単量体混合
物の滴下中、滴下開始1時間後から重合開始剤水溶液−
2を2時間で滴下した。α,β−エチレン性不飽和単量
体および重合開始剤水溶液−2の滴下終了後さらに80
゜Cで2時間重合後、架橋剤および触媒を添加し、反応
温度を95℃に昇温した。その後95℃で4時間撹拌を
続けることによって加熱残分20%の架橋重合体微粒子
の水系分散体を得た。
(Emulsion polymerization example) Production example A Surfactant aqueous solution Deionized water 380. 0 parts Ravisol B90 (described later) 5.5 parts Polymerization initiator aqueous solution -1 Deionized water 10.0 parts Ammonium persulfate 0.3 parts α,β-ethylenically unsaturated monomer mixture acetoacetoxyethyl methacrylate (described later) 22 .. 5 parts n-butyl methacrylate 66.4 parts Polymerization initiator aqueous solution -2 Deionized water 10.0 parts Ammonium persulfate 0.3 parts Crosslinking agent isophorone diisocyanate 11.1 parts Catalyst dibutyltin dilaurate 0.5 parts Stirrer, reflux cooling A surfactant aqueous solution was charged into a flask equipped with a dropping funnel (two), a nitrogen introduction tube, and a thermometer, and the temperature was raised to 80°C under a nitrogen stream to form a polymerization initiator aqueous solution-1.
added. After raising the temperature to 80°C again, the α,β-ethylenically unsaturated monomer mixture was added dropwise over 3 hours while keeping the mixture in the flask at 80±2°C. During the dropwise addition of the monomer mixture, the polymerization initiator aqueous solution was added 1 hour after the start of the dropwise addition.
2 was added dropwise over 2 hours. After the completion of dropping α,β-ethylenically unsaturated monomer and polymerization initiator aqueous solution-2,
After polymerization at .degree. C. for 2 hours, a crosslinking agent and catalyst were added, and the reaction temperature was raised to 95.degree. Thereafter, stirring was continued at 95° C. for 4 hours to obtain an aqueous dispersion of crosslinked polymer fine particles with a heating residue of 20%.

次にこの水系分散体500部にメチルペンチルケトン2
00部および3規定水酸化ナトリウム水溶液22.7部
を仕込み、85±2゜Cで3時間加水分解反応を行った
。次いで、温度を80゜Cまで下げ、3規定ギ酸水溶液
を22.7部加えて中和した後、粒子分散安定化樹脂と
してアクリル樹脂Aの溶液(後出)を166. 7部加
え、10分間撹拌した後、酢酸トリエチルアミン塩の2
0%水溶液(後述)25部を加えて直ちに撹拌を止め静
置すると、架橋重合体微粒子の分散した有機層が上層に
、下方には水層が分離したので下層の水層を除去した。
Next, 2 methyl pentyl ketone was added to 500 parts of this aqueous dispersion.
00 parts and 22.7 parts of a 3N aqueous sodium hydroxide solution were charged, and a hydrolysis reaction was carried out at 85±2°C for 3 hours. Next, the temperature was lowered to 80°C, and after neutralization by adding 22.7 parts of a 3N formic acid aqueous solution, 166 parts of a solution of acrylic resin A (described below) was added as a particle dispersion stabilizing resin. After adding 7 parts and stirring for 10 minutes, 2 parts of triethylamine acetate was added.
Immediately after adding 25 parts of a 0% aqueous solution (described later), stirring was stopped and the mixture was allowed to stand. An organic layer in which crosslinked polymer fine particles were dispersed was separated into an upper layer and an aqueous layer below, so the lower aqueous layer was removed.

残った重合体微粒子の分散した有機層に脱イオン水20
0部を加え、撹拌下70゜Cまで昇温し70゜Cに至っ
た時点で酢酸トリエチルアミン塩の20%水溶液を12
.5部加え、直ちに撹拌を止め静置した。再度、架,橋
重合体微粒子か分散した有機層か上層に、水層が下層に
2層分離したので下層の水層を除去した。残った有機層
中には、カールフィッシャー水分計により3.5重量%
の水分が残留していた。
Add 20% deionized water to the remaining organic layer containing dispersed polymer particles.
0 parts was added, the temperature was raised to 70°C with stirring, and when the temperature reached 70°C, 12% of a 20% aqueous solution of triethylamine acetate was added.
.. 5 parts were added, stirring was immediately stopped, and the mixture was allowed to stand still. Once again, two layers were separated: an organic layer in which cross-linked polymer fine particles were dispersed, and an aqueous layer in the lower layer, so the lower aqueous layer was removed. The remaining organic layer contained 3.5% by weight as measured by a Karl Fischer moisture meter.
of water remained.

次に有機層の温度を50゜Cまで冷却し、才ルトギ酸メ
チル94.2部を滴下ロ一トより30分間かけて滴下し
た後、50゜Cで2時間反応を続け残存水を分解した。
Next, the temperature of the organic layer was cooled to 50°C, and 94.2 parts of methyl nitrate was added dropwise from the dropping funnel over 30 minutes, and the reaction was continued at 50°C for 2 hours to decompose the remaining water. .

その後、キシレン130部を加え還流冷却器とフラスコ
の間に新たにディーンスタークトラップを装着し、還流
冷却器上部とアスピレーターを結合し、加熱撹拌下フラ
スコ内を減圧状態とし、300±100 mmHg、8
0±io″Cの条件下で加熱残分が50±1.5%にな
るまで脱溶剤することによって第1表に記載の特性を有
する重合体非水分散液Aを得た。
After that, 130 parts of xylene was added, a new Dean-Stark trap was installed between the reflux condenser and the flask, the upper part of the reflux condenser was connected to the aspirator, and the pressure inside the flask was reduced to 300 ± 100 mmHg, 8
A non-aqueous polymer dispersion A having the properties shown in Table 1 was obtained by removing the solvent under conditions of 0±io''C until the heating residue became 50±1.5%.

製造例B〜■ 製造例Aと同様の装置を用い、第1表B〜■の配合に基
づき、製造例Aと全く同様にして乳化重合および非水系
転換処理を行なうことにより、それぞれ第1表に記載の
特性を有する重合体非水分散液・B−1を得た。
Production Examples B~■ Using the same equipment as Production Example A, emulsion polymerization and non-aqueous conversion treatment were carried out in exactly the same manner as Production Example A, based on the formulations shown in Table 1 B~■, respectively. A non-aqueous polymer dispersion B-1 having the characteristics described in 1 was obtained.

ただし、製造例EおよびHでは、架橋剤添加後の反応は
80゜C、2時間で終了し次の非水系転換工程に移った
However, in Production Examples E and H, the reaction after addition of the crosslinking agent was completed at 80° C. for 2 hours, and the next non-aqueous conversion step was started.

(懸濁重合例) 製造例J 安定剤水溶液 脱イオン水          400. 0  部デ
ンカボバールKl7E(後出)5.5  部α,β−エ
チレン性不飽和単量体混合物t−ブチルアミノエチル メタクリレート         37.0  部n−
プチルメタクリレート51.9  部パーブチルO  
(後出)2.0  部架橋剤 イソホロンジイソシアネート11.1  部撹拌装置、
還流冷却器、滴下ロート、窒素導入管および温度計を備
えたフラスコに安定剤水溶液を仕込み、窒素気流下80
゜Cに昇温した後80±2゜Cに保ちなからα,β−エ
チレン性不飽和単量体混合物を3時間かけて滴下した。
(Suspension polymerization example) Production example J Stabilizer aqueous solution Deionized water 400. 0 parts Denkabovar Kl7E (described below) 5.5 parts α,β-ethylenically unsaturated monomer mixture t-butylaminoethyl methacrylate 37.0 parts n-
Butyl methacrylate 51.9 parts Perbutyl O
(described later) 2.0 parts crosslinking agent isophorone diisocyanate 11.1 parts stirring device,
The aqueous stabilizer solution was placed in a flask equipped with a reflux condenser, dropping funnel, nitrogen inlet tube, and thermometer, and heated for 80 minutes under a nitrogen stream.
After raising the temperature to 80±2°C, the α,β-ethylenically unsaturated monomer mixture was added dropwise over 3 hours.

滴下終了後さらに80゜Cで2時間重合後、架橋剤を添
加し80゜Cで2時間架橋反応を続けることによって、
加熱残分20%の架橋重合体微粒子の水系分散体を得た
。次に、この水系分散体を、製造例Aと全く同様の処理
を行なうことによって、第1表に記載の特性を有する重
合体非水分散液Jを得た。
After the dropwise addition was completed, polymerization was further carried out at 80°C for 2 hours, then a crosslinking agent was added and the crosslinking reaction was continued at 80°C for 2 hours.
An aqueous dispersion of crosslinked polymer fine particles with a heating residue of 20% was obtained. Next, this aqueous dispersion was treated in exactly the same manner as in Production Example A to obtain a non-aqueous polymer dispersion J having the properties listed in Table 1.

製造例K 製造例Jと同様の装置を用い、第l表Kの配合に基づき
、製造例Jと全く同様にして乳化重合を、また、製造例
Aと全く同様にして非水系転換処理を行なうことにより
、第1表に記載の特性を有する重合体非水分散液Kを得
た。
Production Example K Using the same equipment as in Production Example J, emulsion polymerization was carried out in exactly the same manner as in Production Example J, and non-aqueous conversion treatment was carried out in exactly the same manner as in Production Example A, based on the formulation in Table 1 K. As a result, a non-aqueous polymer dispersion K having the properties listed in Table 1 was obtained.

第1表脚注 (注1)界面活性剤 (a)ラビゾールB90(日本油脂■製、ジ2−エチル
へキシルスルホコハク酸ナトリウムの商品名、有効成分
90%) fblカチ才ンSt−100 (日本油脂■製、オクタ
デシルジメチルベンジルアンモニウムクロライドの商品
名、有効成分100%) (c)シントレッキスLIOO (日本油脂■製、ラウ
リル硫酸ナトリウムの商品名、有効成分100%) (d)POESMS :略号、ポリオキシエチレンソル
ビ汐ンモノステアレート (注2)安定剤 K17E(電気化学工業■製、完全ケン化ポリビニルア
ルコール、有効成分94%)(注3)重合開始剤 (a) (NH.)2320t  :過硫酸アンモニウ
ム(bl Na2S20*   :過硫酸ナトリウム(
c) AAP−HCI   :略号、2.2一一アゾビ
ス(2−アミジノプロパン)二塩酸塩 (d) K2S20$ :過硫酸カリウム(e)パーブ
チル0(日本油脂■製、t−ブチルベルオキシ2−エチ
ルヘキサノエートの商品名、有効成分100%) (注4)架橋性α,β−エチレン性不飽和単量体AAE
M:アセトアセトキシエチルメタクリレート(イースト
マンコダック社製、有効成分95%) MPC:  4−メタクリ口イル才キシメチル−1,3
−ジ才キソラン−2−オン(グリシジルメタクリレート
に二酸化炭素を付加したシクロカーボネート基含有単量
体、有効成分95%) HPMA:2−ヒドロキシブロビルメタクリレートIE
MA:2−イソシアナートエチルメタクリレート GMA :  グリシジルメタクリレートTBAEMA
:  t−ブチルアミノエチルメタクリレート (注5)他のα,β−エチレン性不飽和単量体BMA:
  n−プチルメタクリレートBA:   n−プチル
アクリレート E}fMA: 2−エチルへキシルメタクリレート(注
6)架橋剤 IPDI:イソホロンジイソシアネート(重量平均分子
量222) HCHO:ホルマリン(重合平均分子量30)の37%
水溶液 TMPTA: トリメチロールプロパントリアクリレー
ト (重合平均分子量2%) GTG :  グリセリンl・リグリシジル(重量平均
分子量260) TET:  トリエチレンテトラミン(重量平均分子量
146) PETG :ペンタエリスリトールテトラキス(チオグ
リコレート)(淀化学(掬製、メルカプト当量 118
) (注7)触媒 DBTDL:  ジブチル錫ジラウレートBDMA: 
ジメチルベンジルアミン DBU:  サンアボット社製、1,8−ンアサービシ
クロ(5. 4. 0)ウンデセン−7(注8)分散安
定化樹脂溶液 (a)アクリルA 撹拌装置、温度計、還流冷却器、窒素ガス導入管および
滴下ロ一トを備えた反応器にキシレン42部を仕込み、
窒素ガスを導入しながら加熱撹拌し140’cになった
ところで、下記に示す単量体成分と重合開始剤の混合液
を、140゜C一定下で滴下ロ一トより滴下した。
Table 1 Footnotes (Note 1) Surfactant (a) Ravisol B90 (manufactured by NOF ■, trade name of sodium di-2-ethylhexyl sulfosuccinate, active ingredient 90%) (manufactured by ■, trade name of octadecyldimethylbenzylammonium chloride, active ingredient 100%) (c) Syntrex LIOO (manufactured by NOF ■, trade name of sodium lauryl sulfate, active ingredient 100%) (d) POESMS: Abbreviation, polyoxy Ethylene sorbitol monostearate (Note 2) Stabilizer K17E (manufactured by Denki Kagaku Kogyo ■, fully saponified polyvinyl alcohol, active ingredient 94%) (Note 3) Polymerization initiator (a) (NH.) 2320t: Ammonium persulfate (bl Na2S20*: Sodium persulfate (
c) AAP-HCI: Abbreviation, 2.2-1-azobis(2-amidinopropane) dihydrochloride (d) K2S20$: Potassium persulfate (e) Perbutyl 0 (manufactured by NOF ■, t-butylberoxy 2- Trade name of ethylhexanoate, active ingredient 100%) (Note 4) Crosslinkable α,β-ethylenically unsaturated monomer AAE
M: Acetoacetoxyethyl methacrylate (manufactured by Eastman Kodak Company, active ingredient 95%) MPC: 4-methacrylate oxymethyl-1,3
-Dioxolan-2-one (cyclocarbonate group-containing monomer obtained by adding carbon dioxide to glycidyl methacrylate, active ingredient 95%) HPMA: 2-Hydroxybrobyl methacrylate IE
MA: 2-isocyanatoethyl methacrylate GMA: glycidyl methacrylate TBAEMA
: t-Butylaminoethyl methacrylate (Note 5) and other α,β-ethylenically unsaturated monomers BMA:
n-butyl methacrylate BA: n-butyl acrylate E}fMA: 2-ethylhexyl methacrylate (Note 6) crosslinking agent IPDI: Isophorone diisocyanate (weight average molecular weight 222) HCHO: 37% of formalin (polymerization average molecular weight 30)
Aqueous solution TMPTA: Trimethylolpropane triacrylate (polymerization average molecular weight 2%) GTG: Glycerin liglycidyl (weight average molecular weight 260) TET: Triethylenetetramine (weight average molecular weight 146) PETG: Pentaerythritol tetrakis (thioglycolate) ( Yodo Chemical (made by Kiki, mercapto equivalent 118
) (Note 7) Catalyst DBTDL: Dibutyltin dilaurate BDMA:
Dimethylbenzylamine DBU: Manufactured by San Abbott, 1,8-acerbicyclo(5.4.0) undecene-7 (Note 8) dispersion stabilized resin solution (a) Acrylic A Stirrer, thermometer, reflux condenser , 42 parts of xylene was charged into a reactor equipped with a nitrogen gas introduction pipe and a dropping funnel,
The mixture was heated and stirred while introducing nitrogen gas, and when the temperature reached 140°C, a mixture of monomer components and a polymerization initiator shown below was added dropwise from the dropping funnel at a constant temperature of 140°C.

ローブチルメタクリレート      36.4部2−
エチルへキシルメタクリレート11.7部2−ヒドロキ
シルエチルメタクリレート11,1部アクリル酸   
          0.8部t−プチルペルオキシベ
ンゾエ−1−    3.0部滴下後140゜Cで2時
間保持した後、冷却して内容物を取り出した。加熱残分
60%、ガードナー粘度(25゜C) Y (b)アクリディクA−413−7OS (大日本・イ
ンキ化学工業vFJ製、アクリル樹脂溶液の商品名、加
熱残分70%) (c)ジョンクリル500(ジョンソンワックス社製、
アクリル樹脂溶液の商品名、加熱残分80%)(d)ア
ロブラッツ1713−R60(日触アロー銖製、シリコ
ーンポリエステル樹脂溶液の商品名、加熱残分60%、
水酸基価l40) (e)ベツ−1ライトM−6602−6OS (大日本
インキ化学工業■製、アルキド樹脂溶液の商品名、加熱
残分60%) (注9) (a)加熱残分: JIS K 5400, 8.2 
+.:よる。
Robeyl methacrylate 36.4 parts 2-
Ethylhexyl methacrylate 11.7 parts 2-hydroxylethyl methacrylate 11.1 parts acrylic acid
After dropping 3.0 parts of 0.8 parts t-butylperoxybenzoe-1-1, the mixture was kept at 140°C for 2 hours, cooled, and the contents were taken out. Heating residue 60%, Gardner viscosity (25°C) Y (b) Acrydik A-413-7OS (Dainippon Ink Chemical Industry vFJ, trade name of acrylic resin solution, heating residue 70%) (c) John Kryl 500 (manufactured by Johnson Wax Co., Ltd.)
(trade name of acrylic resin solution, heating residue 80%) (d) Alobratz 1713-R60 (manufactured by Nissaku Arrow Co., Ltd., trade name of silicone polyester resin solution, heating residue 60%,
Hydroxyl value l40) (e) Betsu-1 Light M-6602-6OS (manufactured by Dainippon Ink & Chemicals, trade name of alkyd resin solution, heating residue 60%) (Note 9) (a) heating residue: JIS K 5400, 8.2
+. :evening.

(b)粘度:ブルックフィールド型粘度計にて測定。(b) Viscosity: Measured using a Brookfield viscometer.

60 rpm, 20゜C (cl平均粒径:パシフィックサイエンティフィック社
製“ナイコンプ,モデル370” (商品名)にて測定。
60 rpm, 20°C (cl average particle size: measured with “Naicomp, Model 370” (trade name) manufactured by Pacific Scientific.

(注10) 酢酸トリエチルアミン塩の20%水溶液、脱イオン水8
0部に酢酸7.5部を溶解しておき、ここに室温撹拌下
でトリエチルアミン12.5部を30分間で添加するこ
とにより調製した。
(Note 10) 20% aqueous solution of triethylamine acetate salt, deionized water 8
It was prepared by dissolving 7.5 parts of acetic acid in 0 parts of acetic acid and adding 12.5 parts of triethylamine thereto over 30 minutes while stirring at room temperature.

(非水系分散重合例) アクリルB(分散安定剤)の製造 4つのフラスコに撹拌機、還流冷却器、温度計および窒
素ガス導入管を取付け、下記組成の混合物を入れ撹拌し
ながら昇温し、140゜Cに加熱した。
(Example of non-aqueous dispersion polymerization) Production of acrylic B (dispersion stabilizer) A stirrer, a reflux condenser, a thermometer, and a nitrogen gas inlet tube were attached to four flasks, and a mixture of the following composition was added and heated while stirring. It was heated to 140°C.

安息香酸            122. O部カー
ジュラーE10(油化シエルエボ 250. 0部キシ
■製、バーサティック酸グリ シジルエステルの商品名) 無水フタル酸           148. 0部N
,N−ジメチルベンジルアミン     2.0部キシ
レン            327. 0部140゜
Cの温度で窒素ガスを導入しなから2時間撹拌し、不揮
発分酸価を108とすることによって分子の末端がカル
ボキシル基の反応中間体溶液を得た。次いで上記の反応
中間体溶液をカージュラ−EIO /無水フタル酸= 
250. 0部/148.0部の混合物と上記の反応条
件で2回反応させ、最終不揮発分酸価か43となったと
ころで反応を終了し、加熱残分80%の分子の末端がカ
ルボキシル基のポリエステル化合物溶液を得た。このポ
リエステル化合物溶液を用いて下記組成の混合物を14
0゜Cの温度で4時間撹拌し、不揮発分酸価カ月以下と
なったところで反応を終了し、加熱残分80%のポリエ
ステル連鎖基含有α,β−エチレン性不飽和単量体溶液
を得た。
Benzoic acid 122. O Part Cardular E10 (Yuka Ciel Evo 250.0 Part Kishi ■, trade name of Versatic Acid Glycidyl Ester) Phthalic Anhydride 148. 0 part N
, N-dimethylbenzylamine 2.0 parts xylene 327. The mixture was stirred for 2 hours at a temperature of 0 parts and 140° C. without introducing nitrogen gas, and the non-volatile acid value was adjusted to 108 to obtain a solution of a reaction intermediate having a carboxyl group at the end of the molecule. Then, the above reaction intermediate solution was mixed with Cardura-EIO/phthalic anhydride=
250. The reaction was carried out twice under the above reaction conditions with a mixture of 0 parts/148.0 parts, and the reaction was terminated when the final non-volatile acid value reached 43.The heating residue was 80% polyester with carboxyl group at the end of the molecule. A compound solution was obtained. Using this polyester compound solution, a mixture of the following composition was prepared for 14 hours.
The mixture was stirred at a temperature of 0°C for 4 hours, and the reaction was terminated when the nonvolatile acid value became less than 1 month. A solution of α,β-ethylenically unsaturated monomer containing a polyester chain group with a heating residue of 80% was obtained. Ta.

上記のポリエステル化合物溶液  1645.0部グリ
シジルメタクリレート     142. 0部ハイド
ロキノン            2.0部キシレン 
            35.0部次に上記の単量体
溶液を用いて以下の方法にて分散安定剤を製造した。
Above polyester compound solution 1645.0 parts Glycidyl methacrylate 142. 0 parts hydroquinone 2.0 parts xylene
35.0 parts Next, a dispersion stabilizer was produced using the above monomer solution in the following manner.

4つのフラスコに撹拌機、還流冷却基、温度計および滴
下ロートを取りつけ、85.5部のキシレンを入れ撹拌
しながら昇温し95゜Cに加熱した。次いで95゜Cの
温度て下記組成の混合物を一定の添加速度で2時間かけ
て添加し、更に2時間95゜Cを保つことによって加熱
残分50%のアクリルBの溶液を得た。
Four flasks were equipped with a stirrer, a reflux condenser, a thermometer, and a dropping funnel, and 85.5 parts of xylene was added thereto, and the temperature was raised to 95°C while stirring. Next, a mixture having the following composition was added at a constant addition rate over 2 hours at a temperature of 95°C, and the temperature was maintained at 95°C for an additional 2 hours to obtain a solution of acrylic B with a heating residue of 50%.

上記のポリエステル連鎖基含有α, β−エチレン性不飽和単量体溶液 n−プチルメタクリレート t−プチルベルオキシ2−エチル ヘキサノエート 製造例し 初期仕込溶剤 酢酸n−ブチル ミネラルスピリット 分散安定剤 アクリルB(前出) α,β−エチレン性不飽和単量体混合物アセトアセトキ
シエチルメタクリ レート メチルメタクリレート アクリロニトリル パーブチル0 62.5部 50.0部 2.0部 84.7部 84.7部 85.7部 40.2部 14.8部 15.0部 1.5部 架橋剤 サイメル303(後述)           30.
 0部触媒 ドデシルベンゼンスルホン酸      1.5部4つ
ロフラスコに撹拌機、還流冷却器、温度計および滴下ロ
ートを取りつけ、初期仕込溶剤および分散安定剤を仕込
み、撹拌しながら昇温し95゜Cに加熱した。次いで、
95°Cの温度でα,β−エチレン性不飽和単量体混合
物を一定の添加速度で2時間かけて添加し、さらに2時
間95゜Cを保った。
Production example of the above polyester chain group-containing α,β-ethylenically unsaturated monomer solution n-butyl methacrylate t-butylberoxy 2-ethylhexanoate Initial charging solvent n-butyl acetate Mineral spirit Dispersion stabilizer Acrylic B (Previous) α,β-ethylenically unsaturated monomer mixture acetoacetoxyethyl methacrylate methyl methacrylate acrylonitrile perbutyl 0 62.5 parts 50.0 parts 2.0 parts 84.7 parts 84.7 parts 85.7 parts 40.2 parts 14.8 parts 15.0 parts 1.5 parts Crosslinking agent Cymel 303 (described later) 30.
0 parts Catalyst Dodecylbenzenesulfonic acid 1.5 parts 4 Attach a stirrer, reflux condenser, thermometer and dropping funnel to a flask, charge the initial charging solvent and dispersion stabilizer, and raise the temperature to 95°C while stirring. Heated. Then,
The α,β-ethylenically unsaturated monomer mixture was added at a constant addition rate over a period of 2 hours at a temperature of 95°C, and the temperature was maintained at 95°C for an additional 2 hours.

その後、架橋剤と触媒を添加し撹拌しながら昇温し12
0゜Cの温度で2時間架橋反応を行なうことによって第
2表に記載の特性を有する重合体非水分散液Lを得た。
After that, a crosslinking agent and a catalyst were added, and the temperature was raised while stirring.
By carrying out the crosslinking reaction at a temperature of 0°C for 2 hours, a non-aqueous polymer dispersion L having the properties listed in Table 2 was obtained.

製造例M−S 製造例しと同様の装置を用い、第2表M−Sの配合に基
づき非水系分散重合を行なうことにより、それぞれ第2
表に記載の特性を有する重合体非水分散液M−Sを得た
Production Example M-S Using the same equipment as in Production Example, non-aqueous dispersion polymerization was carried out based on the formulations in Table 2 M-S.
A non-aqueous polymer dispersion M-S having the properties listed in the table was obtained.

比較製造例T (a)α,β−エチレン性不飽和単量体の製造撹拌機、
温度計、還流冷却器をつけたディーンスタークトラップ
、窒素ガス通入管を備えた四つ目フラスコに12−ヒド
ロキシステアリン酸1500部を入れ、窒素ガスを吹き
込みながら昇温し、200゜Cの温度で撹拌し酸価が3
9になったところで反応を終了し、放冷後159部のキ
シレンを加え加熱残分90%の12−ヒドロキシステア
リン酸5モル縮合体溶液を得た。尚、この反応において
72部の水が脱離された。次いで、この12−ヒドロキ
システアリン酸5モル縮合体溶液を用いて下記組成の混
合物を、撹拌機、温度計、還流冷却器、窒素ガス通入管
をつけた四つ目フラスコ中で120゜Cの温度で撹拌し
、加熱残分酸価が1.0以下になるまでエステル化反応
させ、加熱残分80%のα,β−エチレン性不飽和単量
体溶液を得た。
Comparative Production Example T (a) Production of α,β-ethylenically unsaturated monomer Stirrer,
Put 1500 parts of 12-hydroxystearic acid into a fourth flask equipped with a thermometer, a Dean-Stark trap equipped with a reflux condenser, and a nitrogen gas inlet tube, and raise the temperature while blowing nitrogen gas until the temperature reached 200°C. Stir until the acid value is 3.
The reaction was terminated when the temperature reached 9, and after cooling, 159 parts of xylene was added to obtain a 5 molar 12-hydroxystearic acid condensate solution with a heating residue of 90%. In addition, 72 parts of water was eliminated in this reaction. Next, using this 12-hydroxystearic acid 5 molar condensate solution, a mixture having the following composition was heated at a temperature of 120°C in a fourth flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube. The mixture was stirred at a temperature of 100.degree. C., and an esterification reaction was carried out until the acid value of the heated residue became 1.0 or less, to obtain an α,β-ethylenically unsaturated monomer solution with a heated residue of 80%.

l2−ヒドロキシステアリン酸5モル縮合体溶液158
6. 67部 グリシジルメタクリレート     142. 00部
N,N−ジメチルベンジルアミン     3.93部
ハイドロキノン           1.%部キシレ
ン            227. 94部(b)両
親媒性分散安定剤の製造 次に、撹拌機、還流冷却器、温度計および滴下ロ一トを
備えた四つ目フラスコに405. 0部の酢酸エチル及
び203. 4部の酢酸ローブチルを入れ撹拌しながら
還流した。次いで還流下で下記組成の混合物を一定の添
加速度で3時間かけて添加し、更に2時間還流すること
によって、加熱残分33%の両親媒性分散安定剤溶液を
得た。
l2-Hydroxystearic acid 5 molar condensate solution 158
6. 67 parts glycidyl methacrylate 142. 00 parts N,N-dimethylbenzylamine 3.93 parts Hydroquinone 1. % parts xylene 227. 94 parts (b) Preparation of amphiphilic dispersion stabilizer Next, 405. 0 parts of ethyl acetate and 203. 4 parts of loubutyl acetate was added and the mixture was refluxed with stirring. Next, a mixture having the following composition was added at a constant addition rate over 3 hours under reflux, and the mixture was further refluxed for 2 hours to obtain an amphiphilic dispersion stabilizer solution with a heating residue of 33%.

前記(a)のα,β−エチレン性不飽和単量体溶液27
5. 0部 メチルメタクリレート        104. 5部
アクリル酸             5.5部アブジ
イソブチ口ニトリル      6.6部(c)重合体
非水分散液の製造 撹拌機、還流冷却器、および返送凝縮物に液体供給物を
加える装置を備えた四つロフラスコに下記組成の混合物
を装入した。
α,β-ethylenically unsaturated monomer solution 27 of (a) above
5. 0 parts methyl methacrylate 104. 5 parts acrylic acid 5.5 parts abdiisobutylene nitrile 6.6 parts (c) Preparation of non-aqueous polymer dispersion Four-loop flask equipped with stirrer, reflux condenser, and device for adding liquid feed to recirculated condensate A mixture having the following composition was charged into the tank.

ミネラルスピリット       1588. 0部へ
キサン             389. 0部へブ
タン            2080. 2部メチル
メタクリレート       236. 4部アゾジイ
ソブチロニトリル      18.7部上記(b)の
両親媒性分散安定剤溶液  88.1部上記内容物を1
00゜Cに昇温し、還流下で1時間保持した。次に下記
成分を予備混合した後、凝縮器から返送する炭化水素中
に、一定の添加速度で6時間かけて添加した。
Mineral Spirit 1588. 0 parts hexane 389. 0 parts hebutane 2080. Bipartite methyl methacrylate 236. 4 parts Azodiisobutyronitrile 18.7 parts Amphiphilic dispersion stabilizer solution of (b) above 88.1 parts
The temperature was raised to 00°C and maintained under reflux for 1 hour. Next, the following components were premixed and added to the hydrocarbons returned from the condenser at a constant addition rate over 6 hours.

メチルメタクリレート       4491.8部メ
タクリル酸           45.8部グリシジ
ルメタクリレー}       45. 8部アゾジイ
ソブチロニトリル      60.2部上記(b)の
両親媒性分散安定剤溶液  945. 3部ただし、添
加の最後の1時間に3.3部のトリエチレンジアミンを
上記添加混合物中に追加混合した。添加の完了後、反応
混合物を還流下で3時間保持することによって、平均粒
径か200nmの重合体粒子を48.2%含む加熱残分
52%の重合体非水分散液を得た。
Methyl methacrylate 4491.8 parts Methacrylic acid 45.8 parts Glycidyl methacrylate} 45. 8 parts Azodiisobutyronitrile 60.2 parts Amphiphilic dispersion stabilizer solution of (b) above 945. 3 parts except that an additional 3.3 parts of triethylenediamine were mixed into the above addition mixture during the last hour of addition. After the addition was complete, the reaction mixture was held under reflux for 3 hours to obtain a non-aqueous polymer dispersion with a heating residue of 52% containing 48.2% polymer particles with an average particle size of 200 nm.

(d)補助重合体での粒子の改質 上記工程(c)の装置を備えた四つ目フラスコに下記成
分を装入し、還流温度(115℃)に加熱した。
(d) Modification of particles with auxiliary polymer A fourth flask equipped with the apparatus of step (c) above was charged with the following ingredients and heated to reflux temperature (115°C).

上記(c)の重合体非水分散液    4747. 1
部エチルシクロヘキサン      1638. 2部
次に、下記成分を予備混合した後、凝縮器から返送され
る炭化水素に一定の添加速度で3時間かけて添加した。
Polymer non-aqueous dispersion of (c) above 4747. 1
Part ethylcyclohexane 1638. 2 parts The following components were then premixed and added to the hydrocarbons returned from the condenser at a constant addition rate over a period of 3 hours.

メチルメタクリレート       334. 2部2
−ヒドロキシエチルメタクリレー}  190.6部メ
タクリル酸           49.6部プチルメ
タクリレート369. 1部 2−エチルへキシルアクリレート381.2部スチレン
            571.2部t−プチルペル
オキシベンゾエート   90.6部才クチルメル力ブ
タン       84.7部上記(b)の両親媒性分
散安定剤溶液  149.5部添加完了後、反応混合物
を2時間還流した後、次の溶剤混合物を加えることによ
り、架橋重合体微粒子を25%含む加熱残分45%の重
合体非水分散液Tを得た。
Methyl methacrylate 334. 2 part 2
-Hydroxyethyl methacrylate} 190.6 parts Methacrylic acid 49.6 parts Butyl methacrylate 369. 1 part 2-ethylhexyl acrylate 381.2 parts Styrene 571.2 parts t-butyl peroxybenzoate 90.6 parts Butane 84.7 parts Amphiphilic dispersion stabilizer solution of (b) above 149.5 parts After the addition was completed, the reaction mixture was refluxed for 2 hours, and then the following solvent mixture was added to obtain a non-aqueous polymer dispersion T containing 25% crosslinked polymer fine particles and a heating residue of 45%.

n−ブチルアルコール        559. 0部
キシレン             372. 3部酢
酸ブチル            462. 7部比較
製造例U エアロゾル18(アメリカンサイアナ ミッド社製、N一才クタデシルースル ホコハク酸モノアミドジナトリウム の商品名)              3. 00部
エアロゾルAY65 (アメリカンサイアナミッド社製
、ジアミルースルホ コハク酸ナトリウムの商品名)     1.50部重
炭酸ナトリウム         0.25部脱イオン
水(第1 ’)         39. 75部過硫
酸アンモニウム        0.25部脱イオン水
(第2)         7.25部スチレン   
          11.975部n−プチルメタク
リレート     11. 050部2−エチルへキシ
ルアクリレート9.215部2−ヒドロキシプロビルメ
タクリレ ート                11.050部
アクリル酸             0.95部トリ
メチロールブロバン トリアクリレート3. 85部 還流冷却器、温度計および撹拌機を備えた5つロフラス
コに、エアロゾル18、エアロゾルAY65、重炭酸ナ
トリウムおよび第1の脱イオン水を装入した。過硫酸ア
ンモニウムおよび第2の脱イオン水を予備混合し、小さ
な滴下ロ一トに入れた。スチレン、n−プチルメタクリ
レート、2−エチルへキシルアクリレート、2−ヒドロ
キシブ口ビルメタクリレート、アクリル酸、トリメチロ
ールプロパントリアクリートを予備混合し、別の滴下口
−トに入れた。フラスコ内混合物を87±2゜Cに加熱
し、そのときに過硫酸アンモニウム溶液のlO%を添加
した。α,β−エチレン性不飽和単量体を2時間30分
で連続的にフラスコに等速滴下し、同時に残りの過硫酸
アンモニウム溶液を3時間で連続的に等速滴下した。過
硫酸アンモニウム溶液を滴下後、室温に冷却し、重合体
水系分散液を取り出した。この分散液の加熱残分は48
.2%、平均粒径は153nmてあった。
n-Butyl alcohol 559. 0 parts xylene 372. Tripartite butyl acetate 462. 7 parts Comparative Production Example U Aerosol 18 (manufactured by American Cyanamid, trade name of N-year-old ctadecyl sulfosuccinate monoamide disodium) 3. 00 parts Aerosol AY65 (manufactured by American Cyanamid, trade name of sodium diamyl sulfosuccinate) 1.50 parts sodium bicarbonate 0.25 parts deionized water (1') 39. 75 parts Ammonium persulfate 0.25 parts Deionized water (2nd) 7.25 parts Styrene
11.975 parts n-butyl methacrylate 11. 050 parts 2-ethylhexyl acrylate 9.215 parts 2-hydroxypropyl methacrylate 11.050 parts acrylic acid 0.95 parts trimethylolbroban triacrylate 3. An 85 part 5-lough flask equipped with a reflux condenser, thermometer, and stirrer was charged with Aerosol 18, Aerosol AY65, sodium bicarbonate, and the first deionized water. Ammonium persulfate and second deionized water were premixed and placed in a small addition funnel. Styrene, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-hydroxybutyl methacrylate, acrylic acid, and trimethylolpropane triacrylate were premixed and placed in a separate dropping port. The flask mixture was heated to 87±2°C at which time 10% ammonium persulfate solution was added. The α,β-ethylenically unsaturated monomer was continuously added dropwise into the flask over a period of 2 hours and 30 minutes at a uniform rate, and at the same time, the remaining ammonium persulfate solution was continuously added dropwise at a constant rate over a period of 3 hours. After dropping the ammonium persulfate solution, it was cooled to room temperature and the aqueous polymer dispersion was taken out. The heating residue of this dispersion was 48
.. 2%, and the average particle size was 153 nm.

次に以下の操作を行なうことにより、重合体水系分散液
を非水系に転換した。
Next, the aqueous polymer dispersion was converted to a non-aqueous dispersion by the following operation.

n−ブチルアルコール       17. 60部酢
酸セロソルブ          17. 60部上記
の重合体水系分散液     11.37部t−ブチル
ー2−エチルヘキサノ エート(ミネラルスピリット中 50%溶液)            0.71部プレ
ミックスI スチレン            13.34部n−プ
チルメタクリレー}       11.50部n−ド
デシルメル力ブタン      1.70部プレミック
ス■ 2−エチルへキシルアクリレート   10. 76部
2−ヒドロキシエチルアクリレート  9. 2!Jア
クリル酸             0.97部t−ブ
チルー2−エチルヘキサノエート(ミネラルスピリット
中50%溶液’)  4.54部追加触媒 t−ブチルー2−エチルヘキサノエート(ミネラルスピ
リット中50%溶液)  0.23部酢酸セロソルブ 
         0.43部還流冷却器、ディーンス
タークトラップ、温度計および撹拌機を備えた5つロフ
ラスコに、n−ブチルアルコール、酢酸セロソルブ、重
合体水系分散液およびt−ブチルー2−エチルヘキサノ
エートを装入した。スチレン、n−プチルメタクリレー
トおよびn−ドデシルメル力ブタンを予備混合し、滴下
ロ一トに入れた(プレミックスエ)。2−エチルへキシ
ルアクリレート、2−ヒドロキシエチルアクリレート、
アクリル酸およびt−ブチルー2−エチルヘキサノエー
トを予備混合し、第2の滴下ロ一トに入れた(プレミッ
クス■)。溶剤、重合体水系分散液およびt−ブチルー
2−エチルヘキサノエートを95゜Cまて加熱し還流し
た。その後プレミックスIおよび■を同時に連続的に4
時間で等速滴下した。α,β−エチレン性不飽和単量体
添加の間、重合体水系分散液から水を共沸蒸留により、
ディーンスタークトラップから連続的に除去した。プレ
ミックス■および■の滴下後、直ちにt−ブチルー2−
エチルヘキサノエートおよび酢酸セロソルブの混合物を
1時間で等速滴下した。理論量の水が全部除かれるまで
還流した後、冷却し、重合体非水分散液Uを得た。この
重合体非水分散液は、樹脂との合計加熱残分に対して1
1%の架橋重合体粒子を含み、特性は、加熱残分56.
2%、平均粒径0.17μm、ガードナー粘度(25’
C)T、不揮発分酸価l7.5であった。
n-butyl alcohol 17. 60 parts cellosolve acetate 17. 60 parts aqueous dispersion of the above polymer 11.37 parts t-butyl-2-ethylhexanoate (50% solution in mineral spirits) 0.71 parts Premix I Styrene 13.34 parts n-butyl methacrylate} 11. 50 parts n-dodecylbutane 1.70 parts Premix■ 2-ethylhexyl acrylate 10. 76 parts 2-hydroxyethyl acrylate 9. 2! J acrylic acid 0.97 parts t-butyl-2-ethylhexanoate (50% solution in mineral spirits) 4.54 parts additional catalyst t-butyl-2-ethylhexanoate (50% solution in mineral spirits) 0. 23 parts cellosolve acetate
A 0.43 part reflux condenser, a Dean-Stark trap, a thermometer, and a stirrer were placed in a five-bottle flask equipped with n-butyl alcohol, cellosolve acetate, aqueous polymer dispersion, and t-butyl-2-ethylhexanoate. I entered. Styrene, n-butyl methacrylate and n-dodecyl butane were premixed and placed in the dropping funnel (premixer). 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate,
Acrylic acid and t-butyl-2-ethylhexanoate were premixed and placed in the second addition funnel (premix ■). The solvent, aqueous polymer dispersion, and t-butyl-2-ethylhexanoate were heated to 95°C and refluxed. After that, premix I and
It was dropped at a uniform rate over time. During addition of the α,β-ethylenically unsaturated monomer, water is removed from the aqueous polymer dispersion by azeotropic distillation.
Continuously removed from the Dean-Stark trap. Immediately after dropping premixes ■ and ■, add t-butyl-2-
A mixture of ethylhexanoate and cellosolve acetate was added dropwise at a constant rate over 1 hour. After refluxing until all the theoretical amount of water was removed, the mixture was cooled to obtain a non-aqueous polymer dispersion U. This polymer non-aqueous dispersion is 1% of the total heating residue with the resin.
Contains 1% crosslinked polymer particles and has properties such as heating residue of 56.
2%, average particle size 0.17 μm, Gardner viscosity (25'
C) T, non-volatile content acid value was 17.5.

応用例1〜11 2コートlベークメタリック塗料への応用(A)ベース
コート塗料の製造 重合体非水分散液A−HおよびL−Nを用いて、第3表
の組成で塗料を製造し、シンナー(トルエン/酢酸n−
ブチル=l/1重量比)で塗装粘度(フォードカップN
α4、20゜Cで14秒)に希釈した。
Application Examples 1 to 11 Application to 2-coat baked metallic paint (A) Production of base coat paint Using polymer non-aqueous dispersions A-H and L-N, paints were manufactured with the composition shown in Table 3, and thinner (Toluene/acetic acid n-
Butyl = l/1 weight ratio) and coating viscosity (Ford Cup N
α4, 14 seconds at 20°C).

ただし、応用例7,8および9は、希釈直前にコロネー
トEHを添加混合した。
However, in Application Examples 7, 8, and 9, Coronate EH was added and mixed immediately before dilution.

(B)クリヤー塗料の製造 重合体非水分散液A−HおよびL−Nを用いて、第4表
の組成で塗料を製造し、シンナー(キシレン/n−プチ
ルプロピオネー}=l/1重量比)で塗装粘度(フ才一
ドカップNα4、20゜Cで25秒)に希釈した。
(B) Production of clear paint A paint was manufactured using the non-aqueous polymer dispersions A-H and L-N according to the composition shown in Table 4, and thinner (xylene/n-butylpropione} = 1/1 weight) The paint was diluted to a coating viscosity (Folded Cup Nα4, 25 seconds at 20°C).

ただし、応用例7,8および9は、希釈直前にコロネー
トEHを添加混合した。
However, in Application Examples 7, 8, and 9, Coronate EH was added and mixed immediately before dilution.

(c)塗膜の作成 リン酸亜鉛処理軟鋼板にカチオン電着塗料アクアNα4
200 (商品名、日本油脂■製)を乾燥膜厚20μm
となるよう電着塗装して175゜Cて25分間焼付け、
さらに中塗塗料エピコNal500cpシーラー(商品
名、日本油脂■製)を乾燥膜厚40μmとなるようにエ
アスプレー塗装し、140゜Cて30分間焼付けた試験
板に、上記のベースコート塗料1(A)〜11(A)を
それぞれエアスプレーにて、インターバル1分30秒、
2ステージで乾燥膜厚l5μmになるように塗装し、2
0゜Cて3分間垂直に立ててセット後、上記のクリヤー
塗料1(B)〜11(B)をエアスプレー塗装し、垂直
に立てたまま140゜Cで30分間(ただし応用例7,
8および9は120゜Cで30分間)焼付けた。
(c) Creation of coating film Aqua Nα4 cationic electrodeposition paint on mild steel plate treated with zinc phosphate
200 (trade name, manufactured by NOF ■) with a dry film thickness of 20 μm
Electrodeposition paint so that
Furthermore, the intermediate coating paint Epico Nal 500 cp sealer (trade name, manufactured by NOF ■) was air-sprayed to a dry film thickness of 40 μm and baked at 140°C for 30 minutes. 11(A) with air spray, interval 1 minute 30 seconds,
Painted in 2 stages to a dry film thickness of 15 μm,
After setting it vertically at 0°C for 3 minutes, apply the above clear paints 1 (B) to 11 (B) by air spray, and stand it vertically at 140°C for 30 minutes (however, application example 7,
8 and 9 were baked at 120°C for 30 minutes).

いずれの塗膜も、それぞれ第5表に示すごとく、アルミ
配向性、タレ限界膜厚、塗膜外観性に優れた塗膜が得ら
れた。
As shown in Table 5, each coating film was excellent in aluminum orientation, sag limit film thickness, and coating film appearance.

応用例12〜l9 lコートソリッドへの応用 (A)塗料の製造 重合体非水分散液1−KおよびO−Sを用いて第6表の
配合中、硬化剤を除いてペイントシェイカ一に仕込み、
粒度が10μm以下になるまで分散した。応用例12〜
14および17〜l9では硬化剤を仕込んで撹拌しl液
型の塗料とし、応用例15. 16ではそのまま2液型
の塗料とした。
Application Examples 12 to 19 Application to l-coat solids (A) Production of paint Using the polymer non-aqueous dispersions 1-K and O-S in the formulation shown in Table 6, remove the curing agent and place in a paint shaker. Preparation,
The particles were dispersed until the particle size became 10 μm or less. Application example 12~
In 14 and 17 to 19, a curing agent is added and stirred to make a l-liquid type paint, and application example 15. No. 16 was used as a two-component paint.

(B)塗膜の作成 第6表の組成の塗料をシンナー(キシレン/酢酸n−ブ
チルー9/1重量比)で塗装粘度(フォードカップNα
4、20゜Cで25秒)に希釈した。ただし、応用例1
5. 16については、希釈直前に添加混合した。
(B) Preparation of paint film Paint with the composition shown in Table 6 is coated with thinner (xylene/n-butyl acetate, 9/1 weight ratio) to achieve a coating viscosity (Ford Cup Nα).
4, diluted at 20°C for 25 seconds). However, application example 1
5. No. 16 was added and mixed immediately before dilution.

そして、応用例1〜1lと同様にして電着塗膜および中
塗塗膜を作成した試験板に、エアスプレー塗装し、垂直
に立ててセット後l液型塗料は140゜Cて30分間、
2液型塗料は120゜Cで30分間垂直に立てたまま焼
付けた。いずれの塗膜もそれぞれ第7表に示すごとく、 ツヤ感、 タレ限界膜厚、 塗膜 外観性に優れた塗膜か得られた。
Then, the test board on which the electrodeposited coating film and the intermediate coating film were prepared in the same manner as in Application Examples 1 to 1l was air-sprayed, and after being set vertically, the liquid-type paint was heated at 140°C for 30 minutes.
The two-component paint was baked at 120°C for 30 minutes while standing vertically. As shown in Table 7, all coating films were excellent in gloss, sagging limit film thickness, and film appearance.

比較例1.  2 (A)ベースコート塗料の製造 重合体非水分散液TおよびUを用いて第8表の組成で塗
料を製造し、シンナー(トルエン/酢酸n−ブチルー1
/l!量比)で塗装粘度(フォードカップNα4、20
゜Cで14秒)に希釈した。
Comparative example 1. 2 (A) Production of base coat paint A paint was manufactured using the non-aqueous polymer dispersions T and U with the composition shown in Table 8, and thinner (toluene/n-butyl acetate 1
/l! Quantity ratio) and coating viscosity (Ford Cup Nα4, 20
14 seconds at °C).

(B)クリヤー塗料の製造 重合体非水分散液TおよびUを用いて第8表の組成で塗
料を製造し、シンナー(キシレン/nプチルプロビオネ
ート=1/1重量比)で塗装粘度(フォードカップNα
4、20゜Cで25秒)に希釈した。
(B) Manufacture of clear paint A paint was manufactured using the non-aqueous polymer dispersions T and U with the composition shown in Table 8, and a coating viscosity (Ford Cup Nα
4, diluted at 20°C for 25 seconds).

(c)塗膜の作成 応用例t−itと同様にして電着塗膜および中塗塗膜を
作成した試験板に、上記のベースコート塗料およびクリ
ヤー塗料を、応用例1〜11と全く同様にしてエアスプ
レー塗装後焼付けた。その結果、第9表に示すごとく、
比較例lでは架橋重合体微粒子を多官能α,β−エチレ
ン性不飽和単量体で架橋しているため、また比較例2て
は、相互に反応できる官能基を有するα,β−エチレン
性不飽和単量体の組合せを用いて粒子架橋を行っている
ため、いずれの場合も粒子表面にα,β−エチレン性不
飽和基が残存することによりバインダーとの相溶性が低
下したため、応用例1に比へ塗膜外観性に劣った。
(c) Creation of coating film Application example The above base coat paint and clear paint were applied to the test plate on which the electrodeposition coating film and intermediate coating film were created in the same manner as in Application Examples 1 to 11 in the same manner as in Application Examples 1 to 11. Baked after air spray painting. As a result, as shown in Table 9,
In Comparative Example 1, the crosslinked polymer fine particles were crosslinked with a polyfunctional α,β-ethylenically unsaturated monomer, and in Comparative Example 2, the crosslinked polymer particles were crosslinked with a polyfunctional α,β-ethylenically unsaturated monomer. Since particle crosslinking is performed using a combination of unsaturated monomers, α,β-ethylenically unsaturated groups remain on the particle surface in both cases, reducing compatibility with the binder. The appearance of the coating film was inferior to that of No. 1.

比較例3,4 (A)塗料の製造 比較例3では重合体非水分散液Tを用い、比較例4では
重合体非水分散液を全く用いずに、第8表の配合中、硬
化剤を除いてペイントシエイカ一に仕込み、粒度が10
μm以下になるまで分散した。
Comparative Examples 3 and 4 (A) Production of paint In Comparative Example 3, non-aqueous polymer dispersion T was used, and in Comparative Example 4, no non-aqueous polymer dispersion was used. Particle size is 10.
It was dispersed until it became less than μm.

(B)塗膜の作成 第8表の組成の塗料をシンナー(キシレン/酢酸n−ブ
チル=9/l重量比)で塗装粘度(フオードカップNα
4、20゜Cで25秒)に希釈した。そして、応用例1
〜1lと同様にして電着塗膜および中塗塗膜を作成した
試験板にエアスプレー塗装し、垂直に立てたままセット
後、140゜Cて30分間焼付けた。
(B) Preparation of coating film Paint with the composition shown in Table 8 is coated with thinner (xylene/n-butyl acetate = 9/l weight ratio) to reduce the coating viscosity (foed cup Nα).
4, diluted at 20°C for 25 seconds). And application example 1
The electrodeposited coating film and the intermediate coating film were prepared in the same manner as in 1L, and then air sprayed on the test plate, set in an upright position, and baked at 140°C for 30 minutes.

その結果、比較例3ては、比較例2と同様の理由から、
応用例l7に比べ塗膜外観性に劣った。
As a result, in Comparative Example 3, for the same reason as Comparative Example 2,
The appearance of the coating film was inferior to that of Application Example 17.

また、比較例4では、架橋重合体微粒子を含まないため
に、塗膜の耐タレ性能が悪く、塗膜外観性に劣った。
Moreover, in Comparative Example 4, since the crosslinked polymer fine particles were not included, the coating film had poor sagging resistance and poor coating film appearance.

Claims (1)

【特許請求の範囲】 1、下記成分のうち、 (a)架橋性官能基を有するα,β−エチレン性不飽和
単量体3−80重量% (b)他のα,β−エチレン性不飽和単量体30−95
重量% (c)(a)成分と反応できる基を有する架橋剤2−5
0重量% まず、(a)成分と(b)成分を乳化重合、懸濁重合ま
たは、非水系分散重合のいずれかから選ばれる重合方法
により重合せしめることにより微粒子を得た後、続いて
該微粒子中に(c)成分を包含させ(a)成分中の架橋
性官能基と反応することにより内部架橋されることを特
徴とする架橋重合体微粒子。 2、(a)成分中の架橋性官能基が、アセトアセトキシ
基、アルキル化アミノメチルエーテル基、シクロカーボ
ネート基、水酸基、イソシアネート基、エポキシ基、ア
ミノ基、カルボキシル基及びこれらの混合物から成る群
より選択されることを特徴とする請求項1記載の架橋重
合体微粒子。 3、(c)成分が、ホルムアルデヒド又は重合平均分子
量が1000以下のアミノ樹脂、ポリイソシアネート化
合物、多官能α,β−不飽和カルボニル化合物、ポリエ
ポキシ化合物、ポリオール、ポリアミン化合物、ポリメ
ルカプト化合物、ポリカルボン酸化合物及びこれらの混
合物から成る群より選択されることを特徴とする請求項
1記載の架橋重合体微粒子。
[Claims] 1. Among the following components: (a) 3-80% by weight of α,β-ethylenically unsaturated monomer having a crosslinkable functional group (b) Other α,β-ethylenically unsaturated monomers Saturated monomer 30-95
Weight% (c) Crosslinking agent 2-5 having a group capable of reacting with component (a)
0% by weight First, fine particles are obtained by polymerizing components (a) and (b) by a polymerization method selected from emulsion polymerization, suspension polymerization, or non-aqueous dispersion polymerization, and then the fine particles are obtained. A crosslinked polymer fine particle characterized in that it is internally crosslinked by incorporating component (c) therein and reacting with a crosslinkable functional group in component (a). 2. The crosslinkable functional group in component (a) is selected from the group consisting of an acetoacetoxy group, an alkylated aminomethyl ether group, a cyclocarbonate group, a hydroxyl group, an isocyanate group, an epoxy group, an amino group, a carboxyl group, and a mixture thereof. The crosslinked polymer fine particles according to claim 1, wherein the crosslinked polymer fine particles are selected from the group consisting of: 3. Component (c) is formaldehyde or an amino resin with a polymerization average molecular weight of 1000 or less, a polyisocyanate compound, a polyfunctional α,β-unsaturated carbonyl compound, a polyepoxy compound, a polyol, a polyamine compound, a polymercapto compound, a polycarbonate The crosslinked polymer fine particles according to claim 1, wherein the crosslinked polymer fine particles are selected from the group consisting of acid compounds and mixtures thereof.
JP2010520A 1990-01-22 1990-01-22 Crosslinked polymer fine particles and coating composition containing the same Expired - Fee Related JP2884653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010520A JP2884653B2 (en) 1990-01-22 1990-01-22 Crosslinked polymer fine particles and coating composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010520A JP2884653B2 (en) 1990-01-22 1990-01-22 Crosslinked polymer fine particles and coating composition containing the same

Publications (2)

Publication Number Publication Date
JPH03215504A true JPH03215504A (en) 1991-09-20
JP2884653B2 JP2884653B2 (en) 1999-04-19

Family

ID=11752513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520A Expired - Fee Related JP2884653B2 (en) 1990-01-22 1990-01-22 Crosslinked polymer fine particles and coating composition containing the same

Country Status (1)

Country Link
JP (1) JP2884653B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114993A1 (en) * 2010-03-15 2011-09-22 日立化成工業株式会社 Cross-linked polymer particle and method for producing same
WO2012150684A1 (en) * 2011-05-02 2012-11-08 大日精化工業株式会社 Polyhydroxyurethane microparticles, and process for producing same
JP5375961B2 (en) * 2010-06-17 2013-12-25 日立化成株式会社 Crosslinked polymer particles, production method thereof, and conductive particles
JP5586799B2 (en) * 2012-02-10 2014-09-10 関西ペイント株式会社 Paint composition
JP2017503032A (en) * 2013-10-29 2017-01-26 アレジアンス、コーポレイション Hydrophilic / hydrophobic polymer aqueous emulsions and related products and methods
US10662347B2 (en) 2013-10-29 2020-05-26 Allegiance Corportation Hydrophilic/hydrophobic aqueous polymer emulsions and products and methods relating thereto

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114993A1 (en) * 2010-03-15 2011-09-22 日立化成工業株式会社 Cross-linked polymer particle and method for producing same
JP5375961B2 (en) * 2010-06-17 2013-12-25 日立化成株式会社 Crosslinked polymer particles, production method thereof, and conductive particles
WO2012150684A1 (en) * 2011-05-02 2012-11-08 大日精化工業株式会社 Polyhydroxyurethane microparticles, and process for producing same
JP2012246327A (en) * 2011-05-02 2012-12-13 Dainichiseika Color & Chem Mfg Co Ltd Polyhydroxyurethane microparticles, and method for producing the same
CN103502309A (en) * 2011-05-02 2014-01-08 大日精化工业株式会社 Polyhydroxyurethane microparticles and process for producing same
CN103502309B (en) * 2011-05-02 2015-11-25 大日精化工业株式会社 Poly-hydroxy carbamate particulate and manufacture method thereof
US9416227B2 (en) 2011-05-02 2016-08-16 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polyhydroxyurethane microparticles, and process for producing same
JP5586799B2 (en) * 2012-02-10 2014-09-10 関西ペイント株式会社 Paint composition
JP2017503032A (en) * 2013-10-29 2017-01-26 アレジアンス、コーポレイション Hydrophilic / hydrophobic polymer aqueous emulsions and related products and methods
US10662347B2 (en) 2013-10-29 2020-05-26 Allegiance Corportation Hydrophilic/hydrophobic aqueous polymer emulsions and products and methods relating thereto

Also Published As

Publication number Publication date
JP2884653B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US6281272B1 (en) Low temperature cure waterborne coating compositions having improved appearance and humidity resistance and methods for coating substrates
JP4282861B2 (en) Coating method
CA2531324C (en) Thermosetting water-based paint and coating film-forming methods
US4963601A (en) Polymer non-aqueous dispersion, process for preparing the same and coating composition formulated therewith
JPS63193968A (en) Aqueous coating composition and coating process using same
JPH0312461A (en) Water-based coating compounds for automotive painting
CZ149493A3 (en) Aqueous coating composition, process for preparing and use thereof
CN1436608A (en) Method for forming coating film and interface layer paint
JPH08209059A (en) Water-based coating material composition and coating by using the same
JPH09157342A (en) Aqueous dispersion of polyurethane resin, aqueous dispersionof polyurethane resin graft polymer, and aqueous coating composition
JP2000501994A (en) Manufacturing method of multilayer coating
WO2006028262A1 (en) Thermosetting aqueous coating composition
KR20020076335A (en) Aqueous coating agents for baking enamels with a high solid content and the use thereof
JP2002533514A (en) Carbamate-functional resin for providing anodic electrodeposition binder
JP2002506113A (en) Paints and their use in the production of multilayer lacquer coatings
US10253206B2 (en) Waterborne curing compositions for electrodeposition and radiation curing
JPH10338719A (en) Film-forming hydrophilic resin and coating material composition
JPH03215504A (en) Crosslinked polymer particle
JP5323361B2 (en) Multi-layer coating formation method
US7163984B2 (en) Waterborne coating compositions containing monomeric difunctional compounds
KR100584285B1 (en) Microgel Water Soluble Coating Composition Containing Acrylic Core Shell Emulsion Polymer
JP4080425B2 (en) Structurally viscous transparent paint slurry, its production method and its use
JP4364550B2 (en) Aqueous resin composition
JP3982021B2 (en) Aqueous resin composition
JP7433098B2 (en) Water-based coating composition and multilayer coating film formation method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees