Nothing Special   »   [go: up one dir, main page]

JPH03181547A - Resin composition for sealing semiconductor - Google Patents

Resin composition for sealing semiconductor

Info

Publication number
JPH03181547A
JPH03181547A JP32051689A JP32051689A JPH03181547A JP H03181547 A JPH03181547 A JP H03181547A JP 32051689 A JP32051689 A JP 32051689A JP 32051689 A JP32051689 A JP 32051689A JP H03181547 A JPH03181547 A JP H03181547A
Authority
JP
Japan
Prior art keywords
volume
inorganic filler
solvent
ratio
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32051689A
Other languages
Japanese (ja)
Other versions
JP2740027B2 (en
Inventor
Akinobu Kusuhara
楠原 明信
Masuo Mizuno
水野 増雄
Mitsuo Waki
脇 光生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP32051689A priority Critical patent/JP2740027B2/en
Publication of JPH03181547A publication Critical patent/JPH03181547A/en
Application granted granted Critical
Publication of JP2740027B2 publication Critical patent/JP2740027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a composition having excellent thermal stress characteristics, reliability and workability and suitable for the sealing of a semiconductor element on a ceramic substrate by compounding an epoxy resin with a specific amount of a specific inorganic filler, etc., having a specific particle size distribution. CONSTITUTION:The objective composition is produced by compounding (A) an epoxy resin preferably containing <=500ppm of hydrolyzable halogen group with (B) a phenolic novolak resin hardener, (C) an inorganic filler (e.g. silica or alumina) having a particle size distribution characterized by a number-ratio of particles of <=10mum diameter of <=25% and that of >=50mum diameter of 15-50% and (D) an organic solvent composed of two or more kinds of solvents having different boiling points (e.g. acetone, methyl ethyl ketone, etc.) wherein the ratio of one kind of solvent is <=90vol.% of the whole solvent. The ratio of C/(A+B+C) is 50-80vol.% and that of D/(A+B+C+D) is 20-40vol.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体の表面を保護する樹脂に関するものであ
り、更に詳しくはセラミック基板上の半導体素子を樹脂
により封止をし、素子表面のアルミニウム配線が外部か
らの水分の侵入で生じる腐食を防止することを目的とす
る半導体封止用液状樹rrrJ岨IIi、物に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a resin that protects the surface of a semiconductor. More specifically, the present invention relates to a resin that protects the surface of a semiconductor. This invention relates to a liquid resin for semiconductor encapsulation, which is intended to prevent corrosion of wiring caused by moisture intrusion from the outside.

〔従来の技術〕[Conventional technology]

半導体素子を封止するための液状樹脂としては、半導体
素子を搭載する基板の種類により有81基板用とセラミ
ック基板用に分けることができる。
Liquid resins for sealing semiconductor elements can be classified into those for ceramic substrates and those for ceramic substrates, depending on the type of substrate on which the semiconductor elements are mounted.

両タイプとも耐熱性、耐湿性、耐熱衝撃性などの信頼性
特性が要求されるが、特にセラ果ツク基板用の場合は通
常基板の熱膨張係数が7X10−’/°Cと小さく、封
止用樹脂と基板との熱膨張係数の差から生じる熱応力を
小、さくする必要がある。
Both types require reliability characteristics such as heat resistance, moisture resistance, and thermal shock resistance, but especially in the case of ceramic substrates, the coefficient of thermal expansion of the substrate is usually as small as 7X10-'/°C, making it difficult to seal. It is necessary to reduce the thermal stress caused by the difference in coefficient of thermal expansion between the resin for use and the substrate.

熱応力が大きくなると樹脂硬化物にクラックが入ったり
、基板から樹脂硬化物が剥離したりして半導体素子の信
頼性を著しく低下させる。
If the thermal stress increases, cracks may appear in the cured resin or the cured resin may peel off from the substrate, significantly reducing the reliability of the semiconductor element.

そこで熱応力を小さくするために弾性率の小さいシリコ
ーン樹脂が用いられたりするが、密着性か弱いこと、吸
湿率が大きいこと、また硬化物が軟らかいため外部から
カが加わった時に内部の金線が切断されたりするなどの
欠点があり、信頼性の面で問題がある。
Therefore, silicone resin with a low elastic modulus is used to reduce thermal stress, but it has weak adhesion, high moisture absorption, and the cured product is soft, so when external force is applied, the internal gold wire may break. There are drawbacks such as disconnection, and there are problems in terms of reliability.

一方密着性、吸湿率、硬化物の硬度が良好で信頼性にも
優れている樹脂としてエポキシ樹脂が挙げられるが、弾
性率が大きいため熱応力が大きくなりセラくツク基板用
4M脂として使用することができない。
On the other hand, epoxy resin is a resin that has good adhesion, moisture absorption rate, hardness of cured product, and excellent reliability, but because of its high elastic modulus, thermal stress increases and it is used as 4M resin for ceramic substrates. I can't.

そこでエポキシ樹脂に無機充填材を添加し熱膨張係数を
小さくすることが考えられているが、充填材の添加量の
増加とともに液状樹脂の粘度が上昇し、作業性が極めて
悪くなるという欠点が生じる。
Therefore, it has been considered to reduce the coefficient of thermal expansion by adding an inorganic filler to the epoxy resin, but this has the disadvantage that as the amount of filler added increases, the viscosity of the liquid resin increases, resulting in extremely poor workability. .

C発明が解決しようとすう課題〕 本発明の目的とするところは、エポキシ樹脂と無機充填
材からなる液状樹脂において無機充填材状 の添加量及び粘度分布、有機溶剤の添加量を調整するこ
とによって熱応力特性、信頼性に優れ且つ作業性の優れ
た半導体封止用液状樹脂&llI或物を提供することに
ある。
C Problems to be Solved by the Invention] The object of the present invention is to solve the problem by adjusting the amount and viscosity distribution of the inorganic filler and the amount of the organic solvent added in a liquid resin consisting of an epoxy resin and an inorganic filler. An object of the present invention is to provide a liquid resin for semiconductor encapsulation that has excellent thermal stress characteristics, reliability, and workability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは従来技術では克服できなかったこれらの問
題を解決するため鋭意検討した結果以下の粒子数が25
%以下であり50um以上の粒子数がI5〜50%であ
る無機充填材及び(D)沸点が異なる二種以上の溶剤混
合物で一種類の溶剤の割合が全溶剤中の90容積%以下
である有機溶剤からなる液状樹脂組成物であり、その組
成比が(C) / ((A) + (B) +(C) 
’) −50〜80容積%であり、かつ(D)/ ((
A)+ (B)+(C)+ (D))−20〜40容積
%である半導体封止用液状樹脂組成物を用いると熱応力
特性、信頼性に優れ且つ作業性を高度に改良できるとの
知見を得て、本発明を完成するに至った。
The inventors of the present invention conducted intensive studies to solve these problems that could not be overcome with conventional techniques, and as a result, the following number of particles was found:
(D) A mixture of two or more solvents with different boiling points, in which the proportion of one type of solvent is 90% by volume or less of the total solvent. It is a liquid resin composition consisting of an organic solvent, and its composition ratio is (C) / ((A) + (B) + (C)
') -50 to 80% by volume, and (D)/((
A) + (B) + (C) + (D)) - When using a liquid resin composition for semiconductor encapsulation of 20 to 40% by volume, it has excellent thermal stress characteristics and reliability, and can highly improve workability. Based on this knowledge, we have completed the present invention.

本発明で用いる容積とは容積(cc)−重1(g)/真
比重(cc/g)である。
The volume used in the present invention is volume (cc) - weight 1 (g)/true specific gravity (cc/g).

〔作 用〕[For production]

本発明において用いられるエポキシ樹脂としては通常の
もので良いが、好ましくは加水分解性ハロゲン基の含有
量としてsooppm以下であるものが望ましい。
The epoxy resin used in the present invention may be any conventional epoxy resin, but preferably has a content of hydrolyzable halogen groups of not more than sooppm.

またそのタイプとしては次のものが挙げられる。The types include the following:

フロログルシノールトリグリシジールエーテル、トリヒ
ドロオキシビフェニルのトリグリシシールエーテル、テ
トラヒドロキシビフェニルのテトラグリシシールエーテ
ル、テトラヒドロキシビスフェノールFのテトラグリシ
シールエーテル、テトラヒドロキシベンゾフェノンのテ
トラグリシシールエーテル、エポキシ化ノボラック、エ
ポキシ化ポリビニルフェノール、トリグリシシールイソ
シアヌレート、トリグリシシールシアヌレート、トリグ
リシシールS−)リアジン、トリグリシシールアミノフ
ェノール、テトラグリシシールジアミノジフェニルメタ
ン、テトラグリシジールビロメリット酸、トリグリシシ
ールトリメリット酸、ジグリシジルアニリン、ジグリシ
ジールビスフェノールA1ジグリシジールビスフェノー
ルS、ジヒドロキシベンゾフェノンのジグリシジルアニ
リン、ジグリシジールオキシ安息香酸、ジグリシジール
フタル!(o、m、p)、ジグリシジールヒダイントイ
ン、ジグリシジルアニリン、ジグリシジルアニリン等が
あり、これら単独もしくは2種以上を併用して用いるこ
とができる。
Phloroglucinol triglycidyl ether, triglycyl ether of trihydroxybiphenyl, tetraglycyl ether of tetrahydroxybiphenyl, tetraglycyl ether of tetrahydroxybisphenol F, tetraglycyl ether of tetrahydroxybenzophenone, epoxidized novolak, epoxidized Polyvinylphenol, triglycyl isocyanurate, triglycyl cyanurate, triglycyl S-) riazine, triglycyl aminophenol, tetraglycyl diaminodiphenylmethane, tetraglycidyl biromellitic acid, triglycyl trimellitic acid, diglycidyl Aniline, diglycidyl bisphenol A1 diglycidyl bisphenol S, diglycidyl aniline of dihydroxybenzophenone, diglycidyloxybenzoic acid, diglycidyl phthal! (o, m, p), diglycidylhydaintoin, diglycidylaniline, diglycidylaniline, etc., and these can be used alone or in combination of two or more.

また上記のエポキシ樹脂に、一般に反応性希釈剤と呼ば
れる低粘度のエポキシ樹脂を併用しても良い0例えばビ
ニルシクロヘキセンオキサイドの脂環式エポキシ化合物
、ジグリシジルフェニルグリシジルエーテルやジビニル
ベンゼンエポキシなどのポリオレフィンエポキシド類、
ジグリシジルアニリンやジグリシジルトルイジンなどの
グリシジルアミン類、ブチルグリシジルエーテル、フヱ
ニルグシジルエーテル、タレジルグリシジルエーテルな
どのグリシジルエーテル類、その他グリシジルエステル
類などである。
In addition, a low viscosity epoxy resin generally called a reactive diluent may be used in combination with the above epoxy resin. kind,
These include glycidyl amines such as diglycidyl aniline and diglycidyl toluidine, glycidyl ethers such as butyl glycidyl ether, phenyl glycidyl ether, and talesyl glycidyl ether, and other glycidyl esters.

フェノールノボラック樹脂系硬化剤としてはフェノール
類とアルデヒド類との初期縮合物でのフリーのフェノー
ルを出来るだけ含まない無定形の樹脂状物質が好ましい
。例えばフェノール、クレゾール、キシレノール等の1
価フェノール類とホルムアルデヒドとを希薄水溶液中強
酸性下で反応させることによって得られる2および3核
体を主体とする低分子の液状ノボラックや、1価フェノ
ール類とアクロレイン、グリオキザール等の多官能アル
デヒド類との酸性下の初期縮合物や、レゾルシン、カテ
コール、ハイドロキノン等の多価フェノール類とホルム
アルデヒドとの酸性下の初期縮合物などである。
As the phenol novolac resin curing agent, an amorphous resinous substance containing as little free phenol as possible, which is an initial condensation product of phenols and aldehydes, is preferable. For example, phenol, cresol, xylenol, etc.
Low-molecular liquid novolacs mainly composed of di- and tri-nuclear bodies obtained by reacting phenols with formaldehyde in a dilute aqueous solution under strong acidity, monohydric phenols and polyfunctional aldehydes such as acrolein and glyoxal. These include initial condensates under acidic conditions with formaldehyde and polyhydric phenols such as resorcinol, catechol, and hydroquinone with formaldehyde.

これらの硬化剤は必要に応じ2種以上を併用しても良い
Two or more of these curing agents may be used in combination, if necessary.

本発明に用いられる無機充填材としてはシリカ、アル砒
す、炭酸カルシウム、酸化マグネシウム、水酸化マグネ
シウム、チッ化ホウ素等がありこれらを単独もしくは2
種以上を併用して用いることが出来る。
Inorganic fillers used in the present invention include silica, alkali, calcium carbonate, magnesium oxide, magnesium hydroxide, boron nitride, etc., and these may be used alone or in combination.
More than one species can be used in combination.

これらの無機充填材の粒度分布は10μm以下の粒子数
が25%以下で50μm以上の粒子数が15〜50%で
あることが必要であり、これらの粒度分布の無機充填材
を用いることによって無機充填材を多量に配合し、硬化
物の熱膨張係数を小さくし、しかも液状樹脂の作業性を
良好に保つことができた。
The particle size distribution of these inorganic fillers requires that the number of particles of 10 μm or less is 25% or less and the number of particles of 50 μm or more is 15 to 50%. By incorporating a large amount of filler, we were able to reduce the thermal expansion coefficient of the cured product and maintain good workability with the liquid resin.

無機充填材のね炭分布においてIOμm以下の力11 粒子数を25%を越えると無機充填材の比表面積が大き
くなり粘度が上昇し作業性が著しく悪くなる。また50
μm以上の粒子数が15%未満になっても比表面積が大
きくなり粘度が上昇し作業性が悪くなる。一方50μm
以上の粒子数が50%を越えると無機充填材とエポキシ
樹脂、硬化剤、溶剤とが分離し易くなり、無機充填材の
沈降が起こり作業性が悪くなると共に均一な硬化物が得
られなくなり信頼性が低下してしまう。
When the number of particles of less than IO μm exceeds 25% in the charcoal distribution of the inorganic filler, the specific surface area of the inorganic filler increases, the viscosity increases, and the workability deteriorates significantly. 50 again
Even if the number of particles larger than μm is less than 15%, the specific surface area increases, the viscosity increases, and workability deteriorates. On the other hand, 50μm
If the number of particles above exceeds 50%, the inorganic filler, epoxy resin, curing agent, and solvent will be likely to separate, causing the inorganic filler to settle, resulting in poor workability and a failure to obtain a uniform cured product, making it unreliable. Sexuality decreases.

液状樹脂においてその硬化物の熱膨張係数を小さくする
には、無機充填材の配合量を多くすれば良い、この時熱
膨張係数を決定する因子は硬化物の樹脂成分と無機充填
材との容積比であり適正な容積比率によってコントロー
ルする必要が有る。
In order to reduce the coefficient of thermal expansion of a cured product of a liquid resin, it is sufficient to increase the amount of inorganic filler blended.The factor that determines the coefficient of thermal expansion is the volume of the resin component of the cured product and the inorganic filler. It is a ratio and needs to be controlled by an appropriate volume ratio.

重量比でコントロールすると無機充填材の種類によって
比重が異なるため、同じ重量比でもそれぞれの無機充填
材により容積比が異なり熱膨張係数も異なってしまう。
When controlling by weight ratio, the specific gravity differs depending on the type of inorganic filler, so even if the weight ratio is the same, each inorganic filler has a different volume ratio and a different coefficient of thermal expansion.

又、無機充填材と樹脂成分の容積比率の適正範囲として
は硬化物の熱膨張係数をできるだけセラミック基板の熱
膨張係数に近づけて、しかも液状樹脂の粘度上昇を防ぎ
作業性を良好に保つことが重要なポイントである。
In addition, the appropriate range for the volume ratio of the inorganic filler and the resin component is to bring the thermal expansion coefficient of the cured product as close to that of the ceramic substrate as possible, and to prevent the viscosity of the liquid resin from increasing and maintain good workability. This is an important point.

これらの無機充填材の配合割合は、 (無機充填材)/((エポキシ樹脂)+(フェノールノ
ボラック樹脂系硬化剤)+(無機充填材))−50〜8
0容積%である事が必須である。
The blending ratio of these inorganic fillers is (inorganic filler)/((epoxy resin) + (phenol novolac resin curing agent) + (inorganic filler)) -50 to 8
It is essential that it be 0% by volume.

この範囲内の割合に配合することによって液状樹脂の作
業性が非常に良好で、かつ硬化物の熱膨張係数も小さく
なり、熱応力が小さくなりクランクの発生やセラミック
基板からの剥離等の発生を防ぐことが出来る。
By blending the ratio within this range, the workability of the liquid resin is very good, and the coefficient of thermal expansion of the cured product is also small, reducing thermal stress and preventing the occurrence of cranking and peeling from the ceramic substrate. It can be prevented.

この無機充填材の配合割合が50容積%以下では樹脂硬
化物中の無機充填材の量が少なく熱膨張係数が大きくな
り、その結果熱応力が大きくなってクランクの発生やセ
ラミック基板からの剥離が発生し半導体の信頼性を著し
く低下させる。又配合割合が80容積%以上になれば液
状樹脂中の無機充填材量が多くなり過ぎ粘度が高くなり
作業性が悪くなる。
If the blending ratio of this inorganic filler is less than 50% by volume, the amount of inorganic filler in the cured resin product will be small and the coefficient of thermal expansion will be large, resulting in increased thermal stress, which may cause cranking or peeling from the ceramic substrate. occurs, significantly reducing the reliability of semiconductors. If the blending ratio exceeds 80% by volume, the amount of inorganic filler in the liquid resin will be too large, resulting in high viscosity and poor workability.

又、本発明で用いる有81溶剤は沸点が異なる二種以上
の有機溶剤の混合物である。これらの溶剤としては、ケ
トン系、アルコール系、エステル系、芳香族炭化水素系
等を用いることができ、具体的にはアセトン、メチルエ
チルケトン、メチルイソブチルケトン、メタノール、エ
タノール、イソプロパツール、ブタノール、イソブタノ
ール、メチIt/ ルセロソルブ、エチルセロソせブ、メチルセロソr〆 プチルセロソaブアセテート、メチルカルピトール、エ
チルカルピトール、ブチルカルピトール、ヘキサン、ベ
ンゼン、トルエン、キシレン等力する。
Further, the organic solvent used in the present invention is a mixture of two or more organic solvents having different boiling points. As these solvents, ketones, alcohols, esters, aromatic hydrocarbons, etc. can be used. Specifically, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropanol, butanol, and Butanol, methyl it/lucerosolve, ethyl cellosolve, methyl cellosol butyl cello acetate, methyl carpitol, ethyl carpitol, butyl carpitol, hexane, benzene, toluene, xylene, etc.

これらの溶剤を二種以上混合した混合溶剤を用いる必要
があり、それらの沸点が異なり0、好ましくは5°C以
上異なるもので、しかも、混合溶剤のうちのどの一種の
溶剤もその割合が全溶剤中の90容積%以下である必要
がある。
It is necessary to use a mixed solvent that is a mixture of two or more of these solvents, and the boiling points of these solvents differ by 0, preferably 5°C or more, and the proportion of any one type of solvent in the mixed solvent is It should be less than 90% by volume in the solvent.

これらの理由について次に述べる。These reasons will be discussed below.

本樹脂は熱膨張係数を小さくするために無機充填材の割
合を限定しているが、この割合で、エポキシ樹脂、フェ
ノールノボラック系硬化剤と混合した場合、粘度が非常
に高くなり、実用的な作業ができない、そのため、作業
性が良好になる粘度にするため有機溶剤を混合する必要
がある。しかし、有機溶剤を混合すると液状樹脂組成物
を加熱硬化させる際に、有I!溶剤の蒸発した抜は跡が
でき、硬化物中にボイドが残り易くなる。この様なボイ
ドが多くなると半導体素子の信頼性低下を招き好ましく
ない。
This resin has a limited proportion of inorganic filler in order to reduce the coefficient of thermal expansion, but when mixed with epoxy resin and phenol novolak hardener at this proportion, the viscosity becomes extremely high, making it difficult to use for practical purposes. Therefore, it is necessary to mix an organic solvent in order to obtain a viscosity that allows for good workability. However, when an organic solvent is mixed, when heating and curing the liquid resin composition, there is a problem! The evaporation of the solvent leaves traces and voids tend to remain in the cured product. If the number of such voids increases, the reliability of the semiconductor device will deteriorate, which is undesirable.

本発明者は、このボイド発生を防ぐため鋭意検討した結
果、ボイド発生が硬化加熱時の溶剤の急激な蒸発による
もので、沸点の異なる2種以上の溶剤を混合することで
溶剤の蒸発が穏やかになりボイドを防止できることが判
った。
As a result of intensive studies to prevent the occurrence of voids, the inventor of the present invention found that the occurrence of voids is due to the rapid evaporation of the solvent during curing heating, and that by mixing two or more types of solvents with different boiling points, the evaporation of the solvent can be slowed down. It was found that voids can be prevented.

またこの際、混合溶剤中の一種の溶剤の割合が90容積
%より大きいと溶剤の蒸発が単独溶剤の場合と変わらず
穏やかな蒸発が得られず硬化物中にボイドが発生する。
Further, at this time, if the proportion of one type of solvent in the mixed solvent is greater than 90% by volume, the evaporation of the solvent will not be as gentle as in the case of a single solvent, and voids will occur in the cured product.

ここで用いられる有機溶剤の配合量としては(有機溶剤
)/((エポキシ樹脂)+(フェノールボラック樹脂系
硬化剤)+(無機充填材)+(有機溶剤))−20〜4
0容積%である事が必須である。
The amount of organic solvent used here is (organic solvent)/((epoxy resin) + (phenol borac resin curing agent) + (inorganic filler) + (organic solvent)) -20 to 4
It is essential that it be 0% by volume.

20容積%未満では液状樹脂の粘度が高くなり過ぎ作業
性が著しく悪くなる。また40容積%を越えれば無機充
填材とエポキシ樹脂、硬化剤、溶剤とが分離し易くなり
、無機充填材の沈降が起こり作業性が悪くなると共に均
一な硬化物が得られなくなり信頼性が低下してしまう。
If it is less than 20% by volume, the viscosity of the liquid resin becomes too high and the workability becomes extremely poor. If it exceeds 40% by volume, the inorganic filler, epoxy resin, curing agent, and solvent will tend to separate, causing sedimentation of the inorganic filler, worsening workability, and making it impossible to obtain a uniform cured product, reducing reliability. Resulting in.

本発明における液状樹脂組成物は必要に応じて硬化促進
剤、消泡剤、分散安定剤、難燃剤や着色剤を添加する事
も出来る。
A curing accelerator, an antifoaming agent, a dispersion stabilizer, a flame retardant, and a coloring agent may be added to the liquid resin composition of the present invention, if necessary.

〔実施例〕〔Example〕

次に実施例により本発明の詳細な説明する。 Next, the present invention will be explained in detail with reference to Examples.

実施例1 フェノールノボラックエポキシ樹脂 (加水分解性塩素含有量350ppm、数平均分子量3
00.エポキシ当1180)10容積% フェノールノボランク樹脂 (数平均分子量530 、OH当量105)5容積% トリス(ジメチルアミノメチル) フェノール −硬化促進剤    0,05容積%50
μm以上の粒子数が30%)     50容積%メチ
ルエチルケトン(沸点eo’c)   25容積%トル
エン(沸点111°C)     10容積%をライカ
イ機で混練し均質な液状樹脂組成物を得た。得られた液
状樹脂組成物は作業性が良好でセラミック基板上の半導
体素子を封止した場合、樹脂硬化物のボイド、クランク
、剥離はなかった。
Example 1 Phenol novolac epoxy resin (hydrolyzable chlorine content 350 ppm, number average molecular weight 3
00. Epoxy equivalent 1180) 10% by volume Phenol novolank resin (number average molecular weight 530, OH equivalent 105) 5% by volume Tris (dimethylaminomethyl) Phenol - curing accelerator 0.05% by volume 50
A homogeneous liquid resin composition was obtained by kneading 50% by volume of methyl ethyl ketone (boiling point: EO'C), 25% by volume toluene (boiling point: 111°C), 10% by volume (30% of particles having a diameter of μm or more) in a Laikai machine. The obtained liquid resin composition had good workability, and when a semiconductor element on a ceramic substrate was sealed, there were no voids, cracks, or peeling of the cured resin composition.

また模擬素子を用いて80℃1時間予備加熱後150 
’C13時間で本硬化を行い封止した後温度サイクルテ
スト(TC)100サイクル及びプレッシャータンカー
テスト100時間を行ったところ回路のアルミ腐食や、
金線切れによる不良の発生はなく優れた信頼性を有して
いた。
Also, using a simulated element, after preheating at 80℃ for 1 hour,
After curing and sealing for 13 hours, a temperature cycle test (TC) of 100 cycles and a pressure tanker test of 100 hours were performed, and the aluminum corrosion of the circuit was detected.
There were no defects due to gold wire breakage, and the product had excellent reliability.

表に示した。Shown in the table.

実施例2 結果を第1 ビスフェノールA型エポキシ樹脂 (加水分解性塩素含有量400ppm、数平均分子量3
80、エポキシ当量190)11容積% フェノールノボラック樹脂 (数平均分子量370 、O)I当量105)6容積% トリス(ジメチルアミノメチル) フェノール−硬化促進剤     0.06容積%50
μm以上の粒子数が20%)53容積%メチルエチルケ
トン(沸点80°C)    2容積%トルエン(沸点
111’C)       4容積%メチルイソブチル
ケトン(沸点116°c)24容積%を配合し実施例1
と同様にして液状樹脂を得た。
Example 2 Results 1st Bisphenol A epoxy resin (hydrolyzable chlorine content 400 ppm, number average molecular weight 3)
80, epoxy equivalent 190) 11% by volume Phenol novolak resin (number average molecular weight 370, O)I equivalent 105) 6% by volume Tris (dimethylaminomethyl) Phenol-hardening accelerator 0.06% by volume 50
Example 1: The number of particles larger than μm is 20%) 53% by volume methyl ethyl ketone (boiling point 80°C) 2% by volume toluene (boiling point 111'C) 4% by volume methyl isobutyl ketone (boiling point 116°C) 24% by volume
A liquid resin was obtained in the same manner as above.

得られたものについて実施例工と同様にして作業性、硬
化物外観、信頼性とも良好であった。結果を第工表に示
す。
The obtained product had good workability, appearance of the cured product, and reliability in the same manner as in the example. The results are shown in the schedule.

比較例1〜5 実施例1と同様にして第1表に示した配合で液状樹脂を
作成したがいずれも粘度が不適で作業性が悪かった。
Comparative Examples 1 to 5 Liquid resins were prepared using the formulations shown in Table 1 in the same manner as in Example 1, but all had inappropriate viscosities and poor workability.

また比較例4は無機充填材量が少ないため硬化物外観が
不良であった。結果を第1表に示す。
Furthermore, in Comparative Example 4, the appearance of the cured product was poor because the amount of inorganic filler was small. The results are shown in Table 1.

比較例6〜8 実施例1と同様にして第1表に示した配合で液状樹脂を
作成したが、いずれも硬化物の外観が不良であった。結
果を第1表に示す。
Comparative Examples 6 to 8 Liquid resins were prepared using the formulations shown in Table 1 in the same manner as in Example 1, but the appearance of the cured products was poor in all cases. The results are shown in Table 1.

比較例9.10 実施例2と同様にして第1表に示した配合で液状樹脂を
作成したがいずれも粘度が不適で作業性が悪かった。結
果を第1表に示す。
Comparative Example 9.10 Liquid resins were prepared using the formulations shown in Table 1 in the same manner as in Example 2, but all had inappropriate viscosities and poor workability. The results are shown in Table 1.

評価法 熱膨張係数 デュラトメーターを用いて2°C/分で室温より240
 ’Cまで硬化物を加熱し温度−伸び曲線のチャートか
ら室温〜ガラス転移温度縁域の熱膨張係数を求めた。
Evaluation method Thermal expansion coefficient 240 from room temperature at 2°C/min using a duratometer
The cured product was heated to 'C, and the coefficient of thermal expansion in the region from room temperature to the edge of the glass transition temperature was determined from a temperature-elongation curve chart.

C 30分/−55°C10分/室温 30分/125°C
を100サイクル行なった後、硬化物の外観及び模擬素
子の金線切れによる不良の発生の有無を調べた。
C 30 minutes/-55°C 10 minutes/room temperature 30 minutes/125°C
After 100 cycles, the appearance of the cured product and the occurrence of defects due to gold wire breakage in the simulated element were examined.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体封止用液状樹脂組成物は適正な粘度
であるため作業性が極めて良好であり、且つ溶剤の急激
な蒸発を防ぐことができるので硬化物の外観が優れてい
る。更に硬化物は熱膨張係数が小さく熱応力を小さくす
ることができる。この組成物で半導体を封止するとクラ
ンクの発生や剥離が発生しなくなる。
The liquid resin composition for semiconductor encapsulation according to the present invention has an appropriate viscosity, so it has extremely good workability, and since rapid evaporation of the solvent can be prevented, the appearance of the cured product is excellent. Furthermore, the cured product has a small coefficient of thermal expansion and can reduce thermal stress. When a semiconductor is sealed with this composition, cranking and peeling will not occur.

このことによりエポキシ樹脂の密着性、低吸湿率、硬化
物の硬度が優れている点を生かすことができ、セラミッ
ク基板上に搭載された半導体素子を封止する液状樹脂と
して要求される耐湿性、耐熱衝撃性等の信頼性特性に答
え得る半導体封止用液状樹脂組成物である。
This makes it possible to take advantage of epoxy resin's excellent adhesion, low moisture absorption rate, and hardness of the cured product, and provides the moisture resistance required for a liquid resin that seals semiconductor elements mounted on a ceramic substrate. This is a liquid resin composition for semiconductor encapsulation that can meet reliability characteristics such as thermal shock resistance.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)エポキシ樹脂 (B)フェノールノボラック樹脂系硬化剤 (C)粒度分布において10μm以下の粒子数が25%
以下であり、50μm以上の 粒子数が15〜50%である無機充填材 (D)沸点が異なる二種以上の混合物で一種類の溶剤の
割合が全溶剤中の90容積% 以下である有機溶剤 からなる液状樹脂組成物であり、その組成比が(C)/
((A)+(B)+(C))=50〜80容積%であり
、かつ(D)/((A)+(B)+(C)+(D))=
20〜40容積%であることを特徴とする半導体封止用
樹脂組成物。
(1) (A) Epoxy resin (B) Phenol novolak resin curing agent (C) Particle size distribution of 25% of particles of 10 μm or less
An inorganic filler (D) in which the number of particles of 50 μm or more is 15 to 50%; (D) an organic solvent in which the proportion of one type of solvent is 90% by volume or less in the total solvent in a mixture of two or more types having different boiling points; It is a liquid resin composition consisting of (C)/
((A)+(B)+(C))=50-80% by volume, and (D)/((A)+(B)+(C)+(D))=
A resin composition for semiconductor encapsulation, characterized in that the content is 20 to 40% by volume.
JP32051689A 1989-12-12 1989-12-12 Resin composition for semiconductor encapsulation Expired - Fee Related JP2740027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32051689A JP2740027B2 (en) 1989-12-12 1989-12-12 Resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32051689A JP2740027B2 (en) 1989-12-12 1989-12-12 Resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH03181547A true JPH03181547A (en) 1991-08-07
JP2740027B2 JP2740027B2 (en) 1998-04-15

Family

ID=18122320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32051689A Expired - Fee Related JP2740027B2 (en) 1989-12-12 1989-12-12 Resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP2740027B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309096A (en) * 1992-05-12 1993-11-22 Toshiba Ceramics Co Ltd Impulse wave generating source
JPH06154232A (en) * 1992-11-25 1994-06-03 Toshiba Ceramics Co Ltd Impact wave generation source
US6828369B2 (en) * 2002-03-05 2004-12-07 Polymatech Co., Ltd Sheet for conducting heat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309096A (en) * 1992-05-12 1993-11-22 Toshiba Ceramics Co Ltd Impulse wave generating source
JPH06154232A (en) * 1992-11-25 1994-06-03 Toshiba Ceramics Co Ltd Impact wave generation source
US6828369B2 (en) * 2002-03-05 2004-12-07 Polymatech Co., Ltd Sheet for conducting heat

Also Published As

Publication number Publication date
JP2740027B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
JP2014095063A (en) Epoxy resin/inorganic matter composite sheet for sealing
JPH03181547A (en) Resin composition for sealing semiconductor
JP2016014121A (en) Epoxy resin composition for injection molding and sensor component
JP3107360B2 (en) Liquid epoxy resin sealing material
JP6307352B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JPH01299862A (en) Epoxy resin composition for semiconductor sealing
JP2003171531A (en) Resin composition for sealing and resin-sealed semiconductor device
JPS58174416A (en) Epoxy resin composition for sealing of semiconductor
JPH07268277A (en) Coating resin composition
KR102228914B1 (en) Epoxy resin composition
JPH02173057A (en) Resin composition for semiconductor sealing
KR950005345B1 (en) Epoxy Resin Powder Coating Composition
JP2010235704A (en) Thermosetting resin composition
JP2012188598A (en) Thermosetting resin composition for semiconductor adhesion, and semiconductor device
KR100529258B1 (en) Epoxy Molding Compound for Excapsulation of Semiconductor
JP3008981B2 (en) Epoxy resin composition
JPH05259315A (en) Resin-sealed semiconductor device
CN109111687B (en) Plastic composition for encapsulation and application thereof
JP3013511B2 (en) Epoxy resin composition for semiconductor encapsulation
KR960000973B1 (en) Thermosetting epoxy resin powder coating composition for electric insulation
KR102158873B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JPH0320350A (en) Epoxy resin composition
JP2001114983A (en) Epoxy resin composition and production method of epoxy resin
JPH0425557A (en) Liquid epoxy resin composition
JP3093051B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees