JPH03133123A - Organic metal vapor phase growth method - Google Patents
Organic metal vapor phase growth methodInfo
- Publication number
- JPH03133123A JPH03133123A JP27222789A JP27222789A JPH03133123A JP H03133123 A JPH03133123 A JP H03133123A JP 27222789 A JP27222789 A JP 27222789A JP 27222789 A JP27222789 A JP 27222789A JP H03133123 A JPH03133123 A JP H03133123A
- Authority
- JP
- Japan
- Prior art keywords
- organic compound
- mfc
- elements
- output
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 title claims description 6
- 239000002184 metal Substances 0.000 title claims description 6
- 238000001947 vapour-phase growth Methods 0.000 title claims 2
- 239000013078 crystal Substances 0.000 claims abstract description 20
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 14
- 239000007789 gas Substances 0.000 claims description 16
- 125000002524 organometallic group Chemical group 0.000 claims description 3
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 abstract 2
- 230000008025 crystallization Effects 0.000 abstract 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 8
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 4
- 230000005587 bubbling Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は化合物半導体等を製造する有機金属気相成長方
法(以下MOCVD法と略記する)に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a metal organic chemical vapor deposition method (hereinafter abbreviated as MOCVD method) for producing compound semiconductors and the like.
MOCVD法は、化合物半導体結晶の製造において、リ
アクタ内にグラファイト等からなるサセプタを設置して
該サセプタ上に基板を載置し、このリアクタ内に目的結
晶の構成成分の有機化合物を供給して高周波コイル等の
加熱手段により加熱されたサセプタによってこれら有機
金属を熱分解することにより所望の目的結晶を成長する
ものである。In the MOCVD method, in the production of compound semiconductor crystals, a susceptor made of graphite or the like is installed in a reactor, a substrate is placed on the susceptor, an organic compound that is a component of the target crystal is supplied into the reactor, and high-frequency radiation is applied. A desired target crystal is grown by thermally decomposing these organic metals using a susceptor heated by a heating means such as a coil.
このとき例えばGaAs等の化合物半導体結晶を成長す
る際の成長速度は、通常■族であるGaやl?の供給量
によって律速される。At this time, for example, when growing a compound semiconductor crystal such as GaAs, the growth rate is usually Ga or I? The rate is determined by the amount of supply.
そして一般に上記結晶の成長を行う際に、その結晶性を
一定にするためには成長速度を精度良(一定としなけれ
ばならない。即ち■族元素の供給量を精密に制御して一
定にしなければならない。In general, when growing the above-mentioned crystals, in order to maintain constant crystallinity, the growth rate must be maintained with good precision (constant).In other words, the supply amount of group (III) elements must be precisely controlled and kept constant. It won't happen.
ところでMOCVD法によりAQGaAsやInGaA
s等の化合物半導体結晶を成長する際の、■族元素(G
a、 AO,In)の供給原料としてはトリメチルガリ
ウム(TMG)、 トリエチルガリウム(TEG)、
トリメチルアルミニウム(TMA)やトリメチルイ
ンジウム(TM I )等の有機金属が使用されるが、
これらは通常液状である。そこでこれらの原料をリアク
タに供給するには、これらの液体をバブラー内に入れ、
該バブラー内の原料液体中に水素や窒素等のガスを供給
してバブリングすることにより、その有機金属はこのガ
ス中に飽和蒸気として取り込まれるので、このガスをリ
アクタに供給するという方法により行われている。By the way, AQGaAs and InGaA can be produced using the MOCVD method.
When growing compound semiconductor crystals such as s, group
The raw materials for a, AO, In) include trimethyl gallium (TMG), triethyl gallium (TEG),
Organic metals such as trimethylaluminum (TMA) and trimethylindium (TMI) are used, but
These are usually in liquid form. Therefore, in order to supply these raw materials to the reactor, these liquids are placed in a bubbler,
By supplying and bubbling a gas such as hydrogen or nitrogen into the raw material liquid in the bubbler, the organic metal is incorporated into this gas as saturated vapor, and this is carried out by supplying this gas to the reactor. ing.
さらに前述のように■族原料の供給量の精密な制御が必
要であるために、バブラーに供給する水素等のガスの供
給量をマスフローコントローラ(以下MFCと略記する
)にて精度良く制御している。MFCはその応答速度及
び設定値の再現性は共にめざましく進歩しており、通常
の使用においては全く問題がない。Furthermore, as mentioned above, since it is necessary to precisely control the supply amount of Group III raw materials, the supply amount of hydrogen and other gases supplied to the bubbler is precisely controlled using a mass flow controller (hereinafter abbreviated as MFC). There is. MFC has made remarkable progress in both its response speed and the reproducibility of set values, and there are no problems at all in normal use.
しかし一般にMFCはその最大出力の5%以下及び95
%以上の出力範囲では、出力の再現性が悪いので問題で
あった。従って設定値の再現性に対しての有効出力の範
囲は5〜95%である。However, in general, MFC is less than 5% of its maximum output and 95%
% or more, this was a problem because the reproducibility of the output was poor. Therefore, the effective output range for the reproducibility of set values is 5 to 95%.
このため出力5%を上下して制御したり、または95%
を上下して制御したりするガスラインに適用するのは困
難であった。さらにMFCは高価であるので、出力範囲
に対応して最大出力の異なる複数のMFCを設置するの
は、経済的に不利である。For this reason, it is possible to control the output by increasing or decreasing the output by 5%, or by increasing or decreasing the output by 95%.
It was difficult to apply this method to gas lines that have to be controlled by raising and lowering it. Furthermore, since MFCs are expensive, it is economically disadvantageous to install multiple MFCs with different maximum outputs corresponding to different output ranges.
次にMOCVD法で3元以上の混晶を成長する際のMF
Cの実際の適用例をみると、従来例えば通常のACIG
aAsの場合はアルミニウムの組成比は作製する素子に
よって異なるが、一般に0.1〜0.4の範囲であり、
この範囲であればTMGの出力が一定の下で原料である
TMAへのバブリングガスの量はMFCの出力が上記の
有効出力5〜95%の範囲内になるようにMFCの大き
さを設定することで十分対応できる。Next, MF when growing ternary or more mixed crystals by MOCVD method.
Looking at actual application examples of C, conventionally, for example, normal ACIG
In the case of aAs, the aluminum composition ratio varies depending on the device to be manufactured, but is generally in the range of 0.1 to 0.4.
In this range, the size of the MFC should be set so that the amount of bubbling gas to TMA, which is the raw material, is within the above effective output range of 5 to 95% when the output of TMG is constant. That's enough to deal with it.
ところが近年注目されているヘテロ接合バイポーラトラ
ンジスタ(HB T)のエピタキシャル基板には、その
素子性能を向上させるためベース層は10組成を徐々に
変化させる(即ちAffgGa+−gAs結晶に対して
、X = 0−()、 I)ことが必須となっている。However, in the epitaxial substrate of a heterojunction bipolar transistor (HBT), which has been attracting attention in recent years, the base layer has a composition that is gradually changed (i.e., X = 0 for AffgGa+-gAs crystal) in order to improve the device performance. −(), I) are essential.
さらにこの場合は連続してエミツタ層ではX =0.1
−0.3のAQGaAs層も作製するので、結局10組
成は0≦X≦0.3の範囲を変化させなければならず、
原料のTMAを供給するバブリングガス量も大きく変化
させる必要があるので、1台のMFCではその出力を以
下に述べるように5%を上下させて使用することとなり
、出力5%以下の低出力(低流量)時の制御が不十分で
あった。Furthermore, in this case, X = 0.1 in the continuous emitter layer
Since an AQGaAs layer of −0.3 is also produced, the 10 composition must be changed within the range of 0≦X≦0.3.
Since the amount of bubbling gas that supplies the raw material TMA also needs to be changed significantly, the output of one MFC must be varied by 5% as described below. (low flow rate) was insufficiently controlled.
即ち従来MOCVD法によりHBTを作製する際のTM
Gの供給ラインとTMAの供給ラインに設置したMFC
の出カバターンを第1表に示す。表に示すようにベース
層のAQ、Ga −、As(x = 0−(1,1)結
晶をその結晶性を損なうことのない条件で作製するため
には、TMAのMFC出力を3%から制御しなくてはな
らない。従って1台のMFCで3〜5%の低出力を制御
するのは前記のように問題があり、さらに一般にMFC
の出力には1%程度のばらつきや零点の移動があるため
、この3〜5%の出力の再現性は一層悪いものであった
。That is, the TM when manufacturing HBT by the conventional MOCVD method
MFC installed in G supply line and TMA supply line
Table 1 shows the output turn. As shown in the table, in order to fabricate the base layer AQ, Ga-, As(x = 0-(1,1) crystal under conditions that do not impair its crystallinity, the MFC output of TMA must be increased from 3% to Therefore, controlling a low output of 3 to 5% with one MFC is problematic as mentioned above, and furthermore, in general, MFC
Since there is a variation of about 1% in the output and a shift of the zero point, the reproducibility of the output of 3 to 5% was even worse.
第1表
〔課題を解決するための手段〕
本発明はこれに鑑み種々検討の結果、上記のように原料
としての有機化合物の供給量がMFCの有効出力の下限
以下のものであっても、良好な特性の混晶を得ることが
できる有機金属気相成長法を提供するものである。Table 1 [Means for Solving the Problems] In view of this, the present invention has been made as a result of various studies. The present invention provides an organometallic vapor phase epitaxy method capable of obtaining mixed crystals with good properties.
即ち本発明は、有機化合物気体のリアクタへの供給量を
マスフローコントローラで所定の量に制御することによ
り、該リアクタ内で同族の元素を2種類含む3元以上の
混晶を所定の組成比で成長させる有機金属気相成長法に
おいて、これら同族の元素の有機化合物気体相互の供給
比は一定とし、且つこれら気体の供給量を増加すること
により、同族元素のうち組成比の小さい元素の有機化合
物の供給ラインのマスフローコントローラをその有効出
力内で運転することを特徴とするものである。That is, in the present invention, by controlling the amount of organic compound gas supplied to the reactor to a predetermined amount using a mass flow controller, a ternary or more mixed crystal containing two types of elements of the same group can be mixed at a predetermined composition ratio in the reactor. In the organometallic vapor phase epitaxy method for growing organic compounds of elements in the same group, the mutual supply ratio of organic compound gases of elements in the same group is kept constant, and by increasing the supply amount of these gases, organic compounds of elements with a small composition ratio among the elements in the same group can be grown. The mass flow controller of the supply line is operated within its effective output.
このような本発明は、MOCVD法で同族の元素を2種
類含む3元以上の混晶を作製する際に、これら同族元素
のう′ち組成比が小さくてこの元素の有機化合物の供給
ラインのMFCの出力が有効出力範囲外で運転しな(で
はならない場合に特に有効である。即ちこれら同族の元
素の有機化合物気体相互の供給比は一定とするが、同時
にこれら気体の供給量を増加することにより、上記組成
比の小さい同族元素のMFCの出力をその有効出力内の
値として運転することができるので、供給量の設定値の
再現性の精度が向上し、良好な特性の混晶が得られる。As described above, the present invention enables the production of a ternary or more mixed crystal containing two types of elements of the same group by the MOCVD method, when the composition ratio of these elements is small, and the supply line of the organic compound of this element is used. It is particularly effective when the output of the MFC must not be operated outside the effective output range. In other words, the mutual supply ratio of the organic compound gases of these homologous elements is kept constant, but at the same time the supply amount of these gases is increased. As a result, the output of the MFC of the same group element with a small composition ratio can be operated as a value within its effective output, which improves the accuracy of the reproducibility of the set value of the supply amount and produces mixed crystals with good characteristics. can get.
次に本発明の実施例について説明する。 Next, examples of the present invention will be described.
第2表に示すようにHBTの作製において、コレクタ層
に続いて成長させるAOヨGa+−+ As(x=0−
0.1)結晶の作製時に、TMA供給側のMFCの出力
を従来の2倍(即ち6〜40%)とすることにより、M
FCの出力制御範囲を常に装置の有効出力5〜95%内
に収めた。そしてTMAの供給量を2倍にしてもGaと
AQの組成比を変えないためにTMG供給側のMFCの
出力も従来の2倍とした。従ってベース層のAQ、Ga
+−jAs結晶の成長速度は従来の2倍になった。As shown in Table 2, in the fabrication of HBT, AO yo Ga+-+ As (x=0-
0.1) At the time of crystal production, by making the output of the MFC on the TMA supply side twice that of the conventional one (i.e. 6 to 40%), M
The output control range of the FC was always kept within 5% to 95% of the effective output of the device. The output of the MFC on the TMG supply side was also doubled compared to the conventional one so that the composition ratio of Ga and AQ would not change even if the amount of TMA supplied was doubled. Therefore, the base layer AQ, Ga
The growth rate of the +-jAs crystal has doubled compared to the conventional method.
このようにいずれのMFCの出力も装置の有効出力内で
あるので成長結晶組成の設定値の再現性は格段に向上し
た。In this way, since the output of any MFC was within the effective output of the apparatus, the reproducibility of the set value of the growth crystal composition was significantly improved.
その後エミツタ層であるAQwGal、□、As (
x= 0.1−0.3)を成長する際は、成長速度を第
1表のように従来の値に戻して結晶性について良好な条
件で成長を実施した。After that, the emitter layer AQwGal, □, As (
x=0.1-0.3), the growth rate was returned to the conventional value as shown in Table 1, and the growth was performed under conditions favorable for crystallinity.
第2表 る。Table 2 Ru.
このように本発明によれば、MOCVD法において1台
のMFCで広い範囲の組成制御が可能となり、安価にデ
バイス特性が向上する等顕著な効果を奏するものである
。As described above, according to the present invention, it is possible to control the composition over a wide range with one MFC in the MOCVD method, and it has remarkable effects such as improving device characteristics at low cost.
このようにベース層のみ成長速度を上げたことにより、
ベース層での結晶性の低下が起こりうるが、実際に作製
されたデバイス特性から判断すると、成長速度の変更に
よる結晶性の低下の影響よりもAQの組成制御が再現性
よ〈実施されたことの影響の方が大きく作用したため全
体として特性が向上した。By increasing the growth rate of only the base layer in this way,
Although a decrease in crystallinity in the base layer may occur, judging from the characteristics of actually fabricated devices, the reproducibility of AQ composition control is more important than the decrease in crystallinity caused by changing the growth rate. Because the influence of was more significant, the characteristics improved overall.
このような本発明法はA(71Gal−mAsの場合ば
かりでなく、I nw Ga、−I As、 I n−
AO+−1As。Such a method of the present invention is applicable not only to A(71Gal-mAs but also to I nw Ga, -IAs, I n-
AO+-1As.
Claims (1)
ーコントローラで所定の量に制御することにより、該リ
アクタ内で同族の元素を2種類含む3元以上の混晶を所
定の組成比で成長させる有機金属気相成長法において、
これら同族の元素の有機化合物気体相互の供給比は一定
とし、且つこれら気体の供給量を増加することにより、
同族元素のうち組成比の小さい元素の有機化合物の供給
ラインのマスフローコントローラをその有効出力内で運
転することを特徴とする有機金属気相成長法。(1) By controlling the amount of organic compound gas supplied to the reactor to a predetermined amount using a mass flow controller, a ternary or more mixed crystal containing two types of elements of the same group is grown in the reactor at a predetermined composition ratio. In organometallic vapor phase epitaxy,
By keeping the mutual supply ratio of organic compound gases of these homologous elements constant and increasing the supply amount of these gases,
A metal organic vapor phase growth method characterized by operating a mass flow controller in a supply line for an organic compound of an element having a small composition ratio among homologous elements within its effective output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27222789A JPH03133123A (en) | 1989-10-19 | 1989-10-19 | Organic metal vapor phase growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27222789A JPH03133123A (en) | 1989-10-19 | 1989-10-19 | Organic metal vapor phase growth method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03133123A true JPH03133123A (en) | 1991-06-06 |
Family
ID=17510889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27222789A Pending JPH03133123A (en) | 1989-10-19 | 1989-10-19 | Organic metal vapor phase growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03133123A (en) |
-
1989
- 1989-10-19 JP JP27222789A patent/JPH03133123A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4404265A (en) | Epitaxial composite and method of making | |
JPH0688871B2 (en) | Chemical beam deposition method | |
US5036022A (en) | Metal organic vapor phase epitaxial growth of group III-V semiconductor materials | |
JP2789861B2 (en) | Organometallic molecular beam epitaxial growth method | |
KR920009652B1 (en) | Compound semiconductor manufacturing apparatus | |
JPH03133123A (en) | Organic metal vapor phase growth method | |
JP3575618B2 (en) | Crystal growth method of gallium nitride based compound semiconductor film | |
JP2793239B2 (en) | Method for manufacturing compound semiconductor thin film | |
JP3052269B2 (en) | Vapor phase growth apparatus and growth method thereof | |
JPH04162418A (en) | Chemical vapor growth method | |
JPH03262116A (en) | Cvd device | |
JPH03232221A (en) | Vapor growth method for compound semiconductor | |
JPH02126632A (en) | Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor | |
JPH01290222A (en) | Semiconductor vapor growth method | |
JPS5895696A (en) | Vapor-phase growing method with controlled vapor pressure | |
JPH11126754A (en) | Gaseous-phase growing method of organic metal | |
JPH06151339A (en) | Apparatus and method for growth of semiconductor crystal | |
JP2006351993A (en) | Compound semiconductor wafer | |
JPS60264395A (en) | Vapor-phase epitaxial process for organometallic compound | |
JPS6272116A (en) | Doping method | |
JPH0239423A (en) | Method of applying iii-v compound to semiconductor substrate | |
JPH08264459A (en) | Method and system for chemical beam deposition | |
JPH05190474A (en) | Crystal growth method of compound semiconductor | |
JPS61229321A (en) | Vapor growth method | |
JPS6381813A (en) | Vapor growth method |