JPH03133632A - Heat transfer pipe for u-shape type heat exchanger and manufacture therefor - Google Patents
Heat transfer pipe for u-shape type heat exchanger and manufacture thereforInfo
- Publication number
- JPH03133632A JPH03133632A JP1273325A JP27332589A JPH03133632A JP H03133632 A JPH03133632 A JP H03133632A JP 1273325 A JP1273325 A JP 1273325A JP 27332589 A JP27332589 A JP 27332589A JP H03133632 A JPH03133632 A JP H03133632A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- pipe
- heat exchanger
- film
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229920005989 resin Polymers 0.000 claims abstract description 20
- 239000011347 resin Substances 0.000 claims abstract description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 239000010949 copper Substances 0.000 claims abstract description 12
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 7
- 239000007921 spray Substances 0.000 claims description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000003973 paint Substances 0.000 claims description 15
- 239000000725 suspension Substances 0.000 claims description 14
- 238000005507 spraying Methods 0.000 claims description 7
- 210000004204 blood vessel Anatomy 0.000 claims 1
- 230000001681 protective effect Effects 0.000 abstract description 35
- 238000005260 corrosion Methods 0.000 abstract description 16
- 230000007797 corrosion Effects 0.000 abstract description 15
- 235000014413 iron hydroxide Nutrition 0.000 abstract description 8
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000498 cooling water Substances 0.000 description 7
- 239000011253 protective coating Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000013535 sea water Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 238000004210 cathodic protection Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910001448 ferrous ion Inorganic materials 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000007592 spray painting technique Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/02—Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
- F16L58/04—Coatings characterised by the materials used
- F16L58/10—Coatings characterised by the materials used by rubber or plastics
- F16L58/1009—Coatings characterised by the materials used by rubber or plastics the coating being placed inside the pipe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/22—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
- B05D7/222—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes of pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/04—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Coating Apparatus (AREA)
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は管内を海水、河海水又は淡水等の冷却水が通流
する熱交換器用伝熱管及びその製造方法に関し、特にU
字型に湾曲されその内面に冷却水による腐食を防止する
ための耐食性保護皮膜が形成されたU字型熱交換器用伝
熱管及びその製造方法に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a heat transfer tube for a heat exchanger in which cooling water such as seawater, river seawater or fresh water flows through the tube, and a method for manufacturing the same.
The present invention relates to a heat exchanger tube for a U-shaped heat exchanger, which is curved into a U-shape and has a corrosion-resistant protective coating formed on its inner surface to prevent corrosion by cooling water, and a method for manufacturing the same.
[従来の技術]
管内面に海水、河海水又は淡水を冷却水として通水する
熱交換器用の伝熱管としては、従来から銅又は調合金製
の管材が使用されている。この場合に、冷却水による腐
食を防止するために、管内面に例えば水酸化鉄等を主成
分とする保護皮膜を形成することが多い。一般的に、こ
の水酸化鉄等を主成分とする保護皮膜は、熱交換器を通
流する冷却水中に第1鉄イオン等を注入する方法により
形成されている。しかし、この方法は通水開始後保護皮
膜が形成される迄に一定の期間が必要であるために、冷
却水の通水初期に厳しい腐食条件に曝される場合には、
伝熱管内面の皮膜形成が間に合わず、十分な防食効果が
得られないという欠点がある。[Prior Art] As a heat exchanger tube for a heat exchanger in which seawater, river/seawater, or fresh water is passed through the inner surface of the tube as cooling water, a tube material made of copper or a prepared alloy has conventionally been used. In this case, in order to prevent corrosion caused by cooling water, a protective film containing, for example, iron hydroxide as a main component is often formed on the inner surface of the tube. Generally, this protective film containing iron hydroxide or the like as a main component is formed by injecting ferrous ions or the like into cooling water flowing through a heat exchanger. However, this method requires a certain period of time after the start of water flow until a protective film is formed.
The disadvantage is that the film cannot be formed on the inner surface of the heat exchanger tube in time, and a sufficient anticorrosion effect cannot be obtained.
そこで、熱交換器の使用を開始する前に、予め、防食塗
膜等の保護皮膜を形成しておく方法が採用されるように
なってきた。この種の熱交換器用伝熱管においては、皮
膜による伝熱性能の低下を防止するために、保護皮膜は
薄く、且つ、均一に形成する必要がある。このため、こ
のような保護皮膜は、一般的に、管内面にスプレィノズ
ルを通過させつつこのスプレィノズルから皮膜形成物質
を噴霧することにより形成している。Therefore, a method has been adopted in which a protective film such as an anticorrosive coating is formed in advance before the heat exchanger is put into use. In this type of heat exchanger tube for a heat exchanger, the protective coating needs to be formed thin and uniformly in order to prevent a decrease in heat transfer performance due to the coating. For this reason, such a protective film is generally formed by passing a spray nozzle onto the inner surface of the tube and spraying a film-forming substance from the spray nozzle.
[発明が解決しようとする課題]
しかしながら、従来、この内面保護皮膜付き伝熱管は直
管のものに限られており、U字型に湾曲した形状の曲げ
管を使用する熱交換器の場合は、この技術が実用化され
ていないという問題点がある。[Problems to be Solved by the Invention] Conventionally, however, heat exchanger tubes with inner protective coatings have been limited to straight tubes, and in the case of heat exchangers that use bent tubes curved in a U-shape, However, there is a problem that this technology has not been put into practical use.
即ち、熱交換器用伝熱管の内面に保護皮膜を形成する場
合には、前述の如く、スプレィノズルから皮膜形成物質
を噴霧させながらこのスプレィノズルを管内に通過させ
ることにより行っている。That is, when forming a protective film on the inner surface of a heat exchanger tube for a heat exchanger, as described above, this is done by passing the spray nozzle into the tube while spraying the film-forming substance from the spray nozzle.
しかし、U字型に湾曲した管の場合には、管の全長に亘
ってスプレィノズルを通過させることができないことか
ら、管内面に予め保護皮膜を形成しておくことは困難で
ある。However, in the case of a U-shaped curved tube, it is difficult to form a protective coating on the inner surface of the tube in advance because the spray nozzle cannot pass through the entire length of the tube.
なお、直管の状態で管内面に皮膜を形成した後、これを
U字型に曲げ加工することにより、内面保護皮膜付きの
U字型の伝熱管を製造することが考えられる。この場合
、保護皮膜としては通常の曲げ加工による管の変形に追
随できるほど大きな延性を宵する必要があり、実際この
ような樹脂膜もある。しかし、銅又は銅合金製伝熱管の
場合には、曲げ加工により発生する残留応力を除去しな
いで熱交換器として使用すると、応力腐食割れ等が発生
する虞れがある。従って、この場合は、直管に曲げ加工
を施してU字型に湾曲させた後、応力除去のための焼鈍
処理を行う必要がある。このため、管内面に形成する皮
膜は焼鈍処理時の高温に耐えるものである必要がある。In addition, it is possible to manufacture a U-shaped heat exchanger tube with an inner surface protective coating by forming a coating on the inner surface of the tube in a straight tube state and then bending the tube into a U-shape. In this case, the protective coating needs to have a large enough ductility to follow the deformation of the pipe due to normal bending, and in fact, such a resin coating is available. However, in the case of copper or copper alloy heat exchanger tubes, if they are used as a heat exchanger without removing the residual stress generated by bending, there is a risk that stress corrosion cracking or the like may occur. Therefore, in this case, after the straight pipe is bent into a U-shape, it is necessary to perform an annealing treatment to remove stress. Therefore, the coating formed on the inner surface of the tube needs to be able to withstand the high temperatures during annealing.
しかしながら、一般的な有機系樹脂は、この焼鈍処理に
おける高温に耐えられるものではない。However, common organic resins cannot withstand the high temperatures during this annealing treatment.
なお、無機質の皮膜には焼鈍処理の際の高温に耐えるこ
とができるものもある。しかし、無機質の皮膜の場合は
、延性がないためU字型の曲げ加工には追随できない。Note that some inorganic films can withstand high temperatures during annealing treatment. However, in the case of an inorganic film, it cannot be bent into a U-shape because it has no ductility.
これらの理由により、U字型に湾曲した伝熱管について
は予め保護皮膜を形成しておくことができず、伝熱管を
熱交換器に装着した後、冷却水中に第1鉄イオンを注入
して保護皮膜を形成しているのが実態である。このため
、腐食環境が厳しい場合には、十分な防食効果が得られ
ていない。For these reasons, it is not possible to form a protective film on U-shaped heat exchanger tubes in advance, and ferrous ions are injected into the cooling water after the heat exchanger tubes are installed in the heat exchanger. In reality, it forms a protective film. Therefore, when the corrosive environment is severe, sufficient anticorrosion effect is not obtained.
本発明はかかる問題点に鑑みてなされたものであって、
腐食環境が厳しい地域で使用する場合でも腐食を回避す
ることができるU字型熱交換器用伝熱管及びその製造方
法を提供することを目的とする。The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a heat exchanger tube for a U-shaped heat exchanger that can avoid corrosion even when used in a region with a severe corrosive environment, and a method for manufacturing the same.
[課題を解決するための手段]
本発明に係るU字型熱交換器用伝熱管は、U字型に湾曲
した形状の銅又は銅合金製熱交換器用伝熱管において、
両管端から50mm以上の領域を除いた領域の管内面に
形成された1乃至100μmの膜厚の保護皮膜(有機系
樹脂皮膜又は無機物を主成分とする皮膜)を有すること
を特徴とする。[Means for Solving the Problem] The U-shaped heat exchanger tube for a heat exchanger according to the present invention is a heat exchanger tube for a heat exchanger made of copper or copper alloy and having a U-shaped curved shape.
It is characterized by having a protective film (an organic resin film or a film mainly composed of an inorganic material) with a thickness of 1 to 100 μm formed on the inner surface of the tube excluding a region of 50 mm or more from both ends of the tube.
また、本発明に係るU字型熱交換器用伝熱管の製造方法
は、直管部分と曲管部分とからなるU字型の銅又は銅合
金製管の両端部の所定部分に被覆を設ける工程と、前記
管の内部における前記直管部分と前記曲管部分との境界
部にスプレィノズルを配置し、このスプレィノズルから
前記曲管部分内面に向けて有機系樹脂塗料又は鉄粉懸濁
液を噴出する工程と、前記スプレィノズルを管の端部方
向に移動させつつ前記直管部分内面に向けて前記有機系
樹脂塗料又は鉄粉懸濁液を噴出する工程とを存すること
を特徴とする。Further, the method for manufacturing a U-shaped heat exchanger tube for a heat exchanger according to the present invention includes a step of providing a coating on predetermined portions of both ends of a U-shaped copper or copper alloy tube consisting of a straight tube portion and a curved tube portion. A spray nozzle is arranged at the boundary between the straight pipe section and the curved pipe section inside the pipe, and an organic resin paint or iron powder suspension is applied from the spray nozzle toward the inner surface of the curved pipe section. and a step of spouting the organic resin paint or iron powder suspension toward the inner surface of the straight pipe portion while moving the spray nozzle toward the end of the pipe.
なお、鉄粉懸濁液を使用する場合には、直管部分内面に
対する鉄粉懸濁液の噴出後、管の端部から管内に湿潤空
気を送給する工程を設ける。In addition, when using an iron powder suspension, a step of feeding humid air into the pipe from the end of the pipe is provided after the iron powder suspension is ejected onto the inner surface of the straight pipe portion.
[作用コ
本発明に係るU字型熱交換器用伝熱管においては、両管
端部から50mm以上の部分には保護皮膜が形成されて
いない。伝熱管においては、通常、冷却水が供給される
氷室側からは電気防食が実施されるので、管端部はこの
電気防食により腐食から十分に保護される。このため、
管端部の内面は保護皮膜を必要としない。また、伝熱管
を熱交換器に組み込む際には、伝熱管の双方の管端部を
拡管加工することにより管板の孔に押しつけて管板に固
定するので、管端部分に保護皮膜が形成されていても、
拡管のときにこの保護皮膜が除去されてしまう。また、
皮膜物質が拡管工具に付着してしまうので、この付着し
た皮膜物質を除去する必要があって煩雑である。このた
め、管端から50mm以上の領域は予め保護皮膜を形成
しておく必要がないだけではなく、保護皮膜が形成され
ていない方が、使用する際に有利である。[Operation] In the U-shaped heat exchanger tube according to the present invention, no protective film is formed in the portions 50 mm or more from both tube ends. In heat transfer tubes, cathodic protection is usually performed from the ice chamber side to which cooling water is supplied, so that the ends of the tubes are sufficiently protected from corrosion by this cathodic protection. For this reason,
The inner surface of the tube end does not require a protective coating. In addition, when incorporating heat exchanger tubes into a heat exchanger, both ends of the heat exchanger tubes are expanded and pressed against the holes in the tube sheet and fixed to the tube sheet, so a protective film is formed on the tube ends. Even if it is
This protective film is removed during tube expansion. Also,
Since the coating substance adheres to the tube expansion tool, it is necessary to remove the attached coating substance, which is troublesome. Therefore, not only is it not necessary to form a protective film in advance in an area of 50 mm or more from the end of the tube, but it is also advantageous during use if no protective film is formed.
保護皮膜の膜厚はl乃至100μmである。保護皮膜の
膜厚が1μm以下の場合は、皮膜の防食効果が十分では
ない。一方、保護皮膜の膜厚が100μmを超えると、
伝熱管としての熱伝導性が低下する。このため、保護皮
膜の膜厚はl乃至100μmとする。The thickness of the protective film is 1 to 100 μm. When the thickness of the protective film is 1 μm or less, the anticorrosion effect of the film is not sufficient. On the other hand, if the thickness of the protective film exceeds 100 μm,
Thermal conductivity as a heat transfer tube decreases. Therefore, the thickness of the protective film is set to 1 to 100 μm.
なお、保護皮膜としては、エポキシ系又はアルキッド系
等の有機系樹脂及び水酸化鉄等を主成分とする無機質の
皮膜等がある。The protective film may be an organic resin such as an epoxy or alkyd resin, or an inorganic film containing iron hydroxide as a main component.
次に、本発明方法においては、先ず、U字型に湾曲して
いて、直管部分と曲管部分とからなる銅又は銅合金製管
の双方の管端部内面に被覆を設け、後工程においてこの
管端部にも皮膜が形成されることを防止する。そして、
前記直管部分と前記曲管部分との境界部にスプレィノズ
ルを配置し、このスプレィノズルから有機系樹脂塗料又
は鉄粉懸濁液を前記曲管部分の内面に向けて噴出する。Next, in the method of the present invention, first, a coating is provided on the inner surface of both ends of the copper or copper alloy pipe, which is curved in a U-shape and consists of a straight pipe part and a bent pipe part, and then This also prevents the formation of a film on the end of the tube. and,
A spray nozzle is disposed at the boundary between the straight pipe section and the curved pipe section, and the organic resin paint or the iron powder suspension is jetted from the spray nozzle toward the inner surface of the curved pipe section.
これにより、管の曲管部分の内面に有機系樹脂塗料又は
鉄粉懸濁液を塗布することができる。Thereby, the organic resin paint or the iron powder suspension can be applied to the inner surface of the curved pipe portion of the pipe.
その後、このスプレィノズルを管の端部方向に向けて移
動させ、この移動の過程で直管部分の内面に有機系樹脂
塗料又は鉄粉懸濁液を噴出する。Thereafter, this spray nozzle is moved toward the end of the pipe, and during this movement, organic resin paint or iron powder suspension is sprayed onto the inner surface of the straight pipe portion.
次いで、有機系樹脂塗料の場合は、前記有機系樹脂塗料
を乾燥させることにより有機系保護皮膜が得られる。ま
た、鉄粉懸濁液の場合は、管内に湿潤空気を送給するこ
とにより、鉄粉が酸化されて、水酸化鉄又は酸化鉄を主
成分とする無機物の皮膜が得られる。このようにして、
前述の保護皮膜を有するU字型熱交換器用伝熱管を容易
に製造することができる。Next, in the case of an organic resin paint, an organic protective film is obtained by drying the organic resin paint. In the case of an iron powder suspension, the iron powder is oxidized by supplying humid air into the pipe, and an inorganic film containing iron hydroxide or iron oxide as a main component is obtained. In this way,
A U-shaped heat exchanger tube for a heat exchanger having the above-mentioned protective film can be easily manufactured.
[実施例]
次に、本発明の実施例について添付の図面を参照して説
明する。[Example] Next, an example of the present invention will be described with reference to the accompanying drawings.
第1図は本実施例に係るU字型熱交換器用伝熱管を示す
模式的縦断面図、第2図は同じくその拡大縦断面図、第
3図は同じくその横断面図である。FIG. 1 is a schematic vertical cross-sectional view showing a U-shaped heat exchanger tube according to the present embodiment, FIG. 2 is an enlarged vertical cross-sectional view thereof, and FIG. 3 is a cross-sectional view thereof.
本実施例に係るU字型熱交換器用伝熱管は、U字型に曲
げ加工された伝熱管素管3の内面の皮膜形成部2に有機
系樹脂又は水酸化鉄等を主成分とする無機物からなる保
護皮膜4が形成されている。The U-shaped heat exchanger tube for a heat exchanger according to this embodiment has an organic resin or an inorganic material containing iron hydroxide as a main component in the film-forming portion 2 on the inner surface of the heat exchanger tube element tube 3 that is bent into a U-shape. A protective film 4 consisting of the following is formed.
素管3の両管端部は皮膜非形成部1となっている。Both end portions of the raw pipe 3 are coat-free portions 1 .
この皮膜非形成部1の管軸方向の長さは50mm以上で
あり、この皮膜非形成部1においては、銅又は銅合金か
らなる伝熱管素管3が露出している。また、皮膜形成部
2に形成された保護皮膜4の膜厚は!乃至iooμmで
ある。The length of the film-free portion 1 in the tube axis direction is 50 mm or more, and in the film-free portion 1, the heat exchanger tube blank 3 made of copper or copper alloy is exposed. Also, what is the thickness of the protective film 4 formed on the film forming part 2? The range is from iooμm to iooμm.
このように、本実施例に係る熱交換器用伝熱管は、U字
型に湾曲した形状の管内面に保護皮膜が形成されている
ため、防食効果が高い。また管端部から50mm以上に
亘る領域には皮膜4が形成されていないため、伝熱管を
熱交換器に組み込む際の拡管加工において、拡管工具へ
の皮膜物質の付着が防止される。As described above, the heat exchanger tube according to this embodiment has a high anticorrosion effect because the protective film is formed on the inner surface of the U-shaped tube. Further, since the coating 4 is not formed in the region extending 50 mm or more from the tube end, adhesion of the coating material to the tube expansion tool is prevented during tube expansion when the heat exchanger tube is assembled into a heat exchanger.
次に、上述のU字型熱交換器用伝熱管を本実施例方法に
より製造した結果について説明する。Next, the results of manufacturing the above-mentioned U-shaped heat exchanger tube for a heat exchanger by the method of this embodiment will be explained.
外径が19.0mm、肉厚がI 、1115mmのアル
ミニウム黄銅管(JIS H3300CG372T )
を50mm1100mm又は200 mmの曲げ半径で
U字型に曲げ加工した。このU字型の曲げ管の直管部分
は2000mmである。そして、これらの管の内面に、
以下に示す方法によりエポキシ系の防錆塗料を塗布した
。Aluminum brass tube with an outer diameter of 19.0 mm and a wall thickness of I, 1115 mm (JIS H3300CG372T)
was bent into a U-shape with a bending radius of 50 mm, 1100 mm, or 200 mm. The straight pipe portion of this U-shaped bent pipe is 2000 mm. And on the inner surface of these tubes,
An epoxy anti-corrosion paint was applied by the method shown below.
即ち、先ず、管内面の両端部から20.50又は601
までの部分に取り外し可能な覆いを設けた。そして、管
端からエアレススプレィ塗装用のスプレィノズルを挿入
し、曲げ管の直管部分と曲管部分との境界部分にこのス
プレィノズルを配置した。That is, first, 20.50 or 601 from both ends of the inner surface of the tube.
A removable cover has been installed over the area. Then, a spray nozzle for airless spray painting was inserted from the end of the tube, and this spray nozzle was placed at the boundary between the straight pipe part and the bent pipe part of the bent pipe.
その後、このスプレィノズルの周辺から窒素ガスを供給
し管内に空気(酸素)が残留しないように、十分に窒素
ガス置換を行った。Thereafter, nitrogen gas was supplied from around the spray nozzle to sufficiently replace the tube with nitrogen gas so that no air (oxygen) remained inside the tube.
次に、スプレィノズル周辺から窒素ガスを供給しつつ、
スプレィ塗布を行い、曲管部分の内面を塗装した。Next, while supplying nitrogen gas from around the spray nozzle,
Spray coating was performed to paint the inner surface of the curved pipe section.
次いで、曲管部分の塗装が完了した後、スプレィノズル
を管の端部方向に移動させてつつスプレィ塗布を行い、
直管部分の内面を塗装した。そして、この直管部分の塗
装が完了した後、管の両端部の覆いを外した。このよう
にして、下記第1表に示す膜厚の皮膜を有する実施例1
乃至3及び比較例1乃至3の供試管を得た。Next, after the painting of the curved pipe part is completed, the spray nozzle is moved toward the end of the pipe while spraying is applied.
The inner surface of the straight pipe part was painted. After the painting of this straight pipe portion was completed, the covers from both ends of the pipe were removed. In this way, Example 1 having a film having a film thickness shown in Table 1 below
Test tubes of Comparative Examples 1 to 3 and Comparative Examples 1 to 3 were obtained.
なお、エアスプレィ法により塗装する場合は、塗料を噴
霧させるための気体として、空気の替りに窒素を使用し
ても、同様に曲管部分の塗装を行うことができた。In addition, when painting by the air spray method, even if nitrogen was used instead of air as the gas for spraying the paint, the curved pipe portion could be painted in the same way.
また、以下に説明する方法により、水酸化鉄を主成分と
する無機物の皮膜を有する伝熱管を製造した。In addition, a heat exchanger tube having an inorganic film containing iron hydroxide as a main component was manufactured by the method described below.
即ち、先ず、前述の曲げ加工が施された曲げ管の両端部
からIO又は50mmまでの部分に覆いをした。That is, first, a portion up to IO or 50 mm from both ends of the bent tube that had been subjected to the above-mentioned bending process was covered.
そして、管内面に鉄粉懸濁液を塗布した。この場合に、
管内面への鉄粉懸濁液の塗布は、上述したエポキシ系防
錆塗料の場合と同様に行った。Then, an iron powder suspension was applied to the inner surface of the tube. In this case,
The iron powder suspension was applied to the inner surface of the tube in the same manner as in the case of the epoxy anticorrosive paint described above.
次に、一方の管端から湿潤空気を送風して鉄分を酸化さ
せ、水酸化鉄を主成分とする無機物の保護皮膜を形成し
た。このようにして、第1表の皮膜厚さ欄に示す膜厚の
皮膜を有する実施例4乃至6及び比較例4の供試管を得
た。Next, moist air was blown from one end of the tube to oxidize the iron to form a protective film of an inorganic material containing iron hydroxide as the main component. In this way, test tubes of Examples 4 to 6 and Comparative Example 4 having coatings having the thickness shown in the coating thickness column of Table 1 were obtained.
また、比較例5,6として、夫々曲管部分の曲げ半径が
100又は200mmであって、保護皮膜を有しないU
字型曲げ管も用意した。In addition, as Comparative Examples 5 and 6, the bending radius of the curved pipe portion was 100 or 200 mm, respectively, and U without a protective film was used.
We also prepared a shape-shaped bent pipe.
これらの実施例及び比較例の各供試管をモデルコンデン
サーに装着し、6力月間通水試験を行って、その性能を
調べた。Each test tube of these examples and comparative examples was attached to a model condenser, and a 6-month water flow test was conducted to examine its performance.
この通水試験は、関門海峡の天然海水にS2−を0、l
ppmの濃度で毎日2時間添加したものを管内に2m/
秒の流速で通水することによって行った。In this water flow test, 0, l of S2- was added to the natural seawater of the Kanmon Strait.
Added at a concentration of ppm for 2 hours every day, it was added to the tube at 2 m/min.
This was done by passing water at a flow rate of seconds.
なお、各供試管の管端をネパール黄銅製の管板に拡管加
工により取り付けた後、定電位電解装置により管板面電
位を一550mV SCEに保持しながら通電し、供試
管に電気防食を施しながら通水した。In addition, after attaching the tube end of each test tube to a tube plate made of Nepalese brass by tube expansion processing, electricity was applied while maintaining the tube plate surface potential at -550 mV SCE using a constant potential electrolyzer, and the test tube was given cathodic protection. While doing so, the water was running.
通水完了後に供試管を半割りにして、各供試管毎に内面
の腐食深さを数点測定した。その腐食深さの最大値を併
せて第1表に示す。After water flow was completed, the test tube was cut in half, and the depth of corrosion on the inner surface of each test tube was measured at several points. The maximum values of the corrosion depth are also shown in Table 1.
また、各供試管の直管部分から長さが1000mmの直
管供試管を切り出した。そして、この直管供試管の外側
を100°Cの水蒸気雰囲気とし、管内に2m/秒の室
温工業用水を通流させ、水蒸気凝縮条件下での総括伝熱
係数を測定した。また、同一条件にて内面に保護皮膜を
有しない新管の総括伝熱係数を測定し、下記第1式によ
り、供試管の内面伝熱抵抗を求めた。Further, a straight test tube having a length of 1000 mm was cut from the straight pipe portion of each test tube. Then, the outside of this straight test tube was made into a steam atmosphere at 100° C., room temperature industrial water was passed through the tube at a rate of 2 m/sec, and the overall heat transfer coefficient under steam condensation conditions was measured. In addition, the overall heat transfer coefficient of a new pipe without a protective film on the inner surface was measured under the same conditions, and the inner heat transfer resistance of the test tube was determined using the following equation 1.
L/ K = 1 / K o+γ −(1)但し
、K :供試管の総括伝熱係数測定値Ko:新管の総括
伝熱係数測定値
γ :供試管の内面伝熱抵抗
この結果も併せて第1表に示した。L/K = 1/K o + γ - (1) However, K: Measured overall heat transfer coefficient of the test tube Ko: Measured overall heat transfer coefficient of the new pipe γ: Internal heat transfer resistance of the test tube It is shown in Table 1.
更に、拡管作業性については、各供試管を管板に装着す
る際に、拡管工具に皮膜の破片が付着してその掃除に手
間がかかったか否かにより評価した。この結果も第1表
に併せて示した。但し、表中、拡管作業時の煩雑さがな
かった場合を○で示し、工具に皮膜が付着してその掃除
に手間がかかった場合を×で示した。Furthermore, the tube expansion workability was evaluated based on whether or not membrane fragments adhered to the tube expansion tool when each test tube was attached to the tube sheet, and whether or not it took time and effort to clean it. The results are also shown in Table 1. However, in the table, cases where there was no trouble during pipe expansion work are indicated by ○, and cases where a film was attached to the tool and cleaning was time consuming are indicated by ×.
この第1表から明らかなように、保護皮膜を有しない比
較例5,6が0.22mm以上の腐食を受けるほど厳し
い腐食環境においても、本発明に係る実施例1乃至6は
いずれも最大腐食深さが0.01mm未満と腐食が極め
て少なかった。また、実施例1乃至6は、いずれも伝熱
抵抗が8.QX to−’J ’Ch/kca1以下と
小さく、また拡管作業の際に工具に皮膜が付着すること
もなかった。As is clear from Table 1, even in such a severe corrosive environment that Comparative Examples 5 and 6, which did not have a protective film, suffered corrosion of 0.22 mm or more, Examples 1 to 6 according to the present invention were all subject to maximum corrosion. The depth was less than 0.01 mm, indicating extremely little corrosion. Further, in Examples 1 to 6, the heat transfer resistance was 8. The QX to 'J' Ch/kca was small, less than 1, and no film was attached to the tool during pipe expansion work.
一方、保護皮膜の膜厚が0,5μmと薄い比較例1にお
いては最大腐食深さが0.18mmと深く、保護皮膜の
膜厚が120μmと厚い比較例2においては伝熱抵抗が
GX 10−’♂’Ch/kcalと極めて大きかった
。また、管端部からの皮膜非形成部の長さを短くした比
較例3,4は、拡管作業に使用した工具に皮膜が付着し
、工具の清掃が煩雑であった。On the other hand, in Comparative Example 1, where the protective film is thin at 0.5 μm, the maximum corrosion depth is as deep as 0.18 mm, and in Comparative Example 2, where the protective film is thick at 120 μm, the heat transfer resistance is GX 10- '♂'Ch/kcal was extremely large. In addition, in Comparative Examples 3 and 4 in which the length of the non-film-formed portion from the tube end was shortened, the film adhered to the tool used for pipe expansion work, making cleaning of the tool complicated.
なお、前述の如く、皮膜を存しない比較例5,6におい
ては、管内面が倣しく腐食されていた。In addition, as mentioned above, in Comparative Examples 5 and 6 in which no film was present, the inner surface of the tube was similarly corroded.
[発明の効果コ
以上説明したように本発明によれば、U字型熱交換器用
伝熱管の両管端から50mm以上の領域を除く領域の管
内面に、有機系樹脂皮膜又は無機物の皮膜を所定の膜厚
で形成したから、厳しい腐食状況下においても伝熱管の
腐食が防止されると共に伝熱効率も高い。また、伝熱管
を熱交換器に組み込む際に、拡管工具に皮膜が付着する
こともない。[Effects of the Invention] As explained above, according to the present invention, an organic resin film or an inorganic film is applied to the inner surface of the U-shaped heat exchanger tube excluding an area of 50 mm or more from both ends of the tube. Since the film is formed with a predetermined thickness, corrosion of the heat transfer tube is prevented even under severe corrosive conditions, and heat transfer efficiency is high. Further, when the heat exchanger tube is assembled into the heat exchanger, a film will not be attached to the tube expansion tool.
このため、本発明に係るU字型熱交換器用伝熱管は厳し
い状況下において使用される熱交換器用伝熱管として極
めて有用である。Therefore, the U-shaped heat exchanger tube according to the present invention is extremely useful as a heat exchanger tube used under severe conditions.
また、本発明方法によれば、U字型に湾曲した形状の銅
又は銅合金管の管端部に被覆を設けた後、前記管の直管
部分と曲管部分との境界にスプレィノズルを配置し、有
機系樹脂塗料又は鉄粉懸濁−液を噴出して曲管部分内面
に有機系樹脂塗料又は鉄粉懸濁液を被着した後、スプレ
ィノズルを管端部に移動させつつ直管部分に有機系樹脂
塗料又は鉄粉懸濁液を被着して、管端部の所定部分を除
いた領域の管内面に保護皮膜を形成するから、上述の優
れた特性を有するU字型熱交換器用伝熱管の工業的生産
が可能になる等、本発明はU字型熱交換器用伝熱管の腐
食防止に極めて優れた効果を奏する。Further, according to the method of the present invention, after providing a coating on the end of a copper or copper alloy pipe having a U-shaped curve, a spray nozzle is installed at the boundary between a straight pipe portion and a curved pipe portion of the pipe. After spraying organic resin paint or iron powder suspension to coat the inner surface of the curved pipe part, move the spray nozzle to the end of the pipe and spray directly. Since the pipe part is coated with an organic resin paint or iron powder suspension to form a protective film on the inner surface of the pipe except for a predetermined part of the pipe end, the U-shape has the above-mentioned excellent characteristics. The present invention has extremely excellent effects in preventing corrosion of U-shaped heat exchanger tubes, such as enabling industrial production of heat exchanger tubes for heat exchangers.
第1図は本発明の実施例に係るU字型熱交換器用伝熱管
を示す模式的縦断面図、第2図は同じくその拡大縦断面
図、第3図は同じくその横断面図である。
1;皮膜非形成部、2;皮膜形成部、3;伝熱管素管、
4;保護皮膜FIG. 1 is a schematic vertical cross-sectional view showing a U-shaped heat exchanger tube according to an embodiment of the present invention, FIG. 2 is an enlarged vertical cross-sectional view thereof, and FIG. 3 is a cross-sectional view thereof. 1; Film-free portion, 2; Film-formed portion, 3; Heat exchanger tube element,
4; Protective film
Claims (4)
用伝熱管において、両管端から50mm以上の領域を除
いた領域の管内面に形成された1乃至100μmの膜厚
の有機系樹脂皮膜を有することを特徴とするU字型熱交
換器用伝熱管。(1) In a U-shaped curved copper or copper alloy heat exchanger tube, an organic film with a thickness of 1 to 100 μm is formed on the inner surface of the tube excluding an area of 50 mm or more from both tube ends. A heat exchanger tube for a U-shaped heat exchanger, characterized by having a resin film.
用伝熱管において、両管端から50mm以上の領域を除
いた領域の管内面に形成された1乃至100μmの膜厚
の無機物を主成分とする皮膜を有することを特徴とする
U字型熱交換器用伝熱管。(2) In a U-shaped curved copper or copper alloy heat exchanger tube, an inorganic substance with a film thickness of 1 to 100 μm is formed on the inner surface of the tube excluding an area of 50 mm or more from both ends of the tube. A heat exchanger tube for a U-shaped heat exchanger, characterized by having a film containing as a main component.
合金製管の両端部の所定部分に被覆を設ける工程と、前
記管の内部における前記直管部分と前記曲管部分との境
界部にスプレィノズルを配置し、このスプレィノズルか
ら前記血管部分内面に向けて有機系樹脂塗料を噴出する
工程と、前記スプレィノズルを管の端部方向に移動させ
つつ前記直管部分内面に向けて前記有機系樹脂塗料を噴
出する工程とを有することを特徴とするU字型熱交換器
用伝熱管の製造方法。(3) A step of providing a coating on predetermined portions of both ends of a U-shaped copper or copper alloy pipe consisting of a straight pipe portion and a bent pipe portion, and the straight pipe portion and the bent pipe portion inside the pipe. a step of arranging a spray nozzle at the boundary between the tube and spouting an organic resin paint from the spray nozzle toward the inner surface of the blood vessel portion, and moving the spray nozzle toward the end of the tube while spraying the inner surface of the straight tube portion. A method for manufacturing a heat exchanger tube for a U-shaped heat exchanger, comprising the step of spouting the organic resin paint toward the U-shaped heat exchanger.
合金製管の両端部の所定部分に被覆を設ける工程と、前
記管の内部における前記直管部分と前記曲管部分との境
界部にスプレィノズルを配置し、このスプレィノズルか
ら前記曲管部分内面に向けて鉄粉懸濁液を噴出する工程
と、前記スプレィノズルを管の端部方向に移動させつつ
前記直管部分内面に向けて前記前記鉄粉懸濁液を噴出す
る工程と、管の端部から管内に湿潤空気を送給する工程
とを有することを特徴とするU字型熱交換器用伝熱管の
製造方法。(4) A step of providing a coating on predetermined portions of both ends of a U-shaped copper or copper alloy pipe consisting of a straight pipe part and a bent pipe part, and the straight pipe part and the bent pipe part inside the pipe. a step of disposing a spray nozzle at the boundary between the curved pipe section and spouting an iron powder suspension from the spray nozzle toward the inner surface of the curved pipe section, and moving the spray nozzle toward the end of the pipe while Manufacturing a heat exchanger tube for a U-shaped heat exchanger, characterized by comprising a step of ejecting the iron powder suspension toward a partial inner surface, and a step of feeding moist air into the tube from an end of the tube. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1273325A JPH03133632A (en) | 1989-10-20 | 1989-10-20 | Heat transfer pipe for u-shape type heat exchanger and manufacture therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1273325A JPH03133632A (en) | 1989-10-20 | 1989-10-20 | Heat transfer pipe for u-shape type heat exchanger and manufacture therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03133632A true JPH03133632A (en) | 1991-06-06 |
JPH0588667B2 JPH0588667B2 (en) | 1993-12-24 |
Family
ID=17526311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1273325A Granted JPH03133632A (en) | 1989-10-20 | 1989-10-20 | Heat transfer pipe for u-shape type heat exchanger and manufacture therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03133632A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005280300A (en) * | 2004-03-31 | 2005-10-13 | Nichias Corp | Curved lining pipe and its manufacturing method |
WO2021148078A1 (en) * | 2020-01-20 | 2021-07-29 | Kipp Jens Werner | Method for the thin coating of inner surfaces of through-openings |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5893961B2 (en) * | 2012-02-29 | 2016-03-23 | 三菱重工業株式会社 | Method for manufacturing resin coating layer and method for extending life of piping |
-
1989
- 1989-10-20 JP JP1273325A patent/JPH03133632A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005280300A (en) * | 2004-03-31 | 2005-10-13 | Nichias Corp | Curved lining pipe and its manufacturing method |
JP4703970B2 (en) * | 2004-03-31 | 2011-06-15 | ニチアス株式会社 | Curved lining pipe and manufacturing method thereof |
WO2021148078A1 (en) * | 2020-01-20 | 2021-07-29 | Kipp Jens Werner | Method for the thin coating of inner surfaces of through-openings |
Also Published As
Publication number | Publication date |
---|---|
JPH0588667B2 (en) | 1993-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR840002240B1 (en) | Method for coating the inner surface of long tuber of small diameter | |
AU679499B2 (en) | Piping element for buried conduit, corresponding buried conduit, and method for protecting said piping element | |
JP5859726B2 (en) | Method for manufacturing pipe component with anticorrosion coating on outer surface | |
JPH03133632A (en) | Heat transfer pipe for u-shape type heat exchanger and manufacture therefor | |
EP0950127B1 (en) | Advanced galvanic corrosion protection | |
JPH0436599A (en) | U-shaped heat exchanger tube and manufacture thereof | |
US6578628B1 (en) | Article exhibiting increased resistance to galvanic corrosion | |
CN203976914U (en) | Aluminum pipe heat exchanger and heat-exchange equipment | |
JPH09268374A (en) | Production of coated steel tube | |
JP5117812B2 (en) | Manufacturing method of heat exchanger | |
JPS5871368A (en) | Production of corrosion resistant material for sulfuric acid | |
JPH0599588A (en) | Heat transfer tube for heat exchanger and manufacture thereof | |
JPS607706B2 (en) | Manufacturing method of satin-textured austenitic stainless steel material | |
JPH058359B2 (en) | ||
JPS5978714A (en) | Production of corrosion resistant metallic tube | |
JPS6277600A (en) | Heat transfer tube for use in heat exchanger | |
JP2003119557A (en) | Corrosion resistant member, manufacturing method therefor, and apparatus for producing methionine | |
JPH0429260Y2 (en) | ||
JPS59212696A (en) | Preventing method of corrosion of heat exchanging pipe | |
JPS59230738A (en) | Copper alloy pipe with inner-surface corrosion protective coating for heat exchanger | |
JPH08323287A (en) | Manufacture of heating tube with internal coating film | |
JPH0596240A (en) | Method for painting inner surface of pipe | |
JPS61282796A (en) | Heat transfer pipe used in heat exchanger | |
JPS63233299A (en) | Thermal conducting pipe with inner coated layer for heat exchanger | |
JPS63233300A (en) | Thermal conducting pipe for heat exchanging operation |