Nothing Special   »   [go: up one dir, main page]

JPH03205503A - Image position detecting method for sheet light - Google Patents

Image position detecting method for sheet light

Info

Publication number
JPH03205503A
JPH03205503A JP138790A JP138790A JPH03205503A JP H03205503 A JPH03205503 A JP H03205503A JP 138790 A JP138790 A JP 138790A JP 138790 A JP138790 A JP 138790A JP H03205503 A JPH03205503 A JP H03205503A
Authority
JP
Japan
Prior art keywords
image
sheet light
sheet
light
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP138790A
Other languages
Japanese (ja)
Inventor
Kenji Masuda
堅司 増田
Hajime Ishikawa
肇 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryomei Engineering Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Ryomei Engineering Co Ltd
Priority to JP138790A priority Critical patent/JPH03205503A/en
Publication of JPH03205503A publication Critical patent/JPH03205503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately detect the image position of the sheet light even when the brightness distribution of an image of the sheet image is saturated or has right-left asymmetry by weighting a position parameter in measured image data obtained by an image pickup device with a light-dark (brightness) parameter. CONSTITUTION:A body 1 to be measured is irradiated with the sheet light 3 and the image pickup device 4 which has a known image pickup optical axis angle theta to the sheet light 3 picks up an image to find the position P in the obtained image data of the sheet light 3 in the image data of an image pickup element 8. The illuminance brightness B(x) of the sheet light 3 at a scanning position X in the measured image data shown by a lateral axis in the brightness distribution on a scanning line perpendicular to the image of the sheet light 3 is weighted with a certain threshold value Bt in the image data on the body 1 to be measured which is obtained by the image pickup device 4 to aim at only the brightness exceeding this threshold value Bt. A point P which is an image position indicating the mean value of the weighted position is the extremely highly accurate position of the image of the sheet light 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定物の三次元座標を非接触で測定する光
学式三次元座標測定装置等に用いられるシート光の像位
置検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the image position of a sheet of light used in an optical three-dimensional coordinate measuring device that non-contactly measures the three-dimensional coordinates of an object to be measured. .

〔従来の技術〕[Conventional technology]

上記のような光学式三次元座標測定装置や,複数の対象
物間の相対的位置等を測定する装置では、シート光を被
測定物に照射し,シート光に対してある角度を有しなが
ら被測定物の画像を撮影し,被測定物の三次元座標を測
定する試みがなされている。これは,シート光によって
被測定物の切断面を作り,ある角度(既知)を有しなが
ら側方から撮影することで三次元情報を得るものでチシ
2光切断法と呼ばれている。
In the optical three-dimensional coordinate measuring device mentioned above and the device that measures the relative position between multiple objects, a sheet of light is irradiated onto the object to be measured, and the object is measured at a certain angle with respect to the sheet light. Attempts have been made to take images of objects to be measured and measure their three-dimensional coordinates. This is called the two-beam cutting method, in which three-dimensional information is obtained by creating a cut plane of the object to be measured using a sheet of light and photographing it from the side at a certain (known) angle.

ここで,光学式三次元座標測定装置の概要を図によって
説明する. 第3図は光学式三次元座標測定装置の構成を示す斜視図
,第4図はその側面図,第5図はその原理図である。
Here, an overview of the optical three-dimensional coordinate measuring device will be explained using diagrams. FIG. 3 is a perspective view showing the configuration of the optical three-dimensional coordinate measuring device, FIG. 4 is a side view thereof, and FIG. 5 is a diagram of its principle.

第3図にかいて,1は被測定物..2はシート光発生源
、3は前記測定物1に照射されるシート光、4は該シー
ト光3とある角度を有しながら側方から前記被測定物1
を撮影する為の撮像装置、5は該撮像装置4によって得
られる画像から前記被測定物1の三次元座標を算出する
為の演算処理装置,6は前記撮像装置4によって得られ
る画像を該演算処理装置5で扱える様に数値データに変
換する為の画像入力装置である。
In Figure 3, 1 is the object to be measured. .. 2 is a sheet light generation source; 3 is a sheet light irradiated onto the object 1 to be measured; 4 is a sheet light irradiated to the object 1 from the side while having a certain angle with the sheet light 3;
5 is an arithmetic processing device for calculating the three-dimensional coordinates of the object to be measured 1 from the image obtained by the image capturing device 4; 6 is a processing device for calculating the three-dimensional coordinates of the object 1 from the image obtained by the image capturing device 4; This is an image input device for converting into numerical data so that it can be handled by the processing device 5.

これら三次元座標測定装置に釦ける各部の位置関係は側
面から見ると第4図に示すようになる。
The positional relationship of each button on the three-dimensional coordinate measuring device is as shown in FIG. 4 when viewed from the side.

前記シート光3と前記撮像装置4の光軸が角度θで交わ
っている。第4図では,前記シート光3と前記撮像装置
4の光軸の交点に前記被測定物1が存在する場合を示し
ている。
The optical axes of the sheet light 3 and the imaging device 4 intersect at an angle θ. FIG. 4 shows a case where the object to be measured 1 exists at the intersection of the sheet light 3 and the optical axis of the imaging device 4.

三次元座標の測定原理を第5図を参照して説明する。第
5図において第4図と同一番号を付しているものは同じ
機能を有するものであり,その説明は割愛する。7は撮
像装置4の結像レンズであF). 8Vi撮像素子であ
る。シート光発生源2から出たシート光3が被測定物1
に照射される。い1被測定物1が位置X。(シート光3
と撮像装置4の光軸が角度θで交わる点)にある場合,
被測定物1に照射(投影)されたシート光3の像は撮像
素子8の中央X。にある。被測定物1が位置X,にある
場合には,シート光3の像は撮像素子8においては位置
X,にあり,同様に被測定物1が位置X2にある場合に
は,シート光3の像は撮像素子8に釦いては位置X2に
ある。従って,シート光3と撮像装置4の光軸のなす角
θと、それらの距離(第5図中の距離l)があらかじめ
既知であれば,撮像素子8中の相対位置(演算処理装置
5によって求めることができる)から被測定物1の位置
(撮像装置4に対する相対位置)を知ることができ、撮
像装置4の絶対座標が既知であれば被測定物1の絶対座
標を得ることができる。1た,シ一ト光3と撮像装置4
をその位置関係を一定に保ちながら、図には示さなかっ
た駆動装置によって走査すれば、被測定物1全体の三次
元絶対座標を得ることができる。シート光3を被測定物
1に照射するここは、シート光3で表わされる平面で被
測定物1を切断することと同じであり、その切断面を撮
像装置4で検出する為.この方法は光切断法と呼ばれる
The principle of measuring three-dimensional coordinates will be explained with reference to FIG. Components in FIG. 5 with the same numbers as those in FIG. 4 have the same functions, and their explanation will be omitted. 7 is an imaging lens of the imaging device 4F). It is an 8Vi image sensor. Sheet light 3 emitted from sheet light source 2 is applied to object 1 to be measured.
is irradiated. 1 Measured object 1 is at position X. (Sheet light 3
and the optical axis of the imaging device 4 intersect at an angle θ),
The image of the sheet light 3 irradiated (projected) onto the object to be measured 1 is located at the center X of the image sensor 8 . It is in. When the object to be measured 1 is at position X, the image of the sheet of light 3 is located at position The image is located at position X2 on the image sensor 8 when the button is pressed. Therefore, if the angle θ between the sheet light 3 and the optical axis of the imaging device 4 and the distance between them (distance l in FIG. 5) are known in advance, then the relative position in the imaging device 8 (the The position of the object to be measured 1 (relative position with respect to the imaging device 4) can be known from the image sensing device 4, and if the absolute coordinates of the imaging device 4 are known, the absolute coordinates of the object to be measured 1 can be obtained. 1.Shield light 3 and imaging device 4
The three-dimensional absolute coordinates of the entire object to be measured 1 can be obtained by scanning it by a drive device (not shown) while keeping the positional relationship constant. Irradiating the object to be measured 1 with the sheet of light 3 is the same as cutting the object to be measured 1 along the plane represented by the sheet of light 3, and the cut surface is detected by the imaging device 4. This method is called photosection method.

ここで、実際の座標測定におーては,前記撮像装置4に
よって得られる画像から、前記被測定物1上に前記シー
ト光3が照射されている位置(すなわち,前記撮像素子
8に訃ける画像データ上での位置)を検出する必要があ
る,前記撮像装置4によって得られる画像データの1例
を第6図に示す。9#′i前記被測定物1に照射された
前記シート光3の照射位置に対応する像である。この様
な場合,図中に示す破線方向に走査して前記シート光3
の像を探すのが一般的であり,その破線上での像の明暗
の輝度分布は第7図(a)に示すようになる〇ことで、
前記シート光3の像の位置Pの算出方法として次の第7
図(bl又は第7図(c)で示すような2つの方法があ
る。
In actual coordinate measurement, from the image obtained by the imaging device 4, the position where the sheet light 3 is irradiated onto the object 1 (that is, the position where the image sensor 8 falls) is determined. FIG. 6 shows an example of image data obtained by the imaging device 4 for which the position on the image data needs to be detected. 9#'i is an image corresponding to the irradiation position of the sheet light 3 irradiated onto the object 1 to be measured. In such a case, the sheet light 3 is scanned in the direction of the broken line shown in the figure.
It is common to search for an image of
The following seventh method is used to calculate the position P of the image of the sheet light 3.
There are two methods as shown in Figure (bl or Figure 7(c)).

(1)ピーク法〔第7図(b) 〕:輝度分布にかいて
輝度のピーク(最大値) を有する点をPとす る。
(1) Peak method [Fig. 7(b)]: The point having the peak (maximum value) of brightness in the brightness distribution is defined as P.

:輝度分布において, ある閾値Btを超える 範囲に注目し,該閾 値Btを通過する2点 (1)中点法〔第7図(C)〕 (輝度分布の立ち上 がりと立ち下がり) の中点をPとする。: In the brightness distribution, exceeds a certain threshold Bt Focus on the range and set the threshold Two points passing through the value Bt (1) Midpoint method [Figure 7 (C)] (rise of brightness distribution falling sharply) Let P be the midpoint of

しかしながら,このような従来の方法には次のような欠
点がある。
However, such conventional methods have the following drawbacks.

(1)前記シート光3の像が非常に明るく,輝度分布が
飽和していると,ピーク法では点Pが算出できない〔第
8図(a)〕。
(1) If the image of the sheet light 3 is very bright and the brightness distribution is saturated, the point P cannot be calculated using the peak method [FIG. 8(a)].

(2)前記シート光3の像の輝度分布が左右非対象だと
中点法では算出される点P′は実際の像のピーク位置P
と誤差を生じる〔第8図(b)〕。
(2) If the brightness distribution of the image of the sheet light 3 is left and right asymmetric, the point P' calculated by the midpoint method is the peak position P of the actual image.
This results in an error [Fig. 8(b)].

(3)上記輝度分布の飽和及び左右非対象が同時(0 に生じている場合〔第8図彬〕では,ピーク法,中点法
共に精度良い検出ができない。
(3) If saturation and left-right asymmetry of the luminance distribution occur simultaneously (at 0 [Fig. 8]), neither the peak method nor the midpoint method can detect accurately.

このように,シート光3の像の位置Pを精度良く検出で
きず,゛つ1りは正確な三次元座標が得られないケース
は,シート光照射対象面の材質,角度及び光源の種類に
よってたびたび存在する。
In this way, the case where the position P of the image of the sheet light 3 cannot be detected with high accuracy and accurate three-dimensional coordinates cannot be obtained depends on the material, angle, and type of light source of the surface to be irradiated with the sheet light. often exists.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明したように光切断法は,非常に簡単な光学系で
被測定物1の三次元座標を非接触で高精度に測定できる
方法であるが,次のような問題点を有してbる.すなわ
ち、前記シート光3の像の輝度分布が飽和したシ左右非
対称の場合には,従来のシート光3の像位置検出法では
,精度良い像位置の検出ができず,正確な座標測定を行
なうことができない。
As explained above, the optical cutting method is a method that can measure the three-dimensional coordinates of the object to be measured 1 with high precision in a non-contact manner using a very simple optical system, but it has the following problems. Ru. That is, when the brightness distribution of the image of the sheet light 3 is saturated and asymmetrical, the conventional image position detection method of the sheet light 3 cannot detect the image position with high precision, and accurate coordinate measurement cannot be performed. I can't.

本発明は上記課題に鑑みなされたもので,撮像装置によ
って得られた画像データに釦いて.シート光の像の輝度
分布が飽和したυ左右非対称になる場合でも、精度良く
被測定画像データ内でのシート光の像位置を検出するこ
とが可能になるシート光の像位置検出方法を提供するこ
とを目的とするO 〔課題を解決するための手段〕 すなわち、本発明に係るシート光の像位置検出方法は,
撮像装置によって得られる測定対象画像データ内での位
置ノ臂ラメータに明暗(輝度)のパラメータを重み付け
することで,シート光の像位置を検出するようにしたも
のである。
The present invention was made in view of the above-mentioned problems, and is based on image data obtained by an imaging device. To provide a sheet light image position detection method that makes it possible to accurately detect the sheet light image position within measured image data even when the brightness distribution of the sheet light image becomes saturated υ and left-right asymmetric. [Means for solving the problem] That is, the sheet light image position detection method according to the present invention is as follows:
The image position of the sheet light is detected by weighting the brightness (brightness) parameter to the position parameter in the measurement target image data obtained by the imaging device.

〔作用〕[Effect]

したがって,撮像装置によって得られるシート光の像の
輝度分布が飽和したり左右非対称であっても,精度良く
その撮像画像データ内でのシート光の像位置を検出する
ことができる。
Therefore, even if the brightness distribution of the image of the sheet light obtained by the imaging device is saturated or asymmetrical, the image position of the sheet light within the captured image data can be detected with high accuracy.

〔実施例〕〔Example〕

以下図面によう本発明によるシート光の像位置検出方法
の一実施例を説明する。
An embodiment of the sheet light image position detection method according to the present invention will be described below with reference to the drawings.

第1図は前記第5図にかける撮像装置4によって得られ
る被測定物1の画像データ内にかいて,シート光3の像
と垂直方向の走査線上の輝度分布を示している。このシ
ート光3の照射輝度分布に訃いて,横軸は上記被測定画
像データ内で走査位置Xであう,縦軸はシ一ト光3の照
射輝度Qx)である。本発明1!施例では、この被測定
物1の画像データ上にかける輝度分布にかいて,ある閾
値B,を超えているものにのみ着目する。
FIG. 1 shows the luminance distribution on the scanning line in the direction perpendicular to the image of the sheet light 3 in the image data of the object to be measured 1 obtained by the imaging device 4 shown in FIG. Regarding the irradiation brightness distribution of the sheet light 3, the horizontal axis is the scanning position X in the image data to be measured, and the vertical axis is the irradiation brightness Qx of the sheet light 3. Present invention 1! In this embodiment, attention will be paid only to the luminance distribution applied to the image data of the object to be measured 1, which exceeds a certain threshold value B.

ここで,前記撮像装置4によシ撮像された被測定物1の
画像データ上でのシート光3の像の位置Pを次式にて求
める。
Here, the position P of the image of the sheet light 3 on the image data of the object to be measured 1 imaged by the imaging device 4 is determined using the following equation.

この式(1)で得られる被測定画像データ上のシート光
3の像位置「点P」は、シート光3の照射輝度に基づく
明暗で重み付けされた位置の平均値を表わしてかり,極
めて精度の高いシート光3の像の位置となる。
The image position "point P" of the sheet light 3 on the image data to be measured obtained by this formula (1) represents the average value of the position weighted by brightness and darkness based on the irradiation brightness of the sheet light 3, and is extremely accurate. This is the position of the image of the sheet light 3 with a high value.

第2図は実際の被測定画像データのシート光照射輝度分
布に対するシート光の像位置検出状態を示すもので,第
2図中実線で示すようなシート光3の像の光強度分布に
対して,本発明実施例による検出方法による像位置検出
結果を白丸で示し,1た、従来の検出方法(中点法)に
よる像位置検出結果を黒丸で示す。(無論このように光
強度が飽和している状態ではピーク法は使用できない。
Figure 2 shows the image position detection state of the sheet light with respect to the sheet light irradiation brightness distribution of the actual image data to be measured. , the image position detection results by the detection method according to the embodiment of the present invention are shown by white circles, and the image position detection results by the conventional detection method (midpoint method) are shown by black circles. (Of course, the peak method cannot be used when the light intensity is saturated like this.

)それぞれ、光強度thの閾値をth1〜th,と変化
させた時に得られるシート光3の像位置をデロクトして
いる。
) respectively, the image position of the sheet light 3 obtained when the threshold value of the light intensity th is changed from th1 to th is calculated.

したがって,上記のようにしたシート光の像位置検出方
法によれば,従来の像位置検出方法よシも精度よくシー
ト光3の像の位置を検出することができる。この場合,
光強度thの閾直に像位置検出結果が大きく左右される
ことも女<,該thO閾値は,例えば像の輝度最大値の
1/2 , 1/3 . 2/3等と任意に変えること
ができる。これにより、被測定物1の正確な三次元座標
を得ることが可能になる。
Therefore, according to the sheet light image position detection method as described above, the position of the image of the sheet light 3 can be detected with higher accuracy than the conventional image position detection method. in this case,
It is also true that the image position detection result is greatly influenced by the threshold of the light intensity th.The thO threshold is, for example, 1/2, 1/3, . It can be changed arbitrarily to 2/3 etc. This makes it possible to obtain accurate three-dimensional coordinates of the object to be measured 1.

〔発明の効果〕〔Effect of the invention〕

以上要するに本発明によれば、シート光を測定対象物に
照射し、そのシート光に対し既知の撮像光軸角度を有す
る撮像装置により該測定対象物を撮影し,との撮像装置
によって得られた画像データ内でシート光の像の位置を
検出するもので、前記画像データ内でのシート光のシー
ト方向に直交する方向の位置パラメータにシート光照射
輝度に応じた明暗ノゼ2メータを重み付けし、該画像デ
ータ内でのシート光の像の位置を求めるので、撮像され
た画像データにおけるシート光の像の輝度分布が飽和し
たり左右非対称であっても、精度良く測定対象物に対す
るシート光の像の位置を検出することができ,産業上極
めて有益な光学式座標測定装置等を実現できる.
In summary, according to the present invention, a sheet of light is irradiated onto a measurement target, and the measurement target is photographed by an imaging device having a known imaging optical axis angle with respect to the sheet light. The position of the image of the sheet light is detected within the image data, and the position parameter of the sheet light in the direction perpendicular to the sheet direction within the image data is weighted by two meters of contrast depending on the sheet light irradiation brightness, Since the position of the sheet light image within the image data is determined, even if the brightness distribution of the sheet light image in the captured image data is saturated or asymmetric, the sheet light image relative to the measurement target can be accurately determined. The position of the object can be detected, making it possible to realize optical coordinate measuring devices that are extremely useful in industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るシート光の像位置検出
方法における像位置検出のための被測定画像データに対
する走査輝度分布を示す図,第2図は上記像位置検出方
法に基づくシート光照射輝度分布に対するシート光の像
位置検出状態を示す図,第3図は光切断法による光学式
座標測定装置の構成を示す斜視図,第4図は上記光学式
座標測定装置の構或を示す側面図,第5図は上記光学式
座標測定装置による座標測定原理を示す模式図、第6図
は被測定画像データ内でのシート光の像を示す図、第7
図(一〜(e)はそれぞれ従来のシート光の像位置検出
手段を示す図、第8図(a)〜(c)はそれぞれ従来の
シート光の像位置検出時において問題となるシート光照
射輝度分布を示す図である.1・・・被測定物,2・・
・シート光発生源.3・・・シート光, 4・・・撮像装置、 5・・・演算処理装置, 6・・・画 像入力装置, 7・・・結像レンズ, 8・・・撮像素子、 9 ・・・シート光の像。
FIG. 1 is a diagram showing a scanning brightness distribution for image data to be measured for image position detection in a sheet light image position detection method according to an embodiment of the present invention, and FIG. 2 is a sheet light image position detection method based on the above-mentioned image position detection method. FIG. 3 is a perspective view showing the configuration of an optical coordinate measuring device using the light cutting method; FIG. 4 is a diagram showing the configuration of the optical coordinate measuring device described above. 5 is a schematic diagram showing the principle of coordinate measurement by the optical coordinate measuring device, FIG. 6 is a diagram showing the image of the sheet light within the image data to be measured, and FIG.
Figures 1 to 8 (e) show conventional sheet light image position detection means, and Figures 8 (a) to 8 (c) show sheet light irradiation, which is a problem when detecting the conventional sheet light image position. It is a diagram showing the luminance distribution. 1... object to be measured, 2...
・Sheet light source. 3... Sheet light, 4... Imaging device, 5... Arithmetic processing unit, 6... Image input device, 7... Imaging lens, 8... Imaging element, 9... Sheet image of light.

Claims (1)

【特許請求の範囲】[Claims] シート状の光を測定対象物に照射し、そのシート光に対
し既知の撮像光軸角度を有する撮像装置により該測定対
象物を撮像し、この撮像装置によって得られた画像デー
タ内でシート光の像の位置を検出するシート光の像位置
検出方法において、前記画像データ内でのシート光のシ
ート方向に直交する方向の位置パラメータにシート光照
射輝度に応じた明暗パラメータを重み付けし該画像デー
タ内でのシート光の照射位置を検出することを特徴とす
るシート光の像位置検出方法。
A sheet of light is irradiated onto the measurement target, the measurement target is imaged by an imaging device having a known imaging optical axis angle with respect to the sheet light, and the sheet light is imaged in the image data obtained by this imaging device. In a sheet light image position detection method for detecting the image position, a position parameter of the sheet light in the direction perpendicular to the sheet direction within the image data is weighted with a brightness parameter according to the sheet light irradiation brightness, 1. A sheet light image position detection method comprising detecting a sheet light irradiation position.
JP138790A 1990-01-08 1990-01-08 Image position detecting method for sheet light Pending JPH03205503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP138790A JPH03205503A (en) 1990-01-08 1990-01-08 Image position detecting method for sheet light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP138790A JPH03205503A (en) 1990-01-08 1990-01-08 Image position detecting method for sheet light

Publications (1)

Publication Number Publication Date
JPH03205503A true JPH03205503A (en) 1991-09-09

Family

ID=11500075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP138790A Pending JPH03205503A (en) 1990-01-08 1990-01-08 Image position detecting method for sheet light

Country Status (1)

Country Link
JP (1) JPH03205503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071722A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Method and device for inspecting unevenness flaws
JP2021034044A (en) * 2019-08-16 2021-03-01 シック アイヴィピー エービー Method and device for providing intensity peak position in image data from light triangulation in three-dimensional imaging system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071722A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Method and device for inspecting unevenness flaws
JP2021034044A (en) * 2019-08-16 2021-03-01 シック アイヴィピー エービー Method and device for providing intensity peak position in image data from light triangulation in three-dimensional imaging system
US11467030B2 (en) 2019-08-16 2022-10-11 Sick Ivp Ab Method and arrangements for providing intensity peak position in image data from light triangulation in a three-dimensional imaging system

Similar Documents

Publication Publication Date Title
US6549288B1 (en) Structured-light, triangulation-based three-dimensional digitizer
US20030123707A1 (en) Imaging-based distance measurement and three-dimensional profiling system
JP2001524228A (en) Machine vision calibration target and method for determining position and orientation of target in image
JP2002139304A (en) Distance measuring device and distance measuring method
US5090811A (en) Optical radius gauge
JP3975917B2 (en) Position measurement system
US20050206874A1 (en) Apparatus and method for determining the range of remote point light sources
JPH05306915A (en) Method and instrument for measuring shape
JPH03205503A (en) Image position detecting method for sheet light
JPH0949706A (en) Method for measuring moving amount of object to be measured in front/rear direction with using laser light
JPH0282106A (en) Optical measuring method for three-dimensional position
JPH0914914A (en) Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern
JP2020129187A (en) Contour recognition device, contour recognition system and contour recognition method
JP3112219B2 (en) Movement detection method and detector
JPS63191010A (en) Method of measuring surface roughness
JPS62291512A (en) Distance measuring apparatus
JPH03255910A (en) Three-dimensional position measurement system
JPH03160303A (en) Detecting method of multiple hole
JP3976054B2 (en) Position measurement system
JPS6129704A (en) Measuring method
JPH0789058B2 (en) Distance measuring device
JPS62291509A (en) Distance measuring apparatus
JPS5850417A (en) Distance measuring system
CN114964159A (en) Inclination angle and distance measuring method based on annular laser
JP2021060214A (en) Measuring apparatus and measuring method