Nothing Special   »   [go: up one dir, main page]

JPH0312219A - Removal of toxic component - Google Patents

Removal of toxic component

Info

Publication number
JPH0312219A
JPH0312219A JP1144109A JP14410989A JPH0312219A JP H0312219 A JPH0312219 A JP H0312219A JP 1144109 A JP1144109 A JP 1144109A JP 14410989 A JP14410989 A JP 14410989A JP H0312219 A JPH0312219 A JP H0312219A
Authority
JP
Japan
Prior art keywords
ozone
removal
soda lime
copper
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1144109A
Other languages
Japanese (ja)
Other versions
JP2691927B2 (en
Inventor
Koichi Kitahara
北原 宏一
Noboru Akita
秋田 昇
Tadashi Hiramoto
平本 忠
Takashi Shimada
孝 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP1144109A priority Critical patent/JP2691927B2/en
Publication of JPH0312219A publication Critical patent/JPH0312219A/en
Application granted granted Critical
Publication of JP2691927B2 publication Critical patent/JP2691927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To remove ozone and silanes simultaneously and efficiently by using a removing agent comprised of soda lime and a cupric compound carried on the soda lime in removal of toxic components of ozone and silanes contained in a gas. CONSTITUTION:Soda lime is amorphous particle or granular condition and used preferably under water-retaining condition. As a cupric compound to be carried on the soda lime, cupric oxide, cupric hydroxide, basic cupric carbonate, etc., can be used and one or a mixture of more than one of them are used. The amount (as Cu) of the cupric compound to be carried on the soda lime is normally about 0.1-50% and preferably about 1-30%. The method to carry the compound can be selected either dry- or wet-method and in either case, sufficient effect as a removal agent is achieved. The removal agent is conventionally filled in a removal column and a gas containing toxic components such as ozone, silanes, etc., is led to the column and brought into contact with the removal agent so as to remove the toxic components. The temperature at the time of contacting the gas and the removal agent is normally <=100 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有害成分の除去方法に関し、さらに細には半導
体製造工程などから排出されるガス中に含有されるオゾ
ンおよびシランを同時に除去する有害成分の除去方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for removing harmful components, and more particularly to a method for removing harmful components at the same time as ozone and silane contained in gases emitted from semiconductor manufacturing processes. Concerning a method for removing components.

オゾンは、その酸化力を利用して半導体製造工程などで
種々な使われ方をしているが、最近はモノシランまたは
ジシラン(以下総称してシランと記す)と比較的低温で
反応させて酸化シリコン膜析出させる工程(CVD)に
使用されている。
Utilizing its oxidizing power, ozone is used in various ways in semiconductor manufacturing processes, etc., but recently it has been used to create silicon oxide by reacting with monosilane or disilane (hereinafter collectively referred to as silane) at relatively low temperatures. It is used in the film deposition process (CVD).

オゾンはA CG I H(Amercan Conf
erenceof Govermental Indu
strial HyginisLs )の許容濃度で0
.1PP−とされており、半導体製造工程では100p
pn+〜5%程度のオゾンが使用されるので、環境を破
壊しないためにガスの排出に先立って除去する必要があ
る。
Ozone is ACG IH (American Conf
erence of Governmental Indu
0 at the permissible concentration of strial HyginisLs).
.. It is considered to be 1PP-, and 100p in the semiconductor manufacturing process.
Since ozone of about 5% pn+ is used, it is necessary to remove the gas before discharging it in order not to damage the environment.

一方、シランは燃焼範囲が広く、条件によっては空気中
で自然発火するので非常に危険であり、また、許容濃度
も5ppmとされているので、この処理も不可欠である
On the other hand, silane has a wide flammability range and can spontaneously ignite in the air depending on the conditions, making it extremely dangerous.Also, the permissible concentration is set at 5 ppm, so this treatment is essential.

〔従来の技術〕[Conventional technology]

従来、オゾンを除去する方法としては、例えばオゾン含
有ガスを繊維状活性炭を用いて分解除去する方法(特開
昭49−82593号公報)および耐火性無機酸化物担
体に、遷移金属塩を含有する溶液を含浸させ、焼成して
なるオゾン分解触媒を用いる方法(特開昭53−146
88号公報)などが知られている。
Conventionally, methods for removing ozone include, for example, a method in which ozone-containing gas is decomposed and removed using fibrous activated carbon (Japanese Unexamined Patent Publication No. 49-82593), and a method in which a refractory inorganic oxide carrier contains a transition metal salt. A method using an ozone decomposition catalyst impregnated with a solution and fired (Japanese Patent Application Laid-Open No. 53-146
88 Publication) and the like are known.

一方、シランを含有するガスを処理する方法としては、
苛性ソーダなどのアルカリ性水溶液でガスを洗浄してシ
ランを除去する湿式法(特開昭56−84619号公報
)および固形担体に苛性ソーダ水溶液単独またはこれに
過マンガン酸カリウムを加えた水溶液を含浸させてなる
吸収剤にガスを接触させて除去する乾式法(特開昭58
−128146号公報)などがある。
On the other hand, as a method for treating gas containing silane,
A wet method in which silane is removed by washing the gas with an alkaline aqueous solution such as caustic soda (Japanese Unexamined Patent Publication No. 56-84619), and a solid carrier is impregnated with a caustic soda aqueous solution alone or an aqueous solution containing potassium permanganate. Dry method of removing gas by bringing it into contact with the absorbent (Japanese Patent Application Laid-open No. 58
-128146).

〔解決しようとする課題〕[Problem to be solved]

しかしながら、これらはいずれもオゾンまたはシランを
単独に処理する方法であって、排ガス中に含有されるオ
ゾンおよびシランを同時に処理しうるちのではない。
However, all of these methods treat ozone or silane alone, and do not simultaneously treat ozone and silane contained in exhaust gas.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、鋭意研究を続けた結果、シラン類の除去
方法として先に出願した特開昭62−152515号公
報におけるソーダライムに銅化合物を担持させてなる除
去剤を応用することにより、シランと同時にオゾンが効
率良く除去できることを見い出し、本発明を完成した。
As a result of intensive research, the present inventors have applied a removing agent made by supporting a copper compound on soda lime as disclosed in Japanese Patent Application Laid-Open No. 152515/1987, which was previously filed as a method for removing silanes. They discovered that ozone can be efficiently removed at the same time as silane, and completed the present invention.

すなわち本発明は、有害成分としてオゾンおよびシラン
を含有するガスと除去剤とを接触させてオゾンおよびシ
ランを除去する有害成分の除去方法において、ソーダラ
イムにM(II)化合物を担持させてなる除去剤を用い
ることを特徴とする有害成分の除去方法である。
That is, the present invention provides a method for removing harmful components in which ozone and silane are removed by bringing a gas containing ozone and silane as harmful components into contact with a removing agent. This is a method for removing harmful components, which is characterized by using a chemical agent.

本発明は、窒素、水素、アルゴン、ヘリウムおよび空気
などにオゾンおよびシランを含有するガスに適用される
The present invention applies to gases containing ozone and silane, such as nitrogen, hydrogen, argon, helium and air.

本発明によって除去される有害成分はオゾンおよびシラ
ンであり、シランとしてはモノシラン、ジシランおよび
ハロゲン化シランなとである。
The harmful components removed by the present invention are ozone and silanes, such as monosilanes, disilanes, and halogenated silanes.

本発明で使用するソーダライムは、一般にソーダ石灰と
呼ばれるものであり、理化学事典(岩波書店、1983
年761頁)に記載されているように、通常、生石灰を
水酸化ナトリウムの濃厚溶液に浸し、加熱して作った強
い塩基性の白色粒状の固形物質である。ソーダライムは
試薬としても日本工業規格K 8603に規定されてい
る。
The soda lime used in the present invention is generally called soda lime, and is described in the Rikagaku Encyclopedia (Iwanami Shoten, 1983).
It is a strongly basic, white, granular solid substance that is usually made by soaking quicklime in a concentrated solution of sodium hydroxide and heating it, as described in 1996, p. 761). Soda lime is also specified as a reagent in Japanese Industrial Standards K8603.

ソーダライムの化学成分は水酸化カルシウムが主体で、
これに少量の水酸化ナトリウムが含有されている物質で
あり、ソーダライムの名称で市販もされている。
The chemical component of soda lime is mainly calcium hydroxide.
This substance contains a small amount of sodium hydroxide, and is also sold commercially under the name soda lime.

これらの市販のソーダライムは不定形の粒状や顆粒状で
あり、100〜200°Cで水分が遊離されるか、オゾ
ンおよびシラ′ンの除去能力の点からは水分を保有させ
た状態のまま用いることが好ましい。
These commercially available soda limes are in the form of irregularly shaped particles or granules, and water is liberated at 100 to 200°C, or remains in a water-retaining state in terms of ozone and silane removal ability. It is preferable to use

ソーダライムの粒の大きさは、通常1号品として市販さ
れているものは約1.5〜3.5a+m、2号品は約3
.5〜5.5m+1.3号品は約5.5〜7.0mmで
あり、これらのいずれを用いてもよい。
The grain size of soda lime is usually about 1.5 to 3.5 a+m for the commercially available No. 1 product, and about 3.5 m for the No. 2 product.
.. 5-5.5m+1.3 product is about 5.5-7.0mm, and any of these may be used.

本発明においてソーダライムに担持させる銅(n)化合
物としては、酸化銅、水酸化銅および塩基性炭酸銅など
があり、これらの一種または二種以上の混合物である。
In the present invention, the copper (n) compound supported on soda lime includes copper oxide, copper hydroxide, basic copper carbonate, etc., and the compound is one or a mixture of two or more of these.

酸化銅としては本来の酸化銅であるCuOの他に、水和
酸化銅と呼ばれるCuO−nH2Oという化合物群が知
られているが、いずれも有効である。
As copper oxide, in addition to CuO, which is the original copper oxide, a group of compounds called CuO-nH2O, which is called hydrated copper oxide, are known, and all of them are effective.

銅(II)化合物は、それぞれの化合物について従来公
知の種々の方法で調製することができる。例えば硫酸銅
、硝酸銅、塩化銅または酢酸銅などの銅(II)塩と水
酸化アルカリとの中和反応によって調製される水酸化銅
、および水酸化銅と炭酸アルカリとの中和反応によって
調製される塩基性炭酸銅、あるいはこのようにして調製
された水酸化銅または塩基性炭酸銅を焼成して得られる
酸化銅などである。
Copper(II) compounds can be prepared by various conventionally known methods for each compound. Copper hydroxide prepared by the neutralization reaction of a copper(II) salt such as copper sulfate, copper nitrate, copper chloride or copper acetate with an alkali hydroxide, and copper hydroxide prepared by the neutralization reaction of a copper hydroxide with an alkali carbonate. or copper oxide obtained by calcining copper hydroxide or basic copper carbonate prepared in this way.

これらの銅(II)化合物のソーダライムに対する担持
量は、Cuとして、通常は0.1〜50%、好ましくは
1〜30%である。銅としての担持量が0.1%よりも
少ない場合には、オゾンの除去が困難となり、シランの
除去効率も低下する。
The amount of these copper (II) compounds supported on soda lime is usually 0.1 to 50%, preferably 1 to 30% as Cu. If the supported amount of copper is less than 0.1%, ozone removal becomes difficult and silane removal efficiency also decreases.

一方、担持量を50%よりも大きくすると銅(II)化
合物の剥離が生じ易くなるばかりでなく、シランの濃度
が高いときには発熱によって温度が上昇し、粉化や銅(
II)化合物の金属銅への還元などが生じてオゾンおよ
びシラン共に除去能力が低下する。
On the other hand, if the supported amount is greater than 50%, not only will the copper(II) compound be more likely to peel off, but when the concentration of silane is high, the temperature will rise due to heat generation, causing powdering and copper (II)
II) Reduction of the compound to metallic copper occurs, reducing the ability to remove both ozone and silane.

銅(II)化合物のソーダライムに対する担持量がCu
として5%以下の場合には、出発物質として硫酸銅、硝
酸銅、塩化銅または酢酸銅などを水溶液の形でソーダラ
イムに含浸させて銅(II)化合物をソーダライム上に
析出させることができる。しかし、この方法よりも前記
したように酸基を中和して得られる化合物とじてがら担
持させる方が好ましい。
The amount of copper (II) compound supported on soda lime is Cu
If the amount is less than 5%, the copper(II) compound can be precipitated on the soda lime by impregnating the soda lime with a starting material such as copper sulfate, copper nitrate, copper chloride or copper acetate in the form of an aqueous solution. . However, rather than this method, it is preferable to support the compound obtained by neutralizing the acid group as described above while keeping it intact.

担持方法としては乾式法と湿式法があり、いずれを用い
てら除去剤として十分な効果が得られる。乾式法として
は、例えば酸化銅、塩基性炭酸銅などの銅(II)化合
物の粉末をソーダライムにまぶすことによって容易に担
持させることができる。湿式法としては、例えばIR(
[)化合物のペーストをソーダライムにまぶす方法があ
るが、ソーダライムにまぶしながら乾燥させる必要があ
るので、工業的には乾式法に比較して若干不利である。
There are a dry method and a wet method as a supporting method, and either method can be used to obtain a sufficient effect as a removing agent. As a dry method, soda lime can be easily supported, for example, by sprinkling powder of a copper(II) compound such as copper oxide or basic copper carbonate. As a wet method, for example, IR (
[) There is a method of sprinkling a paste of the compound on soda lime, but since it is necessary to dry it while sprinkling it on soda lime, it is slightly disadvantageous from an industrial perspective compared to the dry method.

本発明において、除去剤は主成分がソーダライム中の水
酸化カルシウムと銅(II)化合物であるため苛性アル
カリなどのような潮解性はなく、また除去筒に充填した
場合にも再析出などによって充填筒が閉塞することもな
く、長期間の使用に耐える。
In the present invention, since the main components of the removing agent are calcium hydroxide and copper (II) compounds in soda lime, it does not have deliquescent properties like caustic alkali, and even when filled in the removing cylinder, it does not cause re-precipitation. The filling cylinder does not become clogged and can withstand long-term use.

また、ガス中にオゾンおよびシランの他にアルシン、ホ
スフィン、セレン化水素およびジボランなどの水素化物
ガスが含有されている場合にはこれらも同時に除去でき
るという利点もある。
Furthermore, if the gas contains hydride gases such as arsine, phosphine, hydrogen selenide, and diborane in addition to ozone and silane, there is also the advantage that these can also be removed at the same time.

本発明において除去剤は、通常は除去筒に充填され、こ
れに有害成分を含有するガスを流して除去剤と接触させ
ることにより、カス中の有害成分が除去される。
In the present invention, the removal agent is usually filled in a removal cylinder, and the harmful components in the residue are removed by flowing a gas containing harmful components through the cylinder and bringing it into contact with the removal agent.

ガスの流速には特に制限はないが、例えばオゾンとシラ
ンを合わせた濃度が10〜100%のときには、ガスの
空筒線速度(LV)は、通常は10cm/sec以下、
好ましくは1cm/sec以下であり、また、濃度が1
0%未満のときには空筒線速度(LV)は200cm 
/ sec以下とすることが好ましい。なお、オゾンと
シランは共に爆発性の混合気をつくるのでその範囲は避
けなければならない。
There is no particular restriction on the flow rate of the gas, but for example, when the combined concentration of ozone and silane is 10 to 100%, the linear velocity (LV) of the gas is usually 10 cm/sec or less,
Preferably it is 1 cm/sec or less, and the concentration is 1 cm/sec or less.
When it is less than 0%, the linear velocity (LV) is 200 cm.
/sec or less is preferable. Note that both ozone and silane create an explosive mixture, so these areas must be avoided.

本発明において処理されるガスは、通常は乾燥状態であ
るが、湿潤状態であっても除去筒内で結露するほど湿っ
ていなければよい。
The gas to be treated in the present invention is usually in a dry state, but even if it is in a wet state, it is sufficient that it is not so wet as to cause dew condensation within the removal cylinder.

ガスと除去剤との接触温度は、通常は100°C以下で
ある。これよりも高温になるとソーダライム中に定常的
に含まれている水分の逸散などにより、除去能力が低下
することがある。通常は60°C以下の常温でよく、特
に加熱や冷却する必要はない。
The contact temperature between the gas and the removal agent is usually 100°C or less. If the temperature is higher than this, the removal ability may decrease due to the dissipation of the water constantly contained in soda lime. Usually, the room temperature is 60°C or less, and there is no need for particular heating or cooling.

また、処理時の圧力は常圧、減圧、加圧のいずれでもよ
く、−船釣には20Kg/ crd absであり、好
ましくは0.001〜10Kg/ co! absの範
囲である。
Moreover, the pressure during treatment may be normal pressure, reduced pressure, or increased pressure, and is 20 kg/crd abs for boat fishing, preferably 0.001 to 10 kg/co! ABS range.

〔発明の効果〕〔Effect of the invention〕

本発明の浄化方法は、半導体製造工程などから排出され
る排ガス中に有害成分として含有されるオゾンおよびシ
ランを同時に、しかも効率良く除去することができる。
The purification method of the present invention can simultaneously and efficiently remove ozone and silane contained as harmful components in exhaust gas discharged from semiconductor manufacturing processes and the like.

また、乾式法であり、装置は基本的には除去剤を充填し
た除去筒だけであるため、コンパクトであり、狭い空間
などにも容易に設置することができる。
Furthermore, since it is a dry method and the device is basically just a removal tube filled with a removal agent, it is compact and can be easily installed in narrow spaces.

〔実施例〕〔Example〕

実施例1 硫酸銅と水酸化ナトリウムのそれぞれの水溶液を混合し
て水酸化鋼の沈殿を生成させた。この沈殿物の水洗を3
回繰返した後、150℃で5時間乾燥し、次いで300
°Cで10時間焼成して酸化銅(Cub)を得た。この
酸化銅を市販の1号ソーダライムにまぶして8wt%に
なるように担持させて除去剤を調製した。
Example 1 Aqueous solutions of copper sulfate and sodium hydroxide were mixed to form a precipitate of hydroxide steel. Wash this precipitate with water for 3
After repeating the process several times, it was dried at 150°C for 5 hours, and then dried at 300°C.
Copper oxide (Cub) was obtained by firing at °C for 10 hours. A removing agent was prepared by sprinkling this copper oxide on commercially available No. 1 soda lime to support it at 8 wt%.

第1図に示したように内径19+u+φ、長さ300I
IIIllの石英製の筒1に、下から順に、インジゴを
変色成分とするオゾン検知剤2(検知下限0.lppm
 >を1c@(充填量2.8d、2g)、除去剤3を5
cm(14巌、13g ) 、検知剤4を1 cm、除
去剤5を5 ctn、検知剤6を1cmと順次積み重ね
て充填し、除去筒7とした。
As shown in Figure 1, inner diameter 19+u+φ, length 300I
In a IIIll quartz cylinder 1, from the bottom, ozone detection agent 2 containing indigo as a discoloration component (lower detection limit 0.lppm)
>1 c @ (filling amount 2.8 d, 2 g), remover 3 at 5
cm (14 ctn, 13 g), 1 cm of detecting agent 4, 5 ctn of removing agent 5, and 1 cm of detecting agent 6 were sequentially stacked and filled to form a removal cylinder 7.

除去筒7に0.5%のオゾンを含有する酸素を常温(2
0°C)で850m / mia (L V 5cm 
/ sec )で上から下へと流通させて検知剤2が変
色するまでの時間を測定したところ、3100分であっ
た。
Oxygen containing 0.5% ozone was placed in the removal tube 7 at room temperature (2
850m/mia (LV 5cm) at 0°C
/sec) from top to bottom and the time taken for the detection agent 2 to change color was measured and was 3100 minutes.

これをオゾン処理能力に換算すると465171除去剤
である。
When converted into ozone treatment capacity, this is 465,171 removers.

引続き、この除去筒7の出口にモノシランの測定範囲が
0〜15PPIllの検知器(TO−4000;バイオ
ニクス■製〉を取付け、0.5%のモノシランを含有す
るアルゴンを常温(20°C)で850 rnQ/ r
rm (L V 5cm / sec )で流通させて
モノシランの濃度が5ppmに達するまでの時間を測定
したところ 110分であった。これをモノシランの処
理能力に換算すると16.5ffl / 1除去剤であ
る。
Subsequently, a detector (TO-4000, manufactured by Bionics ■) with a monosilane measurement range of 0 to 15 PPIll was attached to the outlet of this removal cylinder 7, and argon containing 0.5% monosilane was heated at room temperature (20°C). 850 rnQ/r
rm (LV 5 cm/sec) and the time required for the concentration of monosilane to reach 5 ppm was measured and was 110 minutes. This is converted into monosilane processing capacity of 16.5 ffl/1 removal agent.

実施例2 実施例1で使用したと同様の除去筒7に0.5%のモノ
シランを含有するアルゴンを常温(30℃)で850m
 / m (L V 5cm / sec )で流通さ
せてモノシランの濃度が5ppmに達するまでの時間を
測定したところ110分であった。これをモノシランの
処理能力に換算すると16.5ρ/g除去である。
Example 2 Argon containing 0.5% monosilane was poured into the removal cylinder 7 similar to that used in Example 1 for 850 m at room temperature (30°C).
The time taken for the monosilane concentration to reach 5 ppm by flowing at a flow rate of LV 5 cm/sec was 110 minutes. Converting this into monosilane processing capacity, it is 16.5 ρ/g removal.

引続き、この除去筒7に0.5%のオゾンを含有する酸
素を常温(20℃)で850m / m1l(L V5
cm / see )で流通させて検知剤2が変色する
までの時間を測定したところ、3000分であった。
Subsequently, oxygen containing 0.5% ozone was added to this removal cylinder 7 at room temperature (20°C) at a rate of 850 m/ml (L V5
The time taken for the detection agent 2 to change color after flowing at a rate of 3000 minutes (cm/see) was measured and was 3000 minutes.

これをオゾン処理能力に換算すると450171除去剤
である。
When converted into ozone treatment capacity, this is 450,171 removers.

実施例3 実施例1で使用したと同様の除去筒7に0.1%のモノ
シランと0.01%のオゾンを含有するアルゴン(酸素
を含む)を常温(20℃)で850頑/ tm (L 
V 5C1l / see )で流通させてモノシラン
の濃度が5ρp諷に達するまでの時間および検知剤2が
変色するまでの時間を測定したところ、モノシランにつ
いては550分で0.5ppmに達したが、オゾンにつ
いてはこの時点では検知剤の変色はなく、破過するまで
に至らなかった。
Example 3 Argon (including oxygen) containing 0.1% monosilane and 0.01% ozone was placed in the same removal cylinder 7 as used in Example 1 at room temperature (20°C) at 850 m/tm ( L
When the time taken for the concentration of monosilane to reach 5ρp and the time taken for the detection agent 2 to change color was measured by flowing the solution at There was no discoloration of the detecting agent at this point, and breakthrough did not occur.

比較例1 実施例で使用した除去剤の代わりに、1号ソーダライム
のみを充填し、これに0.5%のオゾンを含有する酸素
を常温(20℃)で850減/111iII(LV 5
c+++/sec )で流通させて検知剤2が変色する
までの時間を測定したところ、1分37秒であった。こ
れをオゾン処理能力に換算すると0.21.、/ρ除去
剤となる。
Comparative Example 1 Instead of the removing agent used in the example, only No. 1 soda lime was filled, and oxygen containing 0.5% ozone was reduced by 850/111iII (LV 5) at room temperature (20°C).
The time taken for the detection agent 2 to change color after flowing at a flow rate of 1 minute and 37 seconds was measured. Converting this to ozone processing capacity is 0.21. ,/becomes a ρ remover.

比較例2 硝酸マンガン[Mn(NO3)2・6HzO17,26
gを20mQの水に溶かし、この水溶液に市販の粒状ア
ルミナ40gを混合してよくかき混ぜた後、100℃で
1時間乾燥した。このものを電気炉に入れて空気中65
℃で5時間加熱焼成し、除去剤とした。
Comparative Example 2 Manganese nitrate [Mn(NO3)2.6HzO17,26
g was dissolved in 20 mQ of water, 40 g of commercially available granular alumina was mixed with this aqueous solution, stirred well, and then dried at 100° C. for 1 hour. Put this thing in an electric furnace and put it in the air for 65 minutes.
The mixture was heated and baked at ℃ for 5 hours to obtain a removing agent.

この除去剤を実施例と同様に筒1に充填し、これに0.
5%のモノシランを含有するアルゴンを常温(20℃)
で850−/ m (L V 5cm / sec )
で流通させて検知剤2が変色するまでの時間を測定した
ところ、瞬時に5ppmに達した。モノシランの処理能
力は全く無かった。
This removing agent was filled into cylinder 1 in the same manner as in the example, and 0.
Argon containing 5% monosilane at room temperature (20°C)
850-/m (LV 5cm/sec)
When the time required for the detection agent 2 to change color was measured, it instantly reached 5 ppm. There was no ability to process monosilane at all.

比較例3 除去剤として活性炭を使用し、実施例と同様にして除去
試験を行った。
Comparative Example 3 A removal test was conducted in the same manner as in the example using activated carbon as a removal agent.

0.5%のモノシランを含有するアルゴンを常温で85
0d / ym (L V 5cn / see )で
流通させ、出口ガス中のモノシランが5ρPI11に達
するまでの時間を測定したところ、20分であった。モ
ノシランの処理能力は3わ勺除去剤となる。また、この
除去剤を空気中に取出すと間もなく燃え出した。
85 argon containing 0.5% monosilane at room temperature.
0d/ym (LV5cn/see), and the time taken for monosilane in the outlet gas to reach 5ρPI11 was measured, and it was 20 minutes. Monosilane has a processing capacity of 3 as a silt removal agent. Moreover, the remover started to burn soon after being taken out into the air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は除去筒の縦断面図である。 図面の各番号は以下の如くである。 1、筒   2.4および6、検知剤 3および4.除去剤  7.除去筒 FIG. 1 is a longitudinal sectional view of the removal cylinder. The numbers in the drawings are as follows. 1. Cylinder 2.4 and 6. Detection agent 3 and 4. Remover 7. removal tube

Claims (1)

【特許請求の範囲】[Claims] 有害成分としてオゾンおよびシランを含有するガスと除
去剤とを接触させてオゾンおよびシランを除去する有害
成分の除去方法において、ソーダライムに銅(II)化合
物を担持させてなる除去剤を用いることを特徴とする有
害成分の除去方法。
In a method for removing ozone and silane by bringing a gas containing ozone and silane as harmful components into contact with a removing agent, a removing agent made by supporting a copper (II) compound on soda lime is used. Features a method for removing harmful components.
JP1144109A 1989-06-08 1989-06-08 How to remove harmful components Expired - Fee Related JP2691927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1144109A JP2691927B2 (en) 1989-06-08 1989-06-08 How to remove harmful components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1144109A JP2691927B2 (en) 1989-06-08 1989-06-08 How to remove harmful components

Publications (2)

Publication Number Publication Date
JPH0312219A true JPH0312219A (en) 1991-01-21
JP2691927B2 JP2691927B2 (en) 1997-12-17

Family

ID=15354395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1144109A Expired - Fee Related JP2691927B2 (en) 1989-06-08 1989-06-08 How to remove harmful components

Country Status (1)

Country Link
JP (1) JP2691927B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374322A (en) * 1992-07-09 1994-12-20 Sumitomo Metal Industries, Ltd. Method of manufacturing high strength steel member with a low yield ratio
EP0642822A1 (en) * 1993-03-17 1995-03-15 Nippon Sanso Corporation Methods of removing and detecting harmful component
EP0687494A1 (en) * 1994-06-13 1995-12-20 Japan Pionics Co., Ltd. Cleaning method for exhaust gas
US6706648B2 (en) * 1995-09-08 2004-03-16 Semiconductor Energy Laboratory Co., Ltd APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
JP2009207968A (en) * 2008-03-03 2009-09-17 Taiyo Nippon Sanso Corp Detoxifier for silane-based gas and detoxifying method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374322A (en) * 1992-07-09 1994-12-20 Sumitomo Metal Industries, Ltd. Method of manufacturing high strength steel member with a low yield ratio
EP0642822A1 (en) * 1993-03-17 1995-03-15 Nippon Sanso Corporation Methods of removing and detecting harmful component
EP0642822A4 (en) * 1993-03-17 1995-08-16 Nippon Oxygen Co Ltd Methods of removing and detecting harmful component.
EP0687494A1 (en) * 1994-06-13 1995-12-20 Japan Pionics Co., Ltd. Cleaning method for exhaust gas
US6706648B2 (en) * 1995-09-08 2004-03-16 Semiconductor Energy Laboratory Co., Ltd APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
JP2009207968A (en) * 2008-03-03 2009-09-17 Taiyo Nippon Sanso Corp Detoxifier for silane-based gas and detoxifying method

Also Published As

Publication number Publication date
JP2691927B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
KR100318353B1 (en) How to purify exhaust gas
JPS6068034A (en) Process for removing poisonous component
JPH0312219A (en) Removal of toxic component
JP3368820B2 (en) Method for treating fluorine compound-containing gas and catalyst
JP3260825B2 (en) How to purify harmful gases
KR19990023454A (en) Decomposition Method of Nitrogen Fluoride or Sulfur Fluoride and Decomposition Reactor for It
WO2020213281A1 (en) Acidic exhaust gas treatment agent, acidic exhaust gas treatment method, and acidic exhaust gas treatment equipment
JPS61129026A (en) Purification of exhaust gas
JPS6190726A (en) Removing agent
JPH0561966B2 (en)
JP3362918B2 (en) Exhaust gas purification method
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JPH05255771A (en) Reduction method for noble metal
JP2702461B2 (en) Exhaust gas purification method
JPH0687943B2 (en) Exhaust gas purification method
TWI809255B (en) Acid exhaust treatment agent, acid exhaust treatment method and acid exhaust treatment equipment
JPH08206445A (en) Purification of exhaust gas
JPH04290523A (en) Method and device for treating waste nf3 gas
EP0502970B1 (en) Exhaust gas conditioning
JPS621439A (en) Removal of noxious component
JP3292251B2 (en) Steam purification method
JP2008119628A (en) Cleaning agent and cleaning method of toxic gas
JP2608394B2 (en) Remover
JP3862792B2 (en) Chemical vapor deposition apparatus exhaust gas treatment method
JPH0710335B2 (en) NF3 Exhaust gas treatment method and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees