JPH0313794A - Heat exchanger with fin - Google Patents
Heat exchanger with finInfo
- Publication number
- JPH0313794A JPH0313794A JP14903489A JP14903489A JPH0313794A JP H0313794 A JPH0313794 A JP H0313794A JP 14903489 A JP14903489 A JP 14903489A JP 14903489 A JP14903489 A JP 14903489A JP H0313794 A JPH0313794 A JP H0313794A
- Authority
- JP
- Japan
- Prior art keywords
- flat
- water droplets
- air current
- heat exchanger
- airflow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 28
- 230000005484 gravity Effects 0.000 abstract description 2
- 239000003507 refrigerant Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F17/00—Removing ice or water from heat-exchange apparatus
- F28F17/005—Means for draining condensates from heat exchangers, e.g. from evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
- F28D1/0478—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/12—Fins with U-shaped slots for laterally inserting conduits
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は空調機器や冷凍機器、自動車機器等に使用され
、冷媒と空気等の流体間で熱の授受を行なうフィン付熱
交換器に関するものである。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a finned heat exchanger that is used in air conditioning equipment, refrigeration equipment, automobile equipment, etc., and exchanges heat between fluids such as refrigerant and air. .
従来の技術
近年、フィン付熱交換器は機器設計の面からコンパクト
化が要求されており、フィン形状及び管内面形状の改善
による高効率化が取り組まれている。BACKGROUND OF THE INVENTION In recent years, finned heat exchangers have been required to be more compact in terms of equipment design, and efforts have been made to improve efficiency by improving the fin shape and tube inner surface shape.
以下、図面を参照しながら上述した従来のフィン付熱交
換器について説明を行う。Hereinafter, the conventional finned heat exchanger mentioned above will be explained with reference to the drawings.
第5図と第6図は従来のフィン付熱交換器の形状を示す
、第5図と第6図において、1は波形状に屈曲され一定
の(フィンピッチPfで平行に並べられた波形フィンで
、両端の屈曲部1aと平行部1bとから成る。2は前記
波形フィン1の上下両端の屈曲部1aに密着された偏平
管で、管内には複数の矩形流路3が構成され、断面長手
方向が気mA方向と平行となるように水平方向に段ピツ
チPdで蛇行状に複数段形成されている。4は偏平管2
の両端に接続したヘッダで、偏平管2と共に冷媒Rの流
路を形成している。Figs. 5 and 6 show the shapes of conventional finned heat exchangers. In Figs. 2 is a flat tube that is closely attached to the bent portions 1a at both the upper and lower ends of the corrugated fin 1, and a plurality of rectangular channels 3 are formed in the tube, and the cross section is A plurality of steps are formed in a meandering manner in the horizontal direction with a step pitch Pd so that the longitudinal direction is parallel to the air direction. 4 is a flat tube 2.
The headers connected to both ends of the flat tube 2 form a flow path for the refrigerant R together with the flat tube 2.
以上のように構成されたフィン付熱交換器は波形フィン
1の平行部1b間を流れる気流Aと偏平管2内の矩形流
路3を流れる冷媒Rとの間で波形フィン1及び偏平管2
を介して熱交換が行なわれる0通常は、波形フィン1の
フィンピッチPfを小さくして気流Aとの熱伝達率向上
や気流Aとの伝熱面積増大を図ることにより熱交換能力
を向上している。また、偏平管2内の矩形流路3の相当
径を小さくして矩形流u3の数を増やし冷媒Rとの熱伝
達率向上や冷媒Rどの伝熱面積増大を図ることによって
も熱交換能力を向上している。The heat exchanger with fins configured as described above has airflow A flowing between the parallel portions 1b of the corrugated fins 1 and refrigerant R flowing through the rectangular flow path 3 in the flat tubes 2.
Normally, the heat exchange ability is improved by reducing the fin pitch Pf of the corrugated fins 1 to improve the heat transfer coefficient with the airflow A and increase the heat transfer area with the airflow A. ing. The heat exchange capacity can also be improved by reducing the equivalent diameter of the rectangular flow path 3 in the flat tube 2, increasing the number of rectangular flows u3, improving the heat transfer coefficient with the refrigerant R, and increasing the heat transfer area of the refrigerant R. It's improving.
発明が解決しようとする課題
しかしながら上記のような構成では、このフィン付熱交
換器を蒸発器として使用し外表面に水滴りが凝縮する場
合に、第7図に示すように、波形フィン1の屈曲部1a
の内側に水滴りが滞溜するばかりでなく、各段の波形フ
ィン1相互が偏平管2によって分割されているため、波
形フィン1の表面を伝わり重力g方向へ落下する水滴り
は下段へは落下し難く偏平管2の上面に滞溜することと
なり、気流Aの通風抵抗の増大や水滴りの背面への飛水
を引き起こし、更には波形フィン1と気流Aとの熱伝達
も阻害する。また、気流入方向の奥行き寸法が大きい程
この現象を極端に生じる。Problems to be Solved by the Invention However, with the above configuration, when this finned heat exchanger is used as an evaporator and water droplets condense on the outer surface, as shown in FIG. Bent part 1a
Not only do water droplets accumulate inside the fins, but since the corrugated fins 1 of each stage are separated by flat tubes 2, the water droplets that travel along the surface of the corrugated fins 1 and fall in the direction of gravity g do not reach the lower stage. It is difficult to fall and accumulates on the upper surface of the flat tube 2, causing an increase in the ventilation resistance of the airflow A, causing water droplets to fly to the back surface, and furthermore impeding heat transfer between the corrugated fins 1 and the airflow A. Moreover, the greater the depth dimension in the air inflow direction, the more this phenomenon occurs.
本発明は上記課題に鑑み、このフィン付熱交換器を蒸発
器として使用し外表面に水滴が凝縮する場合にも、水滴
の落下を良好にして、気流の通風抵抗の増大と熱伝達率
の低下を抑えるものである。In view of the above problems, the present invention has been developed to improve the falling of water droplets even when water droplets condense on the outer surface by using this finned heat exchanger as an evaporator, thereby increasing the ventilation resistance of airflow and reducing the heat transfer coefficient. This is to suppress the decline.
8題を解決するための手段
上記課題を解決するために本発明のフィン付熱交換器は
、気流方向の前縁側を切り欠いて構成される偏平溝を複
数段設けかつ前記偏平溝より下流側表面に段方向に連通
ずる排水面を設けた平板フィンと、前記平板フィンの偏
平溝に側面から挿入された偏平管とから基準コアを構成
し、前記基準コアを気流方向に複数列並べるという構成
を備えたものである。Means for Solving the 8 Problems In order to solve the above problems, the finned heat exchanger of the present invention has a plurality of flat grooves formed by cutting out the leading edge side in the air flow direction, and a flat groove on the downstream side of the flat groove. A reference core is constituted by a flat plate fin having a drainage surface communicating in the step direction on its surface and a flat tube inserted from the side into the flat groove of the flat plate fin, and the reference cores are arranged in multiple rows in the airflow direction. It is equipped with the following.
作用
本発明は上記した構成によって、このフィン付熱交換器
を蒸発器として使用し外表面に水滴が凝縮する場合にも
、偏平管上面に滞溜する水滴は気流に押されて下流側へ
移動した後に段方向に連通ずる排水面を伝わって下段へ
落下することができるため、水滴の落下を良好にして、
気流の通風抵抗の増大と熱伝達率の低下を抑えることが
できる。Effect of the present invention With the above-described configuration, even when this finned heat exchanger is used as an evaporator and water droplets condense on the outer surface, the water droplets that accumulate on the upper surface of the flat tube are pushed by the airflow and move downstream. After that, water drops can fall to the lower tier via the drainage surface that communicates with the tiers, making it easier for water droplets to fall.
It is possible to suppress an increase in airflow resistance and a decrease in heat transfer coefficient.
また、気流方向の奥行き寸法が大きくなっても、基準コ
アの列数を増やすことによって対応でき、水滴の落下を
阻害することはない。Furthermore, even if the depth dimension in the airflow direction increases, this can be handled by increasing the number of rows of reference cores, and the falling of water droplets will not be hindered.
実施例
以下本発明の実施例のフィン付熱交換器について図面を
参照しながら説明する。EXAMPLE Hereinafter, a finned heat exchanger according to an example of the present invention will be described with reference to the drawings.
第1図と第2図は本発明の実施例におけるフィン付熱交
換器の形状を示すもので、第3図は平板フィンの形状を
示す、第1図から第3図において、5は一定のフィンピ
ッチPfで平行に並べられた複数の平板フィンで、気流
入方向の前縁側を切り欠いて形成され一定の段方向ピッ
チPdで配列された偏平溝6と、偏平溝6より下流側表
面に段方向の平板フィン5間を連通ずる幅Wの排水面7
が設けられている。8は前記平板フィン5の偏平溝6に
前縁側から挿入密着された偏平管で、管内には複数の矩
形流路9が構成され、断面長手方向が気流入方向と平行
となるように水平方向に段ピツチPdで複数段設けられ
ている。10は前記平板フィン5と複数段の偏平管8と
から成る基準コアで、気流入方向に4列構成されている
。11は偏平管8の両端に接続したヘッダで、偏平管8
と共に冷媒Rの流路を形成している。Figures 1 and 2 show the shape of a finned heat exchanger according to an embodiment of the present invention, and Figure 3 shows the shape of a flat plate fin. A plurality of flat plate fins arranged in parallel with a fin pitch Pf are formed by cutting out the front edge side in the air inflow direction, and have flat grooves 6 arranged at a constant step direction pitch Pd, and a surface downstream from the flat grooves 6. A drainage surface 7 with a width W that communicates between the flat plate fins 5 in the step direction.
is provided. Reference numeral 8 denotes a flat tube that is inserted into the flat groove 6 of the flat plate fin 5 from the leading edge side, and a plurality of rectangular channels 9 are formed in the tube, and the tube is oriented horizontally so that the longitudinal direction of the cross section is parallel to the air inflow direction. A plurality of stages are provided at a stage pitch Pd. Reference numeral 10 denotes a reference core consisting of the flat fins 5 and a plurality of stages of flat tubes 8, which are arranged in four rows in the air inflow direction. 11 is a header connected to both ends of the flat tube 8;
Together, they form a flow path for the refrigerant R.
以上のように構成されたフィン付熱交換器は平板フィン
5の間を流れる気流Aと偏平管8内の矩形流路9を流れ
る冷媒Rとの間で平板フィン5及び偏平管8を介して熱
交換が行なわれる。通常は、平板フィン5のフィンピッ
チPfを小さくして気流Aとの熱伝達率向上や気mAと
の伝熱面積増大を図ることにより熱交換能力を向上して
いる。また、偏平管8内の矩形流路9の相当径を小さく
して矩形流wr9の数を増やし冷媒Rとの熱伝達率向上
や冷媒Rどの伝熱面積増大を図ることによっても熱交換
能力を向上している。The heat exchanger with fins configured as described above has a structure in which the air flow A flowing between the flat plate fins 5 and the refrigerant R flowing in the rectangular flow path 9 in the flat tubes 8 are connected via the flat plate fins 5 and the flat tubes 8. Heat exchange takes place. Usually, the heat exchange ability is improved by reducing the fin pitch Pf of the flat fins 5 to improve the heat transfer coefficient with the air flow A and increase the heat transfer area with the air mA. The heat exchange capacity can also be improved by reducing the equivalent diameter of the rectangular flow path 9 in the flat tube 8, increasing the number of rectangular flows wr9, improving the heat transfer coefficient with the refrigerant R, and increasing the heat transfer area of the refrigerant R. It's improving.
またこのフィン付熱交換器を蒸発器として使用し、外表
面に水滴Lf凝縮する場合にも、第4図に示すように、
偏平管8の上面に滞溜する水滴りは気流人に押されて下
流側へ移動した後に段方向に連通ずる排水面7を伝わっ
て下段へ落下することができるため、水滴りの重力g方
向への落下を良好にして、気流Aの通風抵抗の増大と熱
伝達率の低下を抑えることができる。また、気流A方向
の奥行き寸法が大きくなっても、基準コア10の列数を
増やすことによって対応でき、水滴りの落下を阻害する
こともない。Also, when this finned heat exchanger is used as an evaporator and water droplets Lf condense on the outer surface, as shown in Fig. 4,
The water droplets that accumulate on the upper surface of the flat tube 8 are pushed by the airflow and move downstream, and then fall to the lower stage through the drainage surface 7 that communicates with the stage direction. It is possible to suppress an increase in the ventilation resistance of the airflow A and a decrease in the heat transfer coefficient. Further, even if the depth dimension in the direction of the airflow A increases, this can be handled by increasing the number of rows of the reference cores 10, and the falling of water droplets will not be hindered.
以上のように本実施例によれば、気流A方向の前縁側を
切り欠いて構成される偏平溝6を複数段設けかつ前記偏
平溝6より下流側表面に段方向に連通する排水面7を設
けた平板フィン5と、前記平板フィン5の偏平溝6に側
面から挿入された偏平管8とから基準コア10を構成し
、前記基準コア10を気流方向に複数列並べることによ
り、このフィン付熱交換器を蒸発器として使用し、外表
面に水滴L2y凝縮する場合に、偏平管8の上面に滞溜
する水滴りは気流Aに押されて下流側へ移動した後に段
方向に連通ずる排水面7を伝わって下段へ落下すること
ができるため、水滴りの落下を良好にして、気流Aの通
風抵抗の増大と熱伝達率の低下を抑えることができる。As described above, according to this embodiment, a plurality of flat grooves 6 formed by cutting out the front edge side in the airflow A direction are provided, and a drainage surface 7 communicating in the step direction is provided on the surface downstream of the flat grooves 6. A reference core 10 is constituted by the provided flat plate fin 5 and a flat tube 8 inserted from the side into the flat groove 6 of the flat plate fin 5, and by arranging a plurality of the reference cores 10 in a plurality of rows in the airflow direction, this fin When the heat exchanger is used as an evaporator and water droplets L2y are condensed on the outer surface, the water droplets that accumulate on the upper surface of the flat tube 8 are pushed by the airflow A and move downstream, and are then drained to the stage direction. Since the water droplets can fall to the lower stage along the surface 7, it is possible to improve the falling of water droplets and to suppress an increase in the ventilation resistance of the airflow A and a decrease in the heat transfer coefficient.
また、気流入方向の奥行き寸法が大きくなっても、基準
コア10の列、数を増やすことによって対応でき、水滴
りの落下を阻害することもない。Furthermore, even if the depth dimension in the air inflow direction increases, this can be handled by increasing the rows and number of reference cores 10, and water droplets will not be obstructed from falling.
発明の効果
以上のように本発明は、気流方向の前縁側を切り欠いて
構成される偏平溝を複数段設けかつ前記偏平溝より下流
側表面に段方向に連通ずる排水面を設けた平板フィンと
、前記平板フィンの偏平溝に側面から挿入された偏平管
とから基準コアを構成し、前記基準コアを気流方向に複
数列並べることにより、このフィン付熱交換器を蒸発器
として使用し外表面に水滴が凝縮する場合にも、偏平管
の上面に滞溜する水滴は気流に押されて下流側へ移動し
た後に段方向に連通する排水面を伝わって下段へ落下す
ることができるため、水滴の落下を良好にして、気流の
通風抵抗の増大と熱伝達率の低下を抑えることができる
。また、気流方向の奥行き寸法が大きくなっても、基準
コアの列数を増やすことによって対応でき、水滴の落下
を阻害することもない。Effects of the Invention As described above, the present invention provides a flat plate fin having a plurality of stages of flat grooves formed by cutting out the front edge side in the airflow direction, and a drainage surface communicating in the step direction on the surface downstream of the flat grooves. and a flat tube inserted into the flat groove of the flat plate fin from the side. By arranging multiple rows of the standard cores in the airflow direction, this finned heat exchanger can be used as an evaporator. Even when water droplets condense on the surface, the water droplets that accumulate on the upper surface of the flat tube can be pushed by the airflow and move downstream, and then travel along the drainage surface that communicates with the tiers and fall to the lower tier. By improving the falling of water droplets, it is possible to suppress an increase in airflow resistance and a decrease in heat transfer coefficient. Furthermore, even if the depth dimension in the airflow direction increases, this can be handled by increasing the number of rows of reference cores, and the falling of water droplets will not be inhibited.
第1図は本発明の実施例におけるフィン付熱交換器の形
状を示す斜視図、第2図は第1図の要部斜視図、第3図
は第1図の平板フィンの形状を示す平面図、第4図第1
図の水滴付着状況を示す断面図、第5図は従来のフィン
付熱交換器の形状を示す斜視図、第6図は第5図の要部
斜視図、第7図は第5図の水滴付着状況を示す断面図で
ある。
5・・・平板フィン、6・・・偏平溝、7・・・排水面
、8・・・偏平管、10・・・基準コア。Fig. 1 is a perspective view showing the shape of a finned heat exchanger in an embodiment of the present invention, Fig. 2 is a perspective view of the main part of Fig. 1, and Fig. 3 is a plan view showing the shape of the flat plate fin in Fig. 1. Figure, Figure 4, Figure 1
Figure 5 is a perspective view showing the shape of a conventional finned heat exchanger, Figure 6 is a perspective view of the main part of Figure 5, and Figure 7 is the water droplet in Figure 5. FIG. 3 is a cross-sectional view showing the state of adhesion. 5... Flat plate fin, 6... Flat groove, 7... Drainage surface, 8... Flat tube, 10... Reference core.
Claims (1)
段設けかつ前記偏平溝より下流側表面に段方向に連通す
る排水面を設けた平板フィンと、前記平板フィンの偏平
溝に側面から挿入された偏平管とから基準コアを構成し
、前記基準コアを気流方向に複数列並べたことを特徴と
するフィン付熱交換器。A flat plate fin having a plurality of stages of flat grooves formed by cutting out the front edge side in the airflow direction and a drainage surface communicating in the step direction on the surface downstream of the flat grooves, A finned heat exchanger characterized in that a reference core is constituted by the inserted flat tube, and the reference cores are arranged in a plurality of rows in the airflow direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14903489A JPH0313794A (en) | 1989-06-12 | 1989-06-12 | Heat exchanger with fin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14903489A JPH0313794A (en) | 1989-06-12 | 1989-06-12 | Heat exchanger with fin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0313794A true JPH0313794A (en) | 1991-01-22 |
Family
ID=15466218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14903489A Pending JPH0313794A (en) | 1989-06-12 | 1989-06-12 | Heat exchanger with fin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0313794A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012220137A (en) * | 2011-04-12 | 2012-11-12 | Fuji Electric Co Ltd | Heat exchanger |
JP2012241941A (en) * | 2011-05-17 | 2012-12-10 | Fuji Electric Co Ltd | Heat exchanger |
WO2014133394A1 (en) | 2013-03-01 | 2014-09-04 | Norsk Hydro Asa | Multi port extrusion (mpe) design |
WO2014133395A1 (en) | 2013-03-01 | 2014-09-04 | Norsk Hydro Asa | Fin solution related to micro channel based heat exchanger |
EP2770291A4 (en) * | 2011-10-07 | 2016-02-24 | Daikin Ind Ltd | Heat exchange unit and refrigerating equipment |
US20210207900A1 (en) * | 2018-07-27 | 2021-07-08 | Mitsubishi Electric Corporation | Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus |
-
1989
- 1989-06-12 JP JP14903489A patent/JPH0313794A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012220137A (en) * | 2011-04-12 | 2012-11-12 | Fuji Electric Co Ltd | Heat exchanger |
JP2012241941A (en) * | 2011-05-17 | 2012-12-10 | Fuji Electric Co Ltd | Heat exchanger |
EP2770291A4 (en) * | 2011-10-07 | 2016-02-24 | Daikin Ind Ltd | Heat exchange unit and refrigerating equipment |
US10274245B2 (en) | 2011-10-07 | 2019-04-30 | Daikin Industries, Ltd. | Heat exchange unit and refrigeration device |
WO2014133394A1 (en) | 2013-03-01 | 2014-09-04 | Norsk Hydro Asa | Multi port extrusion (mpe) design |
WO2014133395A1 (en) | 2013-03-01 | 2014-09-04 | Norsk Hydro Asa | Fin solution related to micro channel based heat exchanger |
US20210207900A1 (en) * | 2018-07-27 | 2021-07-08 | Mitsubishi Electric Corporation | Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus |
US11578930B2 (en) * | 2018-07-27 | 2023-02-14 | Mitsubishi Electric Corporation | Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4712612A (en) | Horizontal stack type evaporator | |
US4958681A (en) | Heat exchanger with bypass channel louvered fins | |
US10767937B2 (en) | Flattened tube finned heat exchanger and fabrication method | |
US20150027677A1 (en) | Multiple tube bank heat exchanger assembly and fabrication method | |
JP2010019534A (en) | Heat exchanger | |
KR930012241B1 (en) | Fin tube heat exchanger | |
JPS6334466A (en) | Condenser | |
EP0415584A2 (en) | Stack type evaporator | |
JPH0313794A (en) | Heat exchanger with fin | |
JPS63271099A (en) | Heat exchanger | |
JPH02251093A (en) | Finned heat exchanger | |
JP2568968Y2 (en) | Heat exchanger | |
JPH0755380A (en) | Heat exchanger | |
JPH0363499A (en) | Heat exchanger with fins | |
JP2624336B2 (en) | Finned heat exchanger | |
JPH02309193A (en) | Heat exchanger with fin | |
JPH02166393A (en) | Heat exchanger with fin | |
JPH02154987A (en) | Finned heat exchanger | |
JP3867113B2 (en) | Heat exchanger | |
JP2002031434A (en) | Heat exchanger for air conditioner | |
JPH02309194A (en) | Heat exchanger with fin | |
JPH0459425A (en) | Heat exchanger | |
KR100213778B1 (en) | Heat exchanger | |
JPS63169494A (en) | Heat exchanger | |
JP2753016B2 (en) | Finned heat exchanger |