Nothing Special   »   [go: up one dir, main page]

JPH03199380A - Method for forming organometallic compound into metallic film - Google Patents

Method for forming organometallic compound into metallic film

Info

Publication number
JPH03199380A
JPH03199380A JP33946189A JP33946189A JPH03199380A JP H03199380 A JPH03199380 A JP H03199380A JP 33946189 A JP33946189 A JP 33946189A JP 33946189 A JP33946189 A JP 33946189A JP H03199380 A JPH03199380 A JP H03199380A
Authority
JP
Japan
Prior art keywords
substrate
organometallic compound
plasma
compd
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33946189A
Other languages
Japanese (ja)
Inventor
Riyuuichi Utsuka
兎束 竜一
Kiyoto Hamamura
浜村 清人
Narimitsu Aramaki
荒牧 成光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33946189A priority Critical patent/JPH03199380A/en
Publication of JPH03199380A publication Critical patent/JPH03199380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To form an organometallic compd. into a metallic film under low-temp. conditions without damaging a substrate by heating an organometallic compd. placed on the substrate in the air to decompose the compd. and then exposing the decomposition product to plasma to remove the org. matter. CONSTITUTION:An organometallic compd. is diluted with a diluent, if necessary, and applied on the substrate. The substrate on the substrate is heated in the air or in an oxygen atmosphere and calcined to decompose the compd. The calcined substrate is exposed to plasma to remove the org. matter produced by decomposition. The calcination and plasma treatment are preferably carried out at 200-400 deg.C. An inert gas contg. about 0.01-10% oxygen is preferably used for the plasma treating atmosphere when a noble metal is used, and a reducing gas such as ammonia is used when a base metal is used. Consequently, the organometallic compd. is formed into a metallic film under low-temp. conditions, and the metallic film is formed without damaging the substrate contg. a low- melting-point material.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、有機金属化合物から金属膜を生成させる方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of producing a metal film from an organometallic compound.

(従来の技術) 有機金属化合物から金属膜を生成させるためには、金属
と有機物との結合を断ち、さらに有機物を除去する必要
がある。
(Prior Art) In order to generate a metal film from an organometallic compound, it is necessary to break the bond between the metal and the organic substance and further remove the organic substance.

このため、それに応じて必要なエネルギーを与えてやら
ねばならない。このエネルギーとしては、熱が利用され
ており、金属膜を生成させるためには高温環境が不可欠
とされている。
Therefore, the necessary energy must be given accordingly. Heat is used as this energy, and a high-temperature environment is considered essential for producing a metal film.

たとえば、金、あるいは白金の有機化合物から金膜ある
いは白金膜を得るには、空気中、あるいは酸素雰囲気中
で[i00〜800℃で焼成する。
For example, in order to obtain a gold film or a platinum film from gold or an organic compound of platinum, the film is fired at a temperature of 00 to 800° C. in air or in an oxygen atmosphere.

また、チタン、タンタル、シリコンあるいはアルミニウ
ムの有機化合物から、それぞれの金属膜を得るには、酸
素を含む窒素雰囲気中で、8oo〜1000℃で焼成す
る。
Further, in order to obtain each metal film from an organic compound of titanium, tantalum, silicon, or aluminum, firing is performed at 80° C. to 1000° C. in a nitrogen atmosphere containing oxygen.

このような条件下で、金属膜の形成を行っている。The metal film is formed under such conditions.

(発明が角ダ決しようとする課題) ところで、このような有機金属化合物の金属膜化を、広
く電子デバイスの分野に応用しようとすると、これまで
の温度条件は苛酷であり、様々な欠陥を生じさせる原因
となっている。
(Problem to be solved by the invention) By the way, if we try to widely apply the formation of organometallic compounds into metal films in the field of electronic devices, the temperature conditions up until now have been harsh and various defects have occurred. It is the cause of this.

特に、IC分野における小型、高密度化の進展はめざま
しく、それにつれて高精度、高信頼性が要求されている
In particular, advances in miniaturization and higher density in the IC field are remarkable, and higher precision and higher reliability are required accordingly.

ところが、800℃から1000℃にもなる高温環境下
にIC部品をさらした場合、アルミニウムの融点である
660℃を超えてしまうため、アルミニウムを含んだ部
品には金属膜形成が適用できなかったり、金属膜を形成
してもICの耐熱性の域を超えたために品質を劣化させ
てしまうという問題がある。
However, when IC parts are exposed to a high temperature environment of 800°C to 1000°C, the melting point of aluminum, 660°C, is exceeded, so metal film formation cannot be applied to parts containing aluminum. Even if a metal film is formed, there is a problem that the heat resistance of the IC is exceeded and the quality deteriorates.

したがって、金属膜を形成しようとする被処理体に損傷
を与えず、より穏やかな条件で金属膜を形成する方法が
望まれている。
Therefore, a method of forming a metal film under milder conditions without damaging the object to be processed on which the metal film is to be formed is desired.

本発明はこのような課題を解決するためになされたもの
で、穏やかな低温条件で金属膜を形成することのできる
、有機金属化合物の金属膜化方法を堤供することを1」
的とする。
The present invention has been made in order to solve these problems, and aims to provide a method for forming a metal film from an organometallic compound, which can form a metal film under mild, low-temperature conditions.
target

[発明の構成] (課題を解決するための手段) 本発明の有機金属化合物の金属膜化方法は、基体上に配
置された有機金属化合物を、空気中あるいは酸素雰囲気
中で加熱し、前記有機金属化合物を分解させる焼成工程
と、この焼成工程を経た焼成基体をプラズマにさらし、
前記基体上に金属膜を生成させるプラズマ処理工程とを
有することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method of forming a metal film from an organometallic compound of the present invention heats the organometallic compound disposed on a substrate in air or an oxygen atmosphere, and A firing process to decompose the metal compound, and exposing the fired substrate that has undergone this firing process to plasma,
The method is characterized by comprising a plasma treatment step of generating a metal film on the substrate.

本発明において、金、白金等の貴金属の有機化合物から
金膜、白金膜を生成しようとする場合、まず、°金、白
金等の貴金属の有機化合物を必要に応じて稀釈剤で薄め
、基板等に塗布する。
In the present invention, when attempting to produce a gold film or a platinum film from an organic compound of a noble metal such as gold or platinum, first dilute the organic compound of a noble metal such as gold or platinum with a diluent as necessary, and then Apply to.

次に、空気中あるいは酸素雰囲気中で、200〜400
℃で焼成する。この段階では、有機物は完全に分解除去
されず残存する。
Next, in air or oxygen atmosphere, 200 to 400
Bake at ℃. At this stage, organic substances remain without being completely decomposed and removed.

この残存している有機物を分解、除去するために、上記
焼成物を酸素をo、ot−to%含有する不活性ガス雰
囲気中のプラズマにさらす。
In order to decompose and remove the remaining organic matter, the fired product is exposed to plasma in an inert gas atmosphere containing 0,000% of oxygen.

このとき、酸素含有量が0.01%より低いと酸素活性
種が少なすぎるために、有機物の分解、除去は効果的に
行われない。10%より高いと、n°機物の分解、除去
に必要とされている“穏やかな酸化反応”の域を超えて
しまうため、被処理体に損傷を与えるおそれが生じる。
At this time, if the oxygen content is lower than 0.01%, there are too few oxygen active species, so that the organic matter cannot be effectively decomposed or removed. If it is higher than 10%, the "mild oxidation reaction" required for decomposing and removing the n°organic material will be exceeded, and there is a risk of damaging the object to be processed.

一方、チタン、タンタル、シリコン、アルミニウム等の
卑金属の有機化合物から、それぞれの卑金属膜を生成し
ようとする場合、空気中あるいは酸素雰囲気中で200
〜400℃で焼成を行う工程は貴金属の場合と同様であ
る。
On the other hand, when attempting to produce base metal films from organic compounds of base metals such as titanium, tantalum, silicon, and aluminum, it is necessary to
The process of firing at ~400°C is the same as for noble metals.

しかし、卑金属は酸素との親和性が強いことから、この
焼成工程において金属酸化膜が形成されるため、プラズ
マ処理工程における雰囲気は、アンモニア等還元性を有
するガスの1g1、あるいは28以上の混合ガスとする
However, since base metals have a strong affinity for oxygen, a metal oxide film is formed during this firing process, so the atmosphere during the plasma treatment process must be 1g1 of a reducing gas such as ammonia, or a mixture of 28 or more gases. shall be.

還1元性ガス活性種の働きで、200〜400℃という
低温条件にもかかわらず、金属酸化膜は還元され、よっ
て、所望する卑金属膜を生成させることができる。
Due to the action of the reducing gas active species, the metal oxide film is reduced despite the low temperature conditions of 200 to 400°C, and therefore a desired base metal film can be produced.

本発明におけるプラズマ処理は、雰囲気圧力を0.3〜
B、0Torrの範囲とすることが好ましい。
In the plasma treatment in the present invention, the atmospheric pressure is 0.3~
B, preferably in the range of 0 Torr.

0.3Torr以下とすると、不純物ガスの混入の割合
が大きくなり、6.0Torrを超えると放電が不安定
になりやすい。より好ましいのは、0.3〜4.0To
rr程度の雰囲気圧力である。
When it is 0.3 Torr or less, the proportion of impurity gas mixed in increases, and when it exceeds 6.0 Torr, the discharge tends to become unstable. More preferably 0.3 to 4.0To
The atmospheric pressure is about rr.

プラズマを発生、持続させる高周波放電の失効電力は好
ましくは0.1〜3KWの範囲である。
The expiration power of the high frequency discharge for generating and sustaining plasma is preferably in the range of 0.1 to 3 KW.

0.1KWより小さいと金属膜化に要する時間が長くな
りすぎるし、3KWより大きいと高エネルギー荷電粒子
の衝撃によって、膜表面が損傷を受ける場合が生じる。
If it is less than 0.1 KW, the time required to form a metal film will be too long, and if it is more than 3 KW, the film surface may be damaged by the impact of high-energy charged particles.

さらに、本発明において、金属膜の批抗値の低減、ある
いは貴金属導電膜を形成する際のコスト低減のために、
銀の粉末を、焼成前の有機金属化合物に、その中の金属
に対して原子量比で0.1〜20倍混合させることが有
効である。
Furthermore, in the present invention, in order to reduce the resistance value of the metal film or reduce the cost when forming the noble metal conductive film,
It is effective to mix silver powder into the organometallic compound before firing in an atomic weight ratio of 0.1 to 20 times the amount of the metal contained therein.

原子量比が、0.1より小さいと、抵抗値、コストとも
に、H意義な低減効果が得られず、原子量比が20より
大きいと生成された膜の表面の平滑性、密着性が劣化し
てくる。
If the atomic weight ratio is smaller than 0.1, no significant H reduction effect can be obtained in both resistance value and cost, and if the atomic weight ratio is larger than 20, the surface smoothness and adhesion of the produced film will deteriorate. come.

(作 用) 本発明では、プラズマによって活性種を造り出し、その
作用をもって、金属と有機物との結合を断ち、有機物を
除去するためのエネルギーとして利用している。
(Function) In the present invention, active species are created by plasma, and this action is used as energy to break the bond between metal and organic matter and remove the organic matter.

このため、エネルギーとして供給すべき熱が低減され、
200〜400℃という低温条件にもかかわらず、金、
白金等の有機化合物から、金膜、白金膜が生成されるの
である。
Therefore, the amount of heat that should be supplied as energy is reduced,
Despite the low temperature conditions of 200-400℃, gold,
Gold films and platinum films are produced from organic compounds such as platinum.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 はじめに、金を5重量%含をする金の−a機化合物をア
ルミナ基板上にデイツプ法によって塗布した。
Example 1 First, a gold -a compound containing 5% by weight of gold was coated onto an alumina substrate by a dip method.

次に、この基板を、空気中、250℃で1時間焼成した
Next, this substrate was baked at 250° C. for 1 hour in air.

この後、焼成したU板に対して2.0Torrのアルゴ
ンガス中、250℃、1時間のプラズマ処理を施し、ア
ルミナ基板上に金膜を形成した。このときの高周波出力
は 1.2KWとした。
Thereafter, the fired U-plate was subjected to plasma treatment at 250° C. for 1 hour in argon gas at 2.0 Torr to form a gold film on the alumina substrate. The high frequency output at this time was 1.2KW.

金膜形成後の有機物の残存量、および金属膜の密着性を
調べた結果、有機物はほぼ除去されており、金膜の密着
性も極めて良好であった。
As a result of examining the amount of organic matter remaining after the gold film was formed and the adhesion of the metal film, it was found that almost all the organic matter had been removed, and the adhesion of the gold film was also extremely good.

この結果を、以下に述べる比較例の結果と併せて第1表
に示す。
The results are shown in Table 1 together with the results of comparative examples described below.

比較例1〜2 実施例1で使用した金の有機化合物をアルミナ基板上に
デイツプ法によって塗布した。
Comparative Examples 1 and 2 The gold organic compound used in Example 1 was applied onto an alumina substrate by a dip method.

次に、この基板を、空気中、250℃でl特間、および
2時間の条件で、それぞれ焼成した。
Next, this substrate was fired in air at 250° C. for 2 hours.

この後、有機物の残存量、および金属膜の形成状態を調
べた。これらの結果を第1表に示す。
After this, the amount of remaining organic matter and the state of formation of the metal film were examined. These results are shown in Table 1.

比較例3〜4 実施例1で使用した金の有機化合物をアルミナ基板上に
デイツプ法によって塗布した。
Comparative Examples 3 to 4 The gold organic compound used in Example 1 was applied onto an alumina substrate by a dip method.

次に、この址板を、2.0Torrのアルゴンガス中、
250℃、1時間および2時間の条件で、それぞれプラ
ズマ処理を施した。
Next, this base plate was placed in argon gas at 2.0 Torr.
Plasma treatment was performed at 250° C. for 1 hour and 2 hours, respectively.

この後、有機物の残存量、および金属膜の形成状態を調
べた。これらの結果を第1表に示す。
After this, the amount of remaining organic matter and the state of formation of the metal film were examined. These results are shown in Table 1.

(以下余白) 第  1 表 第1表から明らかなように、焼成処理のみ、またはプラ
ズマ処理のみの比較例では、有機物がかなりの量で残在
しているのに対し、焼成とプラズマ処理とを施した実施
例では、極めて良好に金属膜が形成されていた。
(Leaving space below) Table 1 As is clear from Table 1, in the comparative examples with only calcination treatment or only plasma treatment, a considerable amount of organic matter remained, whereas when calcination and plasma treatment were In the examples given, the metal film was formed extremely well.

実施例2 チタンを10重量%含有するチタンの有機化合物を、ア
ルミナ延板上にデイツプ法によって塗布した。
Example 2 A titanium organic compound containing 10% by weight of titanium was applied onto an alumina rolled plate by a dip method.

次いで、空気中、400℃で1時間焼成し、得られた焼
成基板を、2.0Torrのアンモニアガス雰囲気中、
280℃、1時間の条件でプラズマ中にさらした。
Next, the fired substrate was fired at 400° C. for 1 hour in air, and the fired substrate was heated in an ammonia gas atmosphere at 2.0 Torr.
It was exposed to plasma at 280°C for 1 hour.

その結果、焼成直後は白包の絶縁膜であったものが、プ
ラズマ処理後は灰色で光沢性のある導電膜となった。
As a result, what was a white insulating film immediately after firing became a gray, glossy conductive film after plasma treatment.

この導電膜のX線回折の結果、チタンに相当するシャー
プなピークが認められた。
As a result of X-ray diffraction of this conductive film, a sharp peak corresponding to titanium was observed.

このように、プラズマ処理を用いた本発明の方法により
、400℃以下の低温条件においても、有機金属化合物
の金属膜化を可能にすることができた。
As described above, the method of the present invention using plasma treatment made it possible to form an organometallic compound into a metal film even under low temperature conditions of 400° C. or lower.

なお、上述した金属以外の金属についても、本発明によ
るプラズマ処理を適用して活性種を造り出すことにより
、低温条件で有機金属化合物から金属膜を生成させるこ
とができる。
Note that even for metals other than the metals mentioned above, by applying the plasma treatment according to the present invention to create active species, a metal film can be generated from an organometallic compound under low-temperature conditions.

[発明の効果] 以上説明したように、本発゛明の有機金属化合物の金属
膜化方法は、不活性ガス雰囲気あるいは、還元性ガス雰
囲気においてプラズマ処理を行うことにより、活性種の
働きを熱エネルギーの替わるエネルギー源として利用し
、低温条件における有機金属化合物の金属膜化を実現さ
せることができる。
[Effects of the Invention] As explained above, the method of forming a metal film from an organometallic compound of the present invention heats the action of active species by performing plasma treatment in an inert gas atmosphere or a reducing gas atmosphere. It can be used as an alternative energy source to form metal films from organometallic compounds under low-temperature conditions.

Claims (2)

【特許請求の範囲】[Claims] (1)基体上に配置された有機金属化合物を、空気中あ
るいは酸素雰囲気中で加熱し、前記有機金属化合物を分
解させる焼成工程と、 この焼成工程を経た焼成基体をプラズマにさらし、前記
基体上に金属膜を生成させるプラズマ処理工程と を有することを特徴とする有機金属化合物の金属膜化方
法。
(1) A firing step in which the organometallic compound placed on the substrate is heated in air or an oxygen atmosphere to decompose the organometallic compound; and the fired substrate that has undergone this baking step is exposed to plasma to 1. A method for forming a metal film from an organometallic compound, comprising: a plasma treatment step for forming a metal film.
(2)前記焼成工程および前記プラズマ処理工程におけ
る温度は、ともに200〜400℃の範囲であり、 前記プラズマ処理における雰囲気は、前記有機金属化合
物が貴金属の場合は不活性ガス雰囲気とし、前記有機金
属化合物が卑金属の場合は還元性ガス雰囲気とする 請求項1記載の有機金属化合物の金属膜化方法。
(2) The temperature in the firing step and the plasma treatment step are both in the range of 200 to 400°C, and the atmosphere in the plasma treatment is an inert gas atmosphere when the organometallic compound is a noble metal; 2. The method for forming a metal film from an organometallic compound according to claim 1, wherein when the compound is a base metal, a reducing gas atmosphere is used.
JP33946189A 1989-12-27 1989-12-27 Method for forming organometallic compound into metallic film Pending JPH03199380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33946189A JPH03199380A (en) 1989-12-27 1989-12-27 Method for forming organometallic compound into metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33946189A JPH03199380A (en) 1989-12-27 1989-12-27 Method for forming organometallic compound into metallic film

Publications (1)

Publication Number Publication Date
JPH03199380A true JPH03199380A (en) 1991-08-30

Family

ID=18327689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33946189A Pending JPH03199380A (en) 1989-12-27 1989-12-27 Method for forming organometallic compound into metallic film

Country Status (1)

Country Link
JP (1) JPH03199380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008803A3 (en) * 1997-08-18 1999-04-15 Agfa Gevaert Nv Method for forming a metallic film using non-isothermal plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008803A3 (en) * 1997-08-18 1999-04-15 Agfa Gevaert Nv Method for forming a metallic film using non-isothermal plasma

Similar Documents

Publication Publication Date Title
CA2133422C (en) Process for producing a strong bond between copper layes and ceramic
JPS5948873B2 (en) Method for manufacturing electrode substrate or electrode provided with corrosion-resistant coating
JPS60211061A (en) Ion-nitrifying method of aluminum material
JPH03199380A (en) Method for forming organometallic compound into metallic film
KR100342084B1 (en) A process for preparing a member comprising aluminum and a member comprising aluminum
JP2963169B2 (en) Electrodes for high frequency plasma generation
JP4537957B2 (en) Aluminum material having AlN region on surface and method for producing the same
JPS60174873A (en) Pretreatment of metallic substrate for vapor deposition
JP2002332569A (en) High temperature oxidation resistant surface modification method of Ti-Al alloy
US3844823A (en) Method for the production of ceramic bodies with controlled surface resistivity
JPH1028688A (en) Blacking method for surgical sewing needle
JP2004273472A (en) Member for plasma processing system, member for processing system, plasma processing system, processing system, and plasma processing method
JP2972878B1 (en) Titanium-based metallic material having a thick coating of titanium oxide and method for producing the same
JPH0733411A (en) Production of silicon nitride powder having high alpha-silicon nitride content
JPH01100007A (en) Production of aluminum nitride with cubic system
JPH07157303A (en) Production of acid treated graphite and production of expanded graphite
JPS5935672A (en) Ionic nitriding treatment of stainless steel parts having ruggedness
US2894314A (en) Method of making selenium rectifier
JPH0723531B2 (en) Surface treatment method for aluminum material
JPH03207872A (en) Surface treatment of steel product by plasma action
JPS5928568A (en) Dry plating method
EP0535540A2 (en) Etching process for aluminium-containing coatings
JPH05112865A (en) Formation of oxide thin film
JP3034711B2 (en) Thallium based superconductor thin film manufacturing equipment
JPH0226870A (en) Production of aluminum nitride sintered body