JPH03171544A - High polymer molecular composition analyzing device - Google Patents
High polymer molecular composition analyzing deviceInfo
- Publication number
- JPH03171544A JPH03171544A JP1309700A JP30970089A JPH03171544A JP H03171544 A JPH03171544 A JP H03171544A JP 1309700 A JP1309700 A JP 1309700A JP 30970089 A JP30970089 A JP 30970089A JP H03171544 A JPH03171544 A JP H03171544A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- atoms
- radiated
- polymer
- radiating device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 44
- 239000000203 mixture Substances 0.000 title abstract description 3
- 238000010894 electron beam technology Methods 0.000 claims abstract description 18
- 238000004458 analytical method Methods 0.000 claims abstract description 10
- 238000004949 mass spectrometry Methods 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 abstract description 12
- 239000007787 solid Substances 0.000 abstract description 9
- 239000012634 fragment Substances 0.000 abstract description 4
- 230000007935 neutral effect Effects 0.000 abstract description 4
- 150000002500 ions Chemical class 0.000 abstract description 2
- 238000007781 pre-processing Methods 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 16
- 239000000126 substance Substances 0.000 description 11
- 238000010265 fast atom bombardment Methods 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 7
- 238000004566 IR spectroscopy Methods 0.000 description 5
- 238000001069 Raman spectroscopy Methods 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000000045 pyrolysis gas chromatography Methods 0.000 description 4
- 238000000009 pyrolysis mass spectrometry Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000000050 ionisation spectroscopy Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Landscapes
- Electron Tubes For Measurement (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は高分子化合物の分子構造を分析する高分子分子
構造分析装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a polymer molecular structure analyzer for analyzing the molecular structure of a polymer compound.
〔従来の技術]
高分子化合物の分子構造を解析するためのデータは、こ
れまで赤外線吸収スペクトル法,ラマン分光法,核磁気
共鳴分光法,熱分解ガスクロマトグラフ/質量分析法等
により得られていた。これらは、それぞれ以下のような
特徴を持っている。[Prior art] Data for analyzing the molecular structure of polymer compounds has been obtained by infrared absorption spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, pyrolysis gas chromatography/mass spectrometry, etc. . Each of these has the following characteristics.
赤外線吸収スペクトル法は、分子内の原子間の各種振動
において、分子の双極子モーメントが変化するような振
動モードに活性であり、得られた赤外線吸収スペクトル
上の各吸収ピークは分子内の原子間結合に特徴的である
。従って、いかなる原子間結合がその分子内に存在する
かを知ることができ、多くのそのような原子間結合の情
報から試料とした高分子化合物の分子構造を解析するこ
とができる。また、この方法においては多くの物質のス
ペクトルが集められ、データベース化されているため、
コンピュータによる検索によって迅速に物質の同定を行
うことも可能である。ラマン分光法は、分子内の原子間
の各種振動において、分子の分極率が変化するような振
動モードに活性であり、得られたラマン散乱スペクトル
上の各ピークは分子内の各原子間結合に特徴的である。Infrared absorption spectroscopy is active in vibrational modes in which the dipole moment of a molecule changes in various vibrations between atoms within a molecule, and each absorption peak on the obtained infrared absorption spectrum is a vibration mode between atoms within a molecule. It is characteristic of bonding. Therefore, it is possible to know what kind of interatomic bonds are present in the molecule, and the molecular structure of the sample polymer compound can be analyzed from information about many such interatomic bonds. In addition, in this method, spectra of many substances are collected and compiled into a database, so
It is also possible to quickly identify substances through computer searches. Raman spectroscopy is active in vibrational modes that change the polarizability of the molecule in various vibrations between atoms within the molecule, and each peak on the obtained Raman scattering spectrum corresponds to each bond between atoms within the molecule. It is characteristic.
従って、赤外線吸収スペクトル法とは相補的に、いかな
る原子間結合が分子内に存在するかを知ることができ、
多くのそのような原子間結合の情報から試料とした高分
子化合物中にいかなる原子間結合が存在するかを、また
、いかなる分子構造をその高分子が有するかを解析する
ことができる。核磁気共鳴分光法では、分子中の各スピ
ン量子数が零以外の原子核のスピンの情報を得ることが
できる。Therefore, complementary to infrared absorption spectroscopy, it is possible to determine what kind of interatomic bonds exist within a molecule.
From a large amount of information on such interatomic bonds, it is possible to analyze what kind of interatomic bonds exist in a sample polymer compound and what kind of molecular structure the polymer has. Nuclear magnetic resonance spectroscopy can obtain information about the spins of atomic nuclei in molecules where each spin quantum number is non-zero.
この情報は原子核の周囲の電子密度や結合の相手の原子
の種類や数に関するデータを含んでおり、試料とした高
分子化合物の分子構造を明確に解析することが可能であ
る。熱分解ガスクロマトグラフ/質量分析法は、試料高
分子の微細片又は微量粉末を不活性ガス中にて高温で熱
分解し、得られた熱分解ガスをガスクロマトグラフによ
り各或分に分離した後、質量分析法により各成分の質量
スペクトルを得る方法である。質量スペクトルはそれぞ
れの物質に特徴的であり、従って熱分解ガス中の各或分
を同定することができ、そしてこの熱分解ガスの構成は
試料とした高分子化合物の分子構造を明確に反映してい
るため、その高分子の分子構造を解析することができる
。また、比較的低分子の物質に対する分析方法としてF
AB(Fast atom bombardment)
一質量分析法が知られているが、これは生体内物質に代
表されるような熱に対して不安定な物質、極性の高い物
質等、他の手段では容易にイオン化せずに質量分析でき
ない物質のイオン化および質量分析が可能であり、ビタ
ミン類や酵素等の生体内物質の分析に有効な方法である
。This information includes data on the electron density around the nucleus and the type and number of bonding partners, making it possible to clearly analyze the molecular structure of the sample polymer compound. The pyrolysis gas chromatography/mass spectrometry method involves pyrolyzing fine pieces or trace powders of a sample polymer at high temperatures in an inert gas, separating the resulting pyrolysis gas into portions using a gas chromatograph, and then This is a method of obtaining mass spectra of each component using mass spectrometry. Mass spectra are characteristic of each substance, and therefore each part of the pyrolysis gas can be identified, and the composition of this pyrolysis gas clearly reflects the molecular structure of the sampled polymer compound. Because of this, it is possible to analyze the molecular structure of the polymer. In addition, F
AB (Fast atom bombardment)
One known mass spectrometry method is the method used to analyze substances that are unstable to heat, such as substances in living organisms, and highly polar substances that cannot be easily ionized and subjected to mass analysis using other methods. It enables ionization and mass spectrometry of substances, and is an effective method for analyzing substances in living organisms such as vitamins and enzymes.
ところで、上述の赤外線吸収スペクトル法,ラマン分光
法,核磁気共鳴分光法,熱分解ガスクロマトグラフ/質
量分析法やFAB一質量分析法には高分子化合物、特に
固体高分子化合物の分子構造の解析上、以下のような種
々の問題点がある。即ち、赤外線吸収スペクトル法では
固体高分子を干渉縞が生じない程度の薄膜にして透過で
測定するか、鏡面をつくってATR法で測定するか、粉
末にしてKBr錠剤として透過で測定するか、又は粉末
にして拡散反射法で測定する等の方法があるが、いずれ
も赤外線吸収法装置による測定に先だって上述のように
何等かの前処理を必要とするので、作業性の点で問題が
ある。ラマン分光法では、固体高分子をそのまま分析す
ることは可能であるが、励起光の試料に対する照射位置
や照射角度を適当に合わせないと、解析に有効な高強度
のスペクトルが得られない。また、高強度のスペクトル
を得るために励起光であるレーザ光の出力を高くしたり
、又はレンズ系により集光した場合、試料が熱変性して
しまうことが往々にしてあり、その場合、元の試料の情
報は得られなくなってしまう。核磁気共鳴分光法ではC
P/MAS (クロスボラリゼイション/マジックアン
グルスビニング)法の開発により固体試料も測定可能と
なってきているものの、液体試料ほどの分解能の高いス
ペクトルは得られず、複雑な構造の高分子ではやはり何
等かの溶媒に溶解して溶液試料として測定する必要があ
る。その場合、分子量の高い高分子は溶解しにくく特に
エボキシ樹脂や加硫ゴム等の架橋構造を有する物質は非
常に溶解が困難で、もし溶液にできたとしても分子量の
高いものほど溶液試料中の単位体積当りの分子量が少な
く解析に有効なスペクトルを得るのが困難な場合がある
。熱分解ガスクロマトグラフ/質量分析法では、不活性
ガス中で高温で試料を熱分解するため、高分子はかなり
細かな分子にまでラジカル反応により分解してしまい、
元の高分子の小さな各部の部分構造しか情報として得る
ことができない。さらに、この方法では、ほとんどの場
合分子中の原子間の結合の強弱に対して切断の選択性が
ないので、元の高分子の分子構造を解析することが困難
な場合が多い。以上のように高分子化合物の分子構造を
分析することのできる各種分析法には稲々の問題点があ
る。また、FAB一質量分析法は分子量が約3000程
度までの比較的分子量の低い物質、特にビタミン類や酵
素等の生体内分子の分析には最適な方法であるが、その
まま固体高分子を分析することは困難である。By the way, the above-mentioned infrared absorption spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, pyrolysis gas chromatography/mass spectrometry, and FAB mass spectrometry are methods for analyzing the molecular structure of polymer compounds, especially solid polymer compounds. , there are various problems as follows. That is, in infrared absorption spectroscopy, one should make the solid polymer into a thin film that does not cause interference fringes and measure it by transmission, make a mirror surface and measure it by ATR method, or make it into a powder and measure it by transmission as a KBr tablet. Alternatively, there are methods such as making it into a powder and measuring it using the diffuse reflection method, but both require some kind of pretreatment as mentioned above before measurement using an infrared absorption method, which poses problems in terms of workability. . With Raman spectroscopy, it is possible to analyze solid polymers as they are, but unless the irradiation position and irradiation angle of the excitation light on the sample are adjusted appropriately, a high-intensity spectrum that is effective for analysis cannot be obtained. In addition, when increasing the output of laser light (excitation light) to obtain a high-intensity spectrum, or focusing the light using a lens system, the sample often denatures due to heat, and in that case, the original information about the sample will no longer be available. In nuclear magnetic resonance spectroscopy, C
Although it has become possible to measure solid samples with the development of the P/MAS (cross-volatization/magic angle binning) method, it is not possible to obtain spectra with the high resolution of liquid samples, and it is still difficult to obtain spectra with complex structures for polymers. It is necessary to dissolve it in some kind of solvent and measure it as a solution sample. In that case, polymers with high molecular weights are difficult to dissolve, especially substances with crosslinked structures such as epoxy resins and vulcanized rubber, and even if they can be made into a solution, the higher the molecular weight, the more difficult it is to dissolve the substances in the solution sample. It may be difficult to obtain a spectrum effective for analysis because the molecular weight per unit volume is small. In pyrolysis gas chromatography/mass spectrometry, the sample is thermally decomposed at high temperatures in an inert gas, so the polymer is decomposed into very small molecules due to radical reactions.
Only the partial structure of each small part of the original polymer can be obtained as information. Furthermore, in most cases, this method does not have selectivity in cutting with respect to the strength or weakness of bonds between atoms in the molecule, so it is often difficult to analyze the molecular structure of the original polymer. As mentioned above, various analytical methods capable of analyzing the molecular structure of polymeric compounds have many problems. In addition, FAB mass spectrometry is an optimal method for analyzing substances with relatively low molecular weights of up to about 3000, especially biological molecules such as vitamins and enzymes, but it is also suitable for analyzing solid polymers as they are. That is difficult.
本発明の目的は以上述べたような従来の問題点を解消し
、高分子化合物を何等の前処理も要せず分析することが
でき、かつ、その分子構造に関する有効な情報を得るこ
とのできる新規な高分子分子構造分析装置を提供するこ
とにある。The purpose of the present invention is to solve the above-mentioned conventional problems, to be able to analyze a polymer compound without any pretreatment, and to obtain effective information regarding its molecular structure. The object of the present invention is to provide a new polymer molecular structure analysis device.
前記目的を達成するため、本発明に係る高分子分子構造
分析装置においては、FAB(Fast atom b
ombardment)ガンを備えたイオン化室および
質量分析室よりなる高分子分子構造分析装置であって、
前記イオン化室に、試料に紫外線を照射する紫外線照射
装置と、試料に電子線を照射する電子線照射装置とを装
備したものである。In order to achieve the above object, the polymer molecular structure analyzer according to the present invention uses FAB (Fast atom b
A polymer molecular structure analyzer comprising an ionization chamber and a mass spectrometry chamber equipped with a gun (embardment),
The ionization chamber is equipped with an ultraviolet irradiation device that irradiates the sample with ultraviolet rays and an electron beam irradiation device that irradiates the sample with an electron beam.
イオン化室において高分子に紫外線と電子線を照射する
と、高分子内の原子間結合はその結合解離エネルギーお
よび解離の活性化エネルギーに応じて切断される。従っ
て、試料とした固体高分子に特徴的な切断が多数生じる
こととなり、これにより生じた大きなフラグメントがF
ABガンから同時に照射されるAr等の中性原子によっ
てスパッタされ、その一部がイオン化される。このよう
にして生成したイオンは試料とした高分子に特徴的であ
り、かつ熱分解法における程には細かく分解されていな
いので、試料とした高分子の構造単位を明らかにするの
に有効である。また、ここで、電子線は試料内の原子間
結合を切断するだけでなく、試料フラグメントのスパッ
タ時の試料の帯電を消去する役割も持っている。When a polymer is irradiated with ultraviolet rays and an electron beam in an ionization chamber, interatomic bonds within the polymer are broken according to their bond dissociation energy and dissociation activation energy. Therefore, many characteristic cleavages occur in the sample solid polymer, and the resulting large fragments are
It is sputtered by neutral atoms such as Ar that are simultaneously irradiated from the AB gun, and a portion of it is ionized. The ions generated in this way are characteristic of the sampled polymer and are not decomposed as finely as in the thermal decomposition method, so they are effective in clarifying the structural units of the sampled polymer. be. Furthermore, here, the electron beam not only breaks the interatomic bonds within the sample, but also has the role of erasing the charge on the sample during sputtering of sample fragments.
以下、本発明の実施例について図面を参照して詳細に説
明する。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第1図は本発明の一実施例を示す高分子分子構造分析装
置の概略構成図である。FIG. 1 is a schematic diagram of a polymer molecular structure analysis apparatus showing an embodiment of the present invention.
図において、本装置はイオン化室lおよび質量分析室2
よりなり、このイオン化室lにはFABガン3,紫外線
照射装置4,電子線照射装置5が配置されている。この
装置を用いて高分子の分子構造の分析を行うには、まず
イオン化室1内に置かれた固体高分子試料6に紫外線照
射装置4から紫外線を照射するとともに電子線照射装置
5から電子線を照射し、同時にFABガン3よりAr中
性原子を照射する。この紫外線と電子線の照射により試
料の高分子は分子内の多数の位置で原子間の結合が切断
され、FABガン3より照射されるAr中性原子により
スパッタされ、一部はイオン化されて質量分析室2に入
る。以上のようにして試料とした固体高分子化合物の構
造単位の質量分析を行うことができ、試料の分子構造を
明らかにすることができる。また、ここで、電子線は試
料内の原子間結合を切断するだけでなく、試料フラグメ
ントのスパッタ時の試料の帯電を消去する役割も果たし
ている。上記の方法において、紫外線の波長と光量およ
び電子線のパワーをコントロールすることにより、分子
中の種類の異なる原子間結合を選択的に切断したり切断
の量をコントロールすること等が可能であり、これは分
子構造解析上重要な情報を与える。In the figure, this device includes an ionization chamber 1 and a mass spectrometry chamber 2.
In this ionization chamber 1, an FAB gun 3, an ultraviolet irradiation device 4, and an electron beam irradiation device 5 are arranged. To analyze the molecular structure of a polymer using this device, first, a solid polymer sample 6 placed in an ionization chamber 1 is irradiated with ultraviolet light from an ultraviolet irradiation device 4, and an electron beam is emitted from an electron beam irradiation device 5. , and at the same time Ar neutral atoms are irradiated from the FAB gun 3. By this irradiation with ultraviolet rays and electron beams, bonds between atoms in the polymer of the sample are broken at many positions within the molecule, which is sputtered by Ar neutral atoms irradiated by the FAB gun 3, and some of them are ionized and mass Enter analysis room 2. As described above, it is possible to perform mass spectrometry on the structural units of the solid polymer compound used as a sample, and to clarify the molecular structure of the sample. Further, here, the electron beam not only breaks the interatomic bonds within the sample, but also plays the role of erasing the charge on the sample during sputtering of sample fragments. In the above method, by controlling the wavelength and amount of ultraviolet light and the power of the electron beam, it is possible to selectively cleave different types of interatomic bonds in a molecule and control the amount of cleavage. This provides important information for molecular structure analysis.
[発明の効果]
以上説明したように本発明の高分子分子構造分析装置を
用いれば、試料に対し何等の前処理も必要とせず、迅速
にあらゆる種類の高分子化合物の分子構造を解析するこ
とができる。[Effects of the Invention] As explained above, by using the polymer molecular structure analyzer of the present invention, the molecular structure of all kinds of polymer compounds can be quickly analyzed without any pretreatment of the sample. Can be done.
第1図は本発明の一実施例を示す概略構成図である。 1・・・イオン化室 3・・・FABガン 5・・・電子線照射装置 2・・・質量分析室 4・・・紫外線照射装置 6・・・高分子試料 FIG. 1 is a schematic diagram showing an embodiment of the present invention. 1...Ionization chamber 3...FAB gun 5...Electron beam irradiation device 2...Mass spectrometry room 4...Ultraviolet irradiation device 6...Polymer sample
Claims (1)
t)ガンを備えたイオン化室および質量分析室よりなる
高分子分子構造分析装置であって、 前記イオン化室に、試料に紫外線を照射する紫外線照射
装置と、試料に電子線を照射する電子線照射装置とを装
備したことを特徴とする高分子分子構造分析装置。(1) FAB (Fastatom bombardmen)
t) A polymer molecular structure analyzer comprising an ionization chamber and a mass spectrometry chamber equipped with a gun, wherein the ionization chamber includes an ultraviolet irradiation device that irradiates the sample with ultraviolet rays, and an electron beam irradiation device that irradiates the sample with an electron beam. A polymer molecular structure analysis device characterized by being equipped with a device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1309700A JPH03171544A (en) | 1989-11-29 | 1989-11-29 | High polymer molecular composition analyzing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1309700A JPH03171544A (en) | 1989-11-29 | 1989-11-29 | High polymer molecular composition analyzing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03171544A true JPH03171544A (en) | 1991-07-25 |
Family
ID=17996231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1309700A Pending JPH03171544A (en) | 1989-11-29 | 1989-11-29 | High polymer molecular composition analyzing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03171544A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007108410A1 (en) * | 2006-03-17 | 2007-09-27 | Hamamatsu Photonics K.K. | Ionizing device |
WO2007108211A1 (en) * | 2006-03-17 | 2007-09-27 | Rigaku Corporation | Gas analyzer |
JP2016225108A (en) * | 2015-05-29 | 2016-12-28 | 国立研究開発法人日本原子力研究開発機構 | Mass spectrometer and ion irradiation device |
-
1989
- 1989-11-29 JP JP1309700A patent/JPH03171544A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007108410A1 (en) * | 2006-03-17 | 2007-09-27 | Hamamatsu Photonics K.K. | Ionizing device |
WO2007108211A1 (en) * | 2006-03-17 | 2007-09-27 | Rigaku Corporation | Gas analyzer |
US8044343B2 (en) | 2006-03-17 | 2011-10-25 | Rigaku Corporation | Gas analyzer |
US8592779B2 (en) | 2006-03-17 | 2013-11-26 | Hamamatsu Photonics K.K. | Ionizing device |
JP2016225108A (en) * | 2015-05-29 | 2016-12-28 | 国立研究開発法人日本原子力研究開発機構 | Mass spectrometer and ion irradiation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Berden et al. | An automatic variable laser attenuator for IRMPD spectroscopy and analysis of power-dependence in fragmentation spectra | |
EP2391877B1 (en) | Soft ablative desorption method and system | |
US5017007A (en) | Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same | |
DE69426642T2 (en) | Method and device for analyzing immunity using Raman spectrometry | |
Asahi et al. | Development of a femtosecond diffuse reflectance spectroscopic system, evaluation of its temporal resolution, and applications to organic powder systems | |
Grant et al. | Generic serial and parallel on‐line direct‐injection using turbulent flow liquid chromatography/tandem mass spectrometry | |
KR20010110293A (en) | Apparatus for optically characterising thin layered material | |
Yeni et al. | Rapid IRMPD (InfraRed multiple photon dissociation) analysis for glycomics | |
JP4104132B2 (en) | High speed particle generator | |
Pang et al. | Laser-enhanced ionization as a diagnostic tool in laser-generated plumes | |
WO2000067003A1 (en) | Composition analysis by scanning femtosecond laser ultraprobing (casflu) | |
JPH03171544A (en) | High polymer molecular composition analyzing device | |
US7220972B2 (en) | Method and apparatus for the characterization and analysis of the shape of molecules and molecular clusters, and for the separation of desired isomers, based on Rydberg states | |
EP0144869B1 (en) | Grazing incidence reflection spectrometer | |
JP6220878B2 (en) | Method and apparatus for quantitative LIBS measurement of biomolecular targets on a biochip | |
JPH01186543A (en) | Polymer molecular structure analyzer | |
JPH03152849A (en) | Analysis device for molecular structure of high polymer | |
JPH01207651A (en) | Apparatus for analyzing molecular structure of high-polymer | |
Millan et al. | The high‐mass component (> m/z 10 000) of coal tar pitch by matrix‐assisted laser desorption/ionisation mass spectrometry and size‐exclusion chromatography | |
Aubriet | Laser-induced Fourier transform ion cyclotron resonance mass spectrometry of organic and inorganic compounds: methodologies and applications | |
Krutchinsky et al. | Thin‐layer chromatography/laser desorption of peptides followed by multiphoton ionization time‐of‐flight mass spectrometry | |
Spengler et al. | Laser mass analysis in biology | |
JP4212749B2 (en) | Dioxin measurement method and apparatus | |
Hsueh et al. | Depth profiling analysis of adsorbed species on a single microparticle with photoacoustic spectroscopy | |
Nworie et al. | Comparison of Analytical Techniques in the Characterization of Complex Compounds |