Nothing Special   »   [go: up one dir, main page]

JPH0312417A - Epoxy resin composition for sealing semiconductor - Google Patents

Epoxy resin composition for sealing semiconductor

Info

Publication number
JPH0312417A
JPH0312417A JP14740289A JP14740289A JPH0312417A JP H0312417 A JPH0312417 A JP H0312417A JP 14740289 A JP14740289 A JP 14740289A JP 14740289 A JP14740289 A JP 14740289A JP H0312417 A JPH0312417 A JP H0312417A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
naphthalenediol
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14740289A
Other languages
Japanese (ja)
Inventor
Masashi Kaji
正史 梶
Takanori Aramaki
隆範 荒牧
Tokuhito Nakahara
徳人 中原
Yasuji Yamada
保治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP14740289A priority Critical patent/JPH0312417A/en
Publication of JPH0312417A publication Critical patent/JPH0312417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the subject composition giving a cured product having high toughness and excellent crack-resistance by using a specific naphthalenediol- type epoxy resin, a phenolic novolak curing agent, a cure accelerator and an inorganic filler as main components. CONSTITUTION:The objective composition is composed mainly of (A) a naphthalenediol-type epoxy resin expressed by formula (Ar is naphthalene; R is H or methyl; n is 0-5), (B) a phenolic novolak curing agent (preferably having a softening point of 50-120 deg.C). (C) a cure accelerator (e.g. triethylamine or benzyldimethylamine) and (D) an inorganic filler (preferably silica powder). The epoxy resin of the component A can be produced by reacting a naphthalenediol with an epihalohydrin or a beta-methylepihalohydrin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体封止用エポキシ樹脂組成物に係り、更
に詳しくは、高靭性であって耐クラツク性に優れた硬化
物を与える半導体封止用エポキシ樹脂組成物に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an epoxy resin composition for semiconductor encapsulation, and more specifically to a semiconductor encapsulation composition that provides a cured product with high toughness and excellent crack resistance. The present invention relates to an epoxy resin composition for stopping use.

半導体素子を樹脂封止した場合、ヒートサイクルテスト
等により封止樹脂にクラックが発生する場合があり、更
に、近年における半導体素子の大型化や薄型化に伴って
ますますこの問題がクローズアップされてきた。
When semiconductor devices are encapsulated with resin, cracks may occur in the encapsulation resin during heat cycle tests, etc. Furthermore, as semiconductor devices have become larger and thinner in recent years, this problem has become increasingly important. Ta.

そこで、このような問題点を解決するために、封止樹脂
の曲げ強度を高(する方法が提案されている(日経マイ
クロデバイス、1988年5月号第36頁)。
In order to solve these problems, a method of increasing the bending strength of the sealing resin has been proposed (Nikkei Microdevice, May 1988 issue, p. 36).

具体的には、充填剤であるシリカの充填量を増加する手
法が採られている。しかしながら、このようにシリカの
充填量を増やすと粘度が高くなり、成形作業性が低下す
るという問題が生じる。そこで、このシリカの充填量を
増やさずに、強靭な硬化物を与えるエポキシ樹脂の開発
が要請されている。
Specifically, a method has been adopted in which the amount of silica, which is a filler, is increased. However, when the filling amount of silica is increased in this way, the viscosity increases, causing a problem that molding workability decreases. Therefore, there is a need to develop an epoxy resin that can provide a tough cured product without increasing the amount of silica filled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、本発明の目的は、耐クラツク性に優れた成形物
を与える半導体封止用エポキシ樹脂組成物を提供するこ
とにある。
Accordingly, an object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation that gives molded products with excellent crack resistance.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、 (a)下記一般式(I) R(I) (但し、式中Arは、ナフタレン基、Rは水素原子又は
メチル基を示し、nは0〜5の整数を示す)で表される
ナフタレンジオール型エポキシ樹脂、(b)フェノール
ノボラック系硬化剤、(C)硬化促進剤、及び、 (d)無機充填剤 を主成分とする半導体封止用エポキシ樹脂組成物である
That is, the present invention provides (a) the following general formula (I) R(I) (wherein Ar is a naphthalene group, R is a hydrogen atom or a methyl group, and n is an integer of 0 to 5) This is an epoxy resin composition for semiconductor encapsulation, the main components of which are a naphthalene diol type epoxy resin represented by (b) a phenol novolac curing agent, (C) a curing accelerator, and (d) an inorganic filler.

本発明において、(a)成分のエポキシ樹脂は、ナフタ
レンジオール類をエピハロヒドリン又はβ−メチルエピ
ハロヒドリン(以下、これら両者を単にエビハロヒドリ
ンという)とを反応させることにより、容易に合成され
る。
In the present invention, the epoxy resin as component (a) is easily synthesized by reacting naphthalene diols with epihalohydrin or β-methyl epihalohydrin (hereinafter both will be simply referred to as epihalohydrin).

例えば、ナフタレンジオール類とこのナツタ1ノンジオ
ール類中の水酸基1モルに対して2〜15倍モルのエビ
ハロヒドリンとを水酸化ナトリウムや水酸化カリウム等
のアルカリ性化合物の共存下に50〜150℃の温度で
反応を行う方法、あるいは、ナフタレンジオール類とこ
のナフタレンジオール類中の水酸基1モルに対して2〜
5倍モルのエビハロヒドリンとの混合物に、テトラメチ
ルアンモニウムクロリド、テトラエチルアンモニウムク
ロリド等の四級アンモニウム塩をナフタレンジオール類
中の水酸基1モルに対して0.001〜0.1倍モル加
え、50〜150℃の温度で反応させて得られるハロヒ
ドリンエーテルを閉環する方法等が挙げられる。これら
の反応は、必要に応じて、エタノール、ブタノール等の
アルコール類や、ベンゼン、トルエン等の炭化水素化合
物等の溶媒を用いることができ、通常1〜10時間の範
囲で行われる。
For example, naphthalene diols and shrimp halohydrin in an amount of 2 to 15 times the mole of hydroxyl group in the Natsuta 1 non-diol are mixed at a temperature of 50 to 150°C in the coexistence of an alkaline compound such as sodium hydroxide or potassium hydroxide. 2 to 1 mole of hydroxyl group in the naphthalene diol and the naphthalene diol.
A quaternary ammonium salt such as tetramethylammonium chloride or tetraethylammonium chloride is added to a mixture with 5 times the mole of shrimp halohydrin, and 0.001 to 0.1 times mole of quaternary ammonium salt, such as tetramethylammonium chloride or tetraethylammonium chloride, is added to the mixture with 5 times the mole of hydroxyl group in the naphthalene diol. Examples include a method of ring-closing a halohydrin ether obtained by reacting at a temperature of .degree. These reactions can be carried out using solvents such as alcohols such as ethanol and butanol, and hydrocarbon compounds such as benzene and toluene, if necessary, and are usually carried out for 1 to 10 hours.

ナフタレンジオール類としては、1.4−ナフタレンジ
オール、■、5−ナフタレンジオール、■、6−ナフタ
レンジオール、1.7−ナフタレンジオール 2.6−
ナフタレンジオール、2,7−ナフタレンジオール等が
挙げられる。樹脂硬化物の靭性の面からは、対称位置に
ヒドロキシル基を有するもの、例えば、1.5−ナフタ
レンジオール、2,6−ナフタレンジオールが好ましく
、特に2,6−ナフタレンジオールが好ましい。また、
エビハロヒドリンとしては、エピクロルヒドリン、エピ
ブロモヒドリン、β−メチルエピブロモヒドリン等が挙
げられる。
Examples of naphthalene diols include 1,4-naphthalene diol, ■, 5-naphthalene diol, ■, 6-naphthalene diol, 1.7-naphthalene diol, 2.6-
Examples include naphthalene diol and 2,7-naphthalene diol. From the viewpoint of toughness of the cured resin product, those having hydroxyl groups at symmetrical positions, such as 1,5-naphthalenediol and 2,6-naphthalenediol, are preferable, and 2,6-naphthalenediol is particularly preferable. Also,
Examples of shrimp halohydrin include epichlorohydrin, epibromohydrin, and β-methyl epibromohydrin.

本発明に使用するフェノールノボラック系硬化剤は、1
分子中にフェノール性水酸基を2個以上有するものであ
り、フェノール、クレゾール等のフェノール類を酸性触
媒下にホルマリンと縮合反応させることにより合成され
る。成形作業性の観点から軟化点50〜120°Cのも
のが好ましい。
The phenol novolac curing agent used in the present invention is 1
It has two or more phenolic hydroxyl groups in its molecule, and is synthesized by condensing phenols such as phenol and cresol with formalin under an acidic catalyst. From the viewpoint of molding workability, those having a softening point of 50 to 120°C are preferred.

本発明に使用される硬化促進剤は、エポキシ樹脂とフェ
ノールノボラック系硬化剤との反応を促進し、硬化速度
を速めるために使用される。このような硬化促進剤とし
ては、例えば、トリエチルアミン、ベンジルジメチルア
ミン、2.4.6− トリス(ジメチルアミノメチル)
フェノール等の三級アミン類や、2−メチルイミダゾー
ル、2−エチル−4メチルイミダゾール、2−ウンデシ
ルイミダゾール等のイミダゾール類や、トリフェニルホ
スフィン等の有機ホスフィン類や、1,8−ジアザビシ
クロ[5,4゜0〕ウンデセン−7及びそのフェノール
塩や蟻酸塩等が挙げられる。
The curing accelerator used in the present invention is used to accelerate the reaction between the epoxy resin and the phenol novolak curing agent and to speed up the curing rate. Examples of such curing accelerators include triethylamine, benzyldimethylamine, and 2.4.6-tris(dimethylaminomethyl).
Tertiary amines such as phenol, imidazoles such as 2-methylimidazole, 2-ethyl-4methylimidazole, and 2-undecylimidazole, organic phosphines such as triphenylphosphine, and 1,8-diazabicyclo[5 , 4°0] undecene-7 and its phenol salts and formates.

本発明の組成物中には、通常のエポキシ樹脂を必要に応
じて配合してもよい。これらのエポキシ樹脂としては、
例えば、ビスフェノールA型エポキシ樹脂、ノボラック
型エポキシ樹脂等がある。
A common epoxy resin may be blended into the composition of the present invention, if necessary. These epoxy resins include
For example, there are bisphenol A type epoxy resin, novolak type epoxy resin, etc.

このノボラック型エポキシ樹脂としては、フェノールノ
ボラック型エポキシ樹脂、クレゾールノボラック型エポ
キシ樹脂、臭素化フェノールノボラック型エポキシ樹脂
等が例示される。これらエポキ樹脂の配合量としては、
ナフタレンジオール型エポキシ樹脂100重量部に対し
て0〜200重量部の範囲が適当である。
Examples of the novolac type epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, and brominated phenol novolac type epoxy resin. The amount of these epoxy resins is as follows:
A suitable range is 0 to 200 parts by weight per 100 parts by weight of the naphthalene diol type epoxy resin.

また、本発明においては、その組成物中に無機充填剤を
配合することが必要である。この無機充填剤としては、
溶融シリカ、結晶シリカ、石英ガラス粉、タルク、アル
ミナ粉、炭酸カルシウム、ガラス繊維等が挙げられ、こ
れらよりなる群から選ばれた1種又は2種以上の混合物
が使用される。
Furthermore, in the present invention, it is necessary to incorporate an inorganic filler into the composition. As this inorganic filler,
Examples include fused silica, crystalline silica, quartz glass powder, talc, alumina powder, calcium carbonate, glass fiber, etc., and one type or a mixture of two or more types selected from the group consisting of these is used.

これらの無機充填剤としては、シリカ粉末が特に好まし
く、このシリカ粉末としては破砕状、球状等いずれの形
状のものでもよい。
As these inorganic fillers, silica powder is particularly preferred, and the silica powder may be in any shape such as crushed or spherical.

本発明で使用する無機充填剤は、成形性を考慮して平均
粒径が2〜25.mであるものが好ましい。
The inorganic filler used in the present invention has an average particle size of 2 to 25 mm in consideration of moldability. Preferably, m.

また、この無機充填剤の配合割合は、成形時の流動性保
持の観点から、85重量%以下が好ましく、より好まし
くは65〜75重量%の範囲である。
Further, from the viewpoint of maintaining fluidity during molding, the blending ratio of this inorganic filler is preferably 85% by weight or less, and more preferably in the range of 65 to 75% by weight.

更に、本発明においては、必要に応じて、離型剤、着色
剤、カップリング剤、滑剤、低応力化剤、難燃剤等を添
加してもよい。
Furthermore, in the present invention, a mold release agent, a coloring agent, a coupling agent, a lubricant, a stress reducing agent, a flame retardant, etc. may be added as necessary.

〔実施例〕〔Example〕

以下、実施例及び比較例に基づいて、本発明を具体的に
説明する。
The present invention will be specifically described below based on Examples and Comparative Examples.

合成例1 1.5−ナフタレンジオール100重量部にエピクロル
ヒドリン700重量部を加え、攪拌下1150Cで48
wtX水酸化ナトリウム水溶液104重鳳部を3時間半
かけて滴下した。その間に生成した水は、エピクロルヒ
ドリンとの共沸により系外に除き、留出したエピクロル
ヒドリンは系内に戻した。
Synthesis Example 1 700 parts by weight of epichlorohydrin was added to 100 parts by weight of 1.5-naphthalene diol, and the mixture was heated at 1150C with stirring to 48% by weight.
104 parts of wtX sodium hydroxide aqueous solution was added dropwise over 3 and a half hours. The water produced during this time was removed from the system by azeotroping with epichlorohydrin, and the distilled epichlorohydrin was returned to the system.

48wtX水酸化ナトリウム水溶液の滴下終了後、更に
115℃で15分間反応させた。
After the dropwise addition of the 48wtX sodium hydroxide aqueous solution was completed, the reaction was further carried out at 115°C for 15 minutes.

反応終了後、蒸留により過剰のエピクロルヒドリンを除
いた後、メチルイソブチルケトン200重量部を加え、
反応生成物を溶解し回収した。その後メチルイソブチル
ケントを留去し、エポキシ当1154で淡黄色のエポキ
シ樹脂(A−1)146重量部を得た。
After the reaction was completed, excess epichlorohydrin was removed by distillation, and 200 parts by weight of methyl isobutyl ketone was added.
The reaction product was dissolved and collected. Thereafter, methyl isobutyl Kent was distilled off, and 146 parts by weight of a pale yellow epoxy resin (A-1) was obtained using 1154 parts by weight of epoxy resin.

次に、得られた樹脂100重量部と硬化剤のフェノール
ノボラック樹脂(OH当量lO4、軟化点68°C)5
3重量部とを加熱下に溶融混合し、更に硬化促進剤のト
リフェニルホスフィン2重量部を加え、100℃で10
分間加熱混練を行った後、150°Cでトランスファー
成形により試験片を成形した。
Next, 100 parts by weight of the obtained resin and 5 parts of a phenol novolac resin (OH equivalent 1O4, softening point 68°C) as a curing agent were added.
3 parts by weight were melt-mixed under heating, 2 parts by weight of triphenylphosphine as a curing accelerator was added, and the mixture was heated to 100°C.
After heating and kneading for a minute, test pieces were molded by transfer molding at 150°C.

この試験片について、ガラス転移点、線膨張係数及び破
壊靭性を調べた。ここで、ガラス転移点は、熱機械分析
装置を使用して7°C/minの昇温速度で測定した。
The glass transition point, coefficient of linear expansion, and fracture toughness of this test piece were investigated. Here, the glass transition point was measured using a thermomechanical analyzer at a heating rate of 7°C/min.

また、破壊靭性は、A、 F、 Yee。Moreover, the fracture toughness is A, F, Yee.

R,A、 Pearson、 Journal of 
Materials 5cience。
R.A., Pearson, Journal of
Materials 5science.

21、2462(1986)に記載の方・法に従って求
めた。
21, 2462 (1986).

結果を第1表に示す。The results are shown in Table 1.

合成例2 1.6−ナフタレンジオールを使用し、合成例1と同様
にエポキシ樹脂の合成を行い、常温で粘稠なエポキシ当
量149のエポキシ樹脂(A−2)  166重量部を
得た。
Synthesis Example 2 An epoxy resin was synthesized in the same manner as in Synthesis Example 1 using 1.6-naphthalenediol to obtain 166 parts by weight of an epoxy resin (A-2) having an epoxy equivalent of 149 and being viscous at room temperature.

得られた樹脂を使用し、合成例1と同様に試験片を調製
し、その物性を測定した。結果を第1表に示す。
Using the obtained resin, a test piece was prepared in the same manner as in Synthesis Example 1, and its physical properties were measured. The results are shown in Table 1.

合成例3 1.7−ナフタレンジオールを使用し、合成例1と同様
にエポキシ樹脂の合成を行い、常温で粘稠なエポキシ当
量149のエポキシ樹脂(A−3)163重量部を得た
Synthesis Example 3 Using 1.7-naphthalenediol, an epoxy resin was synthesized in the same manner as in Synthesis Example 1 to obtain 163 parts by weight of an epoxy resin (A-3) having an epoxy equivalent of 149 and being viscous at room temperature.

得られた樹脂を使用し、合成例1と同様に試験片を調製
し、その物性を測定した。結果を第1表に示す。
Using the obtained resin, a test piece was prepared in the same manner as in Synthesis Example 1, and its physical properties were measured. The results are shown in Table 1.

合成例4 2.6−ナフタレンジオールを使用し、合成例1と同様
に反応を行い、結晶状のエポキシ当量158のエポキシ
樹脂(A−4) 144重量部を得た。
Synthesis Example 4 Using 2.6-naphthalene diol, a reaction was carried out in the same manner as in Synthesis Example 1 to obtain 144 parts by weight of a crystalline epoxy resin (A-4) having an epoxy equivalent of 158.

得られた樹脂を使用し、合成例1と同様に試験片を調製
し、その物性を測定した。結果を第1表に示す。
Using the obtained resin, a test piece was prepared in the same manner as in Synthesis Example 1, and its physical properties were measured. The results are shown in Table 1.

比較合成例1 O−クレゾールノボラック型エポキシ樹脂(CA−1、
エポキシ当量158、軟化点70°C)を使用し、合成
例1と同様に試験片を調製し、その物性を測定した。結
果を第1表に示す。
Comparative Synthesis Example 1 O-cresol novolac type epoxy resin (CA-1,
A test piece was prepared in the same manner as in Synthesis Example 1 using an epoxy equivalent of 158 and a softening point of 70°C, and its physical properties were measured. The results are shown in Table 1.

第  1  表 合成例1〜4及び比較合成例1のエポキシ樹脂とフェノ
ールノボラック樹脂(B、硬化剤)とを第2表に示す割
合(重量部)で配合し、これにトリフェニルホスフィン
(硬化促進剤)2重量部、溶融シリカ(無機充填剤)4
50重量部、カルバナワックス2重量部及びカーボンブ
ラック2重量部を配合し、加熱ロールにて混練し、その
後、冷却粉砕してエポキシ樹脂組成物を得た。
Table 1 The epoxy resins of Synthesis Examples 1 to 4 and Comparative Synthesis Example 1 and phenol novolak resin (B, curing agent) were blended in the proportions (parts by weight) shown in Table 2, and triphenylphosphine (hardening accelerator) was added to the mixture. agent) 2 parts by weight, fused silica (inorganic filler) 4
50 parts by weight, 2 parts by weight of carvana wax, and 2 parts by weight of carbon black were blended, kneaded with heated rolls, and then cooled and pulverized to obtain an epoxy resin composition.

得られたエポキシ樹脂組成物について、EMMI法によ
りスパイラルフローを測定し、また、175℃における
ゲル化時間を求めた。更に、l・ランスファー成形によ
り16ビンDIPの封止を行い、これを吸湿(85℃、
85XRH,24時間)させた後、ハンダ浸漬(260
℃、10秒)し、その後のクラック発生率を求めること
によりクラックテストを行った。
The spiral flow of the obtained epoxy resin composition was measured by the EMMI method, and the gelation time at 175°C was determined. Furthermore, the 16-bottle DIP was sealed by L-transfer molding, and then it was heated to absorb moisture (85°C,
85XRH, 24 hours), then solder immersion (260
℃, 10 seconds), and then a crack test was conducted by determining the crack generation rate.

結果を第2表に示す。The results are shown in Table 2.

実施例1〜5.比較例1 第  2  表 り、半導体封止用樹脂組成物として極めて有用なもので
ある。
Examples 1-5. Comparative Example 1 (Table 2) This is extremely useful as a resin composition for semiconductor encapsulation.

Claims (2)

【特許請求の範囲】[Claims] (1)(a)下記一般式( I ) ▲数式、化学式、表等があります▼( I ) (但し、式中Arは、ナフタレン基、Rは水素原子又は
メチル基を示し、nは0〜5の整数を示す)で表される
ナフタレンジオール型エポキシ樹脂、(b)フェノール
ノボラック系硬化剤、 (c)硬化促進剤、及び、 (d)無機充填剤 を主成分とすることを特徴とする半導体封止用エポキシ
樹脂組成物。
(1) (a) The following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (However, in the formula, Ar is a naphthalene group, R is a hydrogen atom or a methyl group, and n is 0 to (integer of 5)), (b) a phenol novolac curing agent, (c) a curing accelerator, and (d) an inorganic filler as main components. Epoxy resin composition for semiconductor encapsulation.
(2)一般式( I )において、Arが2、6−ナフチ
レン基である請求項1記載の半導体封止用エポキシ樹脂
組成物。
(2) The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein in the general formula (I), Ar is a 2,6-naphthylene group.
JP14740289A 1989-06-09 1989-06-09 Epoxy resin composition for sealing semiconductor Pending JPH0312417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14740289A JPH0312417A (en) 1989-06-09 1989-06-09 Epoxy resin composition for sealing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14740289A JPH0312417A (en) 1989-06-09 1989-06-09 Epoxy resin composition for sealing semiconductor

Publications (1)

Publication Number Publication Date
JPH0312417A true JPH0312417A (en) 1991-01-21

Family

ID=15429479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14740289A Pending JPH0312417A (en) 1989-06-09 1989-06-09 Epoxy resin composition for sealing semiconductor

Country Status (1)

Country Link
JP (1) JPH0312417A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496929A (en) * 1990-08-14 1992-03-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH05320317A (en) * 1992-05-21 1993-12-03 Fujitsu Ltd Epoxy resin composition
US5312878A (en) * 1991-10-07 1994-05-17 Shin-Etsu Chemical Company, Limited Naphthalene containing epoxy resin cured with a dicyclopentadiene phenolic resin
EP0682052A1 (en) * 1994-05-09 1995-11-15 Shell Internationale Researchmaatschappij B.V. Composition of epoxy resins based on condensed polynuclear aromatic compounds
US6156865A (en) * 1998-11-19 2000-12-05 Nec Corporation Flame retardant thermosetting resin composition
JP2010084091A (en) * 2008-10-02 2010-04-15 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2012162591A (en) * 2011-02-03 2012-08-30 Sekisui Chem Co Ltd Mixture of thermosetting compound, curable composition, and connection structure
US10256026B2 (en) 2013-12-04 2019-04-09 Epcos Ag Transformer component with setting of an inductance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496929A (en) * 1990-08-14 1992-03-30 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
US5312878A (en) * 1991-10-07 1994-05-17 Shin-Etsu Chemical Company, Limited Naphthalene containing epoxy resin cured with a dicyclopentadiene phenolic resin
JPH05320317A (en) * 1992-05-21 1993-12-03 Fujitsu Ltd Epoxy resin composition
EP0682052A1 (en) * 1994-05-09 1995-11-15 Shell Internationale Researchmaatschappij B.V. Composition of epoxy resins based on condensed polynuclear aromatic compounds
US6156865A (en) * 1998-11-19 2000-12-05 Nec Corporation Flame retardant thermosetting resin composition
JP2010084091A (en) * 2008-10-02 2010-04-15 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2012162591A (en) * 2011-02-03 2012-08-30 Sekisui Chem Co Ltd Mixture of thermosetting compound, curable composition, and connection structure
US10256026B2 (en) 2013-12-04 2019-04-09 Epcos Ag Transformer component with setting of an inductance

Similar Documents

Publication Publication Date Title
JP6192523B2 (en) Epoxy resin curing agent, production method, and use thereof
JP6476527B2 (en) Liquid polyvalent hydroxy resin, production method thereof, curing agent for epoxy resin, epoxy resin composition, cured product thereof and epoxy resin
JPH0312417A (en) Epoxy resin composition for sealing semiconductor
JP6052868B2 (en) Epoxy resin curing agent, production method, and use thereof
JP3509236B2 (en) Epoxy resin composition and semiconductor encapsulating material
JP4264769B2 (en) Epoxy resin composition and semiconductor sealing material
JPH0314816A (en) Epoxy resin and epoxy resin composition for sealing
JPH0273823A (en) Epoxy resin composition for sealing semiconductor
JP3451104B2 (en) Epoxy resin composition
JPH03124758A (en) Epoxy resin composition for semiconductor sealing
JP3484681B2 (en) Epoxy resin composition, method for producing epoxy resin mixture, and semiconductor encapsulating material
JPH07206995A (en) Epoxy resin composition and sealing material for semiconductor
JP2001342345A (en) Semiconductor sealing resin composition
JPH08100049A (en) Epoxy resin composition for semiconductor-sealing material
JP3940945B2 (en) Epoxy resin composition for sealing electronic parts
JP3731585B2 (en) Production method of epoxy resin
JPH10324733A (en) Epoxy resin composition, production of epoxy resin and semiconductor-sealing material
JPH11209459A (en) Epoxy resin curing agent, resin composition, preparation of cured product and cured product
JP4863434B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3704081B2 (en) Epoxy resin, its production method and its use
JPH08333428A (en) Low-softening phenylphenolaralkyl resin and epoxy resin composition containing the same
JP3986025B2 (en) Epoxy resin composition and semiconductor sealing material
JP7345750B2 (en) Epoxy resin composition, epoxy resin cured product and epoxy resin modifier
JP2005041925A (en) Epoxy resin sealing material composition
JPH0455422A (en) Epoxy resin composition for semiconductor sealing