Nothing Special   »   [go: up one dir, main page]

JPH0311154B2 - - Google Patents

Info

Publication number
JPH0311154B2
JPH0311154B2 JP56099503A JP9950381A JPH0311154B2 JP H0311154 B2 JPH0311154 B2 JP H0311154B2 JP 56099503 A JP56099503 A JP 56099503A JP 9950381 A JP9950381 A JP 9950381A JP H0311154 B2 JPH0311154 B2 JP H0311154B2
Authority
JP
Japan
Prior art keywords
signal
image
vidicon
chopper
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56099503A
Other languages
Japanese (ja)
Other versions
JPS57212885A (en
Inventor
Shigeru Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9950381A priority Critical patent/JPS57212885A/en
Publication of JPS57212885A publication Critical patent/JPS57212885A/en
Publication of JPH0311154B2 publication Critical patent/JPH0311154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

【発明の詳細な説明】 本発明は焦電型赤外線ビジコンと、このビジコ
ンのターゲツトに入射する赤外線を周期的に遮断
するチヨツパーとを用いて赤外線映像信号を発生
する温度分布画像再生装置に関するもので、その
再生画像から被測定物体の形状と温度分布領域を
関係づけ、画像を正しく判読できるようにするこ
とを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature distribution image reproducing device that generates an infrared image signal using a pyroelectric infrared vidicon and a chopper that periodically cuts off infrared rays incident on a target of the vidicon. The purpose of this method is to correlate the shape of the object to be measured and the temperature distribution area from the reproduced image so that the image can be interpreted correctly.

被測定物体の温度分布画像は、一般にテレビ画
面またはハードコピーなどによつて2次元的に再
生される。しかしその画像は解像度が悪く、また
被測定物体に対する温度分布の位置的関連を把握
し難たい場合が多い。
A temperature distribution image of an object to be measured is generally reproduced two-dimensionally on a television screen or a hard copy. However, the resolution of these images is poor, and it is often difficult to understand the positional relationship of the temperature distribution to the object to be measured.

赤外線領域から得られる被測定物体の温度分布
画像と物体間の対応は、赤外カメラ再生像と別に
設けた可視カメラの再生像を直に混合して再生表
示し、両者を関連づける方法が、すでに提案され
ている。
The correspondence between the temperature distribution image of the measured object obtained from the infrared region and the object has already been achieved by directly mixing the reconstructed image of the infrared camera and the reconstructed image of a separate visible camera, and then reproducing and displaying the two, and relating the two. Proposed.

例えば特開昭53−118309号公報に記載の方法が
その一つである。即ち、被測定物体の陽画写真を
別に用意し、赤外線テレビカメラで被測定物体を
再生すると同時に、別に用意した可視カメラで上
記の陽画写真を撮像し、その再生信号を赤外線カ
メラ再生信号と混合してテレビモニタ上に重畳表
示する方法である。この方法によると、白黒濃淡
で表現された赤外線画像に可視像の白黒濃淡が重
なつて表示されるため、赤外線による温度分布の
判読に誤差を生じ易くなる。また可視カメラ信号
に含まれたシエジング成分などによつても温度分
布の判読に悪影響を与え易い。
For example, the method described in JP-A-53-118309 is one of them. That is, a positive photograph of the object to be measured is separately prepared, and at the same time the object to be measured is reproduced with an infrared television camera, the positive photograph is imaged with a separately prepared visible camera, and the reproduced signal is mixed with the infrared camera reproduced signal. In this method, the images are displayed in a superimposed manner on the television monitor. According to this method, the infrared image expressed in black and white shading is displayed with the black and white shading of the visible image superimposed, making it easy for errors to occur in interpreting the temperature distribution using infrared rays. Furthermore, the interpretation of temperature distribution is likely to be adversely affected by shearing components included in the visible camera signal.

また別の提案として特開昭51−24281号公報に
記載の方法がある。即ち、赤外線再生像をあらか
じめ温度レベル別にカラー表示しておき、その上
に可視像を多重する方法である。しかしこの手段
でも温度分布の表示を可視像のコントラストの強
弱に関係なく、正確に行うことが困難な場合が起
り得る。例えば、被測定物体の色表示は赤外像の
明暗に可視像の明暗が加算される。両者の差が大
きい場合は、一画面中の同一色相部分でも明暗に
差を生じ、又色相の段階が十数色程度に区分され
ている場合等は色相の判読を誤るという欠点を有
する。
Another proposal is a method described in Japanese Patent Application Laid-Open No. 51-24281. That is, this is a method in which infrared reproduced images are displayed in color in advance for each temperature level, and a visible image is multiplexed thereon. However, even with this method, it may be difficult to accurately display the temperature distribution regardless of the contrast strength of the visible image. For example, to display the color of the object to be measured, the brightness and darkness of the visible image are added to the brightness and darkness of the infrared image. If the difference between the two is large, there will be a difference in brightness even in parts of the same hue in one screen, and if the hue stage is divided into about ten or more colors, there will be a drawback that the hue will be misinterpreted.

本発明は上記欠点を解消せんとするものであ
る。
The present invention seeks to eliminate the above-mentioned drawbacks.

すなわち焦電型赤外線ビジコンと、このビジコ
ンのターゲツトに入射する赤外線を周期的に遮断
するチヨツパーとを用いて温度分布画像を再生す
る装置において、赤外線領域で得られる映像信号
の上に、可視光から光電変換した被写体の輪郭信
号等を重畳し画像再生するものである。この場合
温度分布画像は常に被測定物体の形状や、温度分
布と物体との位置的関連を明確に再生でき、同時
に等温分領域を等輝度で表示でき正確な温度デー
タを得ることができる。
In other words, in a device that reproduces a temperature distribution image using a pyroelectric infrared vidicon and a chopper that periodically blocks infrared rays incident on the target of this vidicon, a video signal obtained in the infrared region is added to a video signal obtained from visible light. The image is reproduced by superimposing photoelectrically converted object contour signals and the like. In this case, the temperature distribution image can always clearly reproduce the shape of the object to be measured and the positional relationship between the temperature distribution and the object, and at the same time display isothermal areas with equal brightness, making it possible to obtain accurate temperature data.

第1図は焦電型ビジコンと可視光用ビジコンを
同期して走査させ、温度分布像と可視光像の輪郭
信号を多重して画像表示させる本発明の一実施例
の構成を示すものである。
FIG. 1 shows the configuration of an embodiment of the present invention in which a pyroelectric vidicon and a visible light vidicon are scanned in synchronization, and the contour signals of a temperature distribution image and a visible light image are multiplexed and displayed. .

図において、1は被測定物体、2は被測定物体
を撮像する赤外用レンズで、焦電型ビジコン4の
ターゲツト面に被測定物体1の像を結像する。3
はチヨツパーでレンズ2よりの入射光を周期的に
遮断する。この結果、ターゲツト上の温度変化に
対応した電荷が発生し、静止物体の温度分布像再
生を可能にする。
In the figure, 1 is an object to be measured, and 2 is an infrared lens for imaging the object to be measured, which forms an image of the object to be measured 1 on the target surface of a pyroelectric vidicon 4. 3
The cutter periodically blocks the incident light from the lens 2. As a result, charges corresponding to temperature changes on the target are generated, making it possible to reproduce a temperature distribution image of a stationary object.

5は映像増幅器で、ターゲツトよりの赤外線信
号を入力し、約0.3Vpp程度まで増幅する。
5 is a video amplifier that inputs the infrared signal from the target and amplifies it to about 0.3V pp .

焦電型ビジコン4の走査ビームは偏向回路6と
ヨークコイル6′により電磁集束電磁偏向される。
The scanning beam of the pyroelectric vidicon 4 is electromagnetically focused and electromagnetically deflected by a deflection circuit 6 and a yoke coil 6'.

7は同期信号発生回路で、水平と垂直の同期パ
ルスを偏向回路6と13へ、また複合同期信号を
混合回路23へ、さらにチヨツパーの同期化基準
パルスをチヨツパー同期回路8へ供給する。なお
13は後で述べる可視光用ビジコン12用の偏向
回路である。
Reference numeral 7 denotes a synchronization signal generation circuit which supplies horizontal and vertical synchronization pulses to the deflection circuits 6 and 13, a composite synchronization signal to the mixing circuit 23, and a chopper synchronization reference pulse to the chopper synchronization circuit 8. Note that 13 is a deflection circuit for the visible light vidicon 12, which will be described later.

チヨツパーの同期化は、発光ダイオード10と
ホトトランジスタ回路9でチヨツパー位置を検出
し、その出力信号とチヨツパー同期化基準パルス
をチヨツパー同期化回路8に加え、位相比較検出
してチヨツパーを同期化させる。
To synchronize the chopper, the chopper position is detected by the light emitting diode 10 and the phototransistor circuit 9, and the output signal thereof and the chopper synchronization reference pulse are applied to the chopper synchronization circuit 8, and the chopper is synchronized by phase comparison detection.

11は可視光撮像レンズで、被測定物体1の像
を可視光用のSb2S3やSi等をターゲツト材料とす
るビジコン12のターゲツト面に結像する。可視
光用ビジコン12のビーム走査は前述の焦電型ビ
ジコン4の場合と同様、偏向回路13およびヨー
クコイル13′で行う。
A visible light imaging lens 11 forms an image of the object to be measured 1 on the target surface of a vidicon 12 whose target material is Sb 2 S 3 or Si for visible light. Beam scanning of the visible light vidicon 12 is performed by the deflection circuit 13 and yoke coil 13', as in the case of the pyroelectric vidicon 4 described above.

可視像出力信号は増幅器14で幅幅し、波形1
5を輪郭パルス信号発生回路16に加える。輪郭
パルス発生回路16は微分回路構成となつており
可視像出力信号の輝度変化の大きい信号成分を抽
出することで可視像の輪郭を生成する。更に比較
回路で、あるレベル以上の信号のみ輪郭信号とし
た5Vppと−5Vppの正および負のパルス17およ
び18が輪郭パルス変調回路19に加えられる。
輪郭パルス変調回路19ではチヨツパー同期制御
パルス20によりチヨツパー同期制御パルス20
が“H”(赤外映像信号が正時)の時に正の輪郭
パルス信号、“L”(赤外映像信号が負時)の時に
負の輪郭パルス信号となるように正負交番の輪郭
多重信号21に変換される。
The visible image output signal is amplified by an amplifier 14 and has a waveform 1.
5 is applied to the contour pulse signal generation circuit 16. The contour pulse generation circuit 16 has a differentiating circuit configuration and generates the contour of the visible image by extracting a signal component having a large luminance change from the visible image output signal. Furthermore, in the comparison circuit, positive and negative pulses 17 and 18 of 5V pp and -5V pp are applied to the contour pulse modulation circuit 19, with only signals above a certain level being used as contour signals.
In the contour pulse modulation circuit 19, the chopper synchronous control pulse 20 is generated by the chopper synchronous control pulse 20.
Contour multiplex signal of positive and negative alternation so that when is "H" (infrared video signal is on the hour), it is a positive contour pulse signal, and when it is "L" (infrared video signal is negative), it is a negative contour pulse signal. 21.

信号21は正または負の信号だけでも充分目的
を達成できる。20はチヨツパー同期制御パルス
である。
Even if the signal 21 is a positive or negative signal, it is sufficient to achieve the purpose. 20 is a chopper synchronous control pulse.

23は輪郭信号21と温度分布画像信号22、
および同期信号発生器7より得られる複合同期信
号を混合する加算回路である。被測定物体の温度
分布画像は輪郭信号を多重し出力端子24より画
像処理装置に送られカラーモニタに表示される。
25は出力端子24の出力波形である。
23 is a contour signal 21 and a temperature distribution image signal 22;
This is an addition circuit that mixes the composite synchronization signals obtained from the synchronization signal generator 7 and the synchronization signal generator 7. The temperature distribution image of the object to be measured is multiplexed with contour signals, sent to an image processing device from an output terminal 24, and displayed on a color monitor.
25 is the output waveform of the output terminal 24.

第2図は画像装置の信号処理方法を示したもの
で、A/D変換器26を介してデジタル信号に変
換されたのち正、負画像信号切り替え部27でチ
ヨツパーが開いた時の正極信号(以下、p信号と
略す)と閉時の負極信号(以下、n信号と略す)
に弁別され更に各々の正フレーム部28、負フレ
ーム29で記憶され平均演算等の演算処理され、
両者を減算処理部30で減算処理後、擬似カラー
変換部31で信号レベルに応じた擬似カラー信号
に変換し、D/A変換部32でアナログ信号に変
換しモニター33に表示される。以上の信号処理
はチヨツパーの開閉によつて得られる赤外映像信
号の正負信号をちらつきのない信号として表示す
る方法である。本実施例では温度分布画像に重畳
された輪郭信号は第2図に示した画像処理装置を
通して同様に処理される。
FIG. 2 shows the signal processing method of the image device. After being converted into a digital signal via the A/D converter 26, the positive polarity signal ( (hereinafter abbreviated as p signal) and negative polarity signal when closed (hereinafter abbreviated as n signal)
further stored in each positive frame portion 28 and negative frame 29 and subjected to calculation processing such as average calculation,
After the subtraction processing section 30 performs subtraction processing on both signals, the pseudo color conversion section 31 converts the signal into a pseudo color signal according to the signal level, and the D/A conversion section 32 converts it into an analog signal, which is displayed on the monitor 33. The above signal processing is a method of displaying the positive and negative signals of the infrared video signal obtained by opening and closing the chopper as a flicker-free signal. In this embodiment, the contour signal superimposed on the temperature distribution image is similarly processed through the image processing device shown in FIG.

また上記した輪郭信号等の別情報信号で表示さ
れる部分は、上記赤外線領域で得られた像を絶対
温度に対応して表示された色相以外の色、または
白または黒色で多重再生表示することもできる。
In addition, for the part displayed by another information signal such as the above-mentioned contour signal, the image obtained in the above-mentioned infrared region may be displayed multiple times in a color other than the hue displayed corresponding to the absolute temperature, or in white or black. You can also do it.

以上の実施例は熱像信号に輪郭信号を直接多重
して記憶または再生する方法であるが、熱像信号
を得るためにON/OFFするチヨツパーの開閉信
号(開 8フイールド、閉 8フイールド)中に
各々1フイールドの空きフイールドを作りその1
フイールドに輪郭信号を重畳するようにしてもよ
い。第3図はこの時の波形図を示す。第3図にお
いて、波形aはチヨツパー開閉信号パルスで、こ
のパルスによりある1フイールドのみを抽出する
ゲートパルス(波形b)を形成し、連続的に送出
される輪郭信号を前記ゲートパルスで抽出すると
波形cに示す輪郭信号となる。更にゲートパルス
(波形b)の位置のみ信号がない熱像信号(波形
d:信号抽出方法は省略)と輪郭信号cを加算す
ると波形eが得られる。また輪郭信号cを負の信
号とすると波形fが得られる。更に輪郭信号cを
チヨツパーの開閉信号に同期させ正負信号として
もよい。これらの波形eまたはfを第1図の出力
端子24より出力させても同様の効果が得られ
る。
The above embodiment is a method of directly multiplexing the contour signal onto the thermal image signal and storing or reproducing it. However, in order to obtain the thermal image signal, the chopper opening/closing signal (8 fields open, 8 fields closed) is used to turn on and off the chopper. Create 1 empty field in each field, Part 1
A contour signal may be superimposed on the field. FIG. 3 shows a waveform diagram at this time. In Fig. 3, waveform a is a chopper opening/closing signal pulse, and this pulse forms a gate pulse (waveform b) that extracts only one field, and when a continuously transmitted contour signal is extracted with the gate pulse, the waveform This results in the contour signal shown in c. Furthermore, by adding the thermal image signal (waveform d: signal extraction method omitted), which has no signal only at the position of the gate pulse (waveform b), and the contour signal c, waveform e is obtained. Furthermore, if the contour signal c is made a negative signal, a waveform f is obtained. Furthermore, the contour signal c may be synchronized with the opening/closing signal of the chopper to be used as a positive/negative signal. Similar effects can be obtained by outputting these waveforms e or f from the output terminal 24 in FIG.

この場合波形e,fを直接画像再生すると輪郭
画像にちらつきを発生させ観察し難い欠点を生ず
るが再生前に輪郭信号のみ分離し一度記憶回路を
介せばこの欠点は除去でき、輪郭信号を均一な色
相で表示する場合に有効である。この実施例はカ
ラー表示させるとき特に有効である。
In this case, if the waveforms e and f are directly reproduced, the contour image will flicker, resulting in a defect that is difficult to observe.However, if only the contour signal is separated before reproduction and once passed through the memory circuit, this defect can be removed, and the contour signal can be uniformized. This is effective when displaying with a certain hue. This embodiment is particularly effective when displaying in color.

以上述べたように本発明は焦電型赤外線ビジコ
ンに入射する赤外線を変調するチヨツパーの開閉
をテレビジヨン走査の8フイールド毎に繰り返し
て、この周期毎に焦電型赤外線ビジコンに正負の
信号(即ち、チヨツパーが開時には正の信号、閉
時には負の信号)を得、チヨツパーに同期した正
負交互に発生する赤外線像信号にチヨツパーの開
閉に同期させた8フイールド毎の正負の輪郭信号
(即ち、一画面毎に正負に変わる交番パルス)を
赤外線像信号に重畳させて画像表示するようにし
たもので以下に示す効果を有する。
As described above, the present invention repeats the opening and closing of the chopper that modulates the infrared rays incident on the pyroelectric infrared vidicon every eight fields of television scanning. , a positive signal is obtained when the chopper is open, a negative signal is obtained when it is closed), and a positive and negative contour signal (i.e., a single signal) is obtained every 8 fields synchronized with the opening and closing of the chopper to the infrared image signal that is generated alternately between positive and negative synchronized with the chopper. This system displays an image by superimposing an alternating pulse (which changes positive or negative on each screen) onto an infrared image signal, and has the following effects.

(i) 複雑な温度分布画像、温度差が小さくコント
ラスト比の小さい画像に対しても、輪郭情報が
多重表示されるので、物体の形状と温度分布領
域と関連を把握し易すくなる。
(i) Even for complex temperature distribution images, images with small temperature differences and low contrast ratios, contour information is displayed multiplexed, making it easier to understand the relationship between the shape of the object and the temperature distribution area.

(ii) 輪郭信号は温度分布領域のコントラストに影
響を与えないので等温度分布範囲を正確に判読
できる。
(ii) Since the contour signal does not affect the contrast of the temperature distribution region, the equal temperature distribution range can be read accurately.

(iii) 温度分布画像のコントラストの程度に応じて
輪郭信号の極性反転、および輪郭情報量を変え
ることが可能であるため赤外像の分析が容易に
行える。
(iii) Since it is possible to invert the polarity of the contour signal and change the amount of contour information depending on the degree of contrast of the temperature distribution image, analysis of infrared images can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における温度分布画
像再生装置のブロツク図、第2図は本発明の画像
処理方法を示すブロツク図、第3図は本発明の他
の実施例における信号波形図である。 1……被測定物体、2……赤外用撮像レンズ、
3……チヨツパー、4……焦電型赤外線ビジコ
ン、5……映像増幅器、5……赤外線ビジコン用
偏向回路、6′……ヨークコイル、7……同期信
号発生器、8……チヨツパー同期回路、9……ホ
トトランジスタ回路、10……発光ダイオード、
11……可視撮像レンズ、12……ビジコン、1
3……偏向回路、13′……ヨークコイル、14
……映像増幅器、16……輪郭信号発生回路、1
9……チヨツパー輪郭パルス変調回路、23……
加算回路、24……出力端子、26……A/D変
換器、27……正負信号切り替え部、28……正
フレームメモリー、29……負フレームメモリ
ー、30……減算処理部、31……擬似カラー変
換部、32……D/A変換部、33……モニタ
ー。
FIG. 1 is a block diagram of a temperature distribution image reproducing device in one embodiment of the present invention, FIG. 2 is a block diagram showing an image processing method of the present invention, and FIG. 3 is a signal waveform diagram in another embodiment of the present invention. It is. 1...Object to be measured, 2...Infrared imaging lens,
3... Chotsupar, 4... Pyroelectric infrared vidicon, 5... Video amplifier, 5... Deflection circuit for infrared vidicon, 6'... Yoke coil, 7... Synchronization signal generator, 8... Chotsupa synchronous circuit , 9... phototransistor circuit, 10... light emitting diode,
11... Visible imaging lens, 12... Vidicon, 1
3...Deflection circuit, 13'...Yoke coil, 14
...Video amplifier, 16...Contour signal generation circuit, 1
9... Chopper contour pulse modulation circuit, 23...
Addition circuit, 24... Output terminal, 26... A/D converter, 27... Positive/negative signal switching section, 28... Positive frame memory, 29... Negative frame memory, 30... Subtraction processing section, 31... Pseudo color converter, 32...D/A converter, 33...monitor.

Claims (1)

【特許請求の範囲】[Claims] 1 焦電型赤外線ビジコンと、前記焦電型赤外線
ビジコンのターゲツトに入射する赤外線を周期的
に遮断するチヨツパーと、前記焦電型赤外線ビジ
コンとほぼ同一視野を撮像する可視光ビジコンと
を備え、前記可視光ビジコンより得られる被写体
の可視輪郭信号をチヨツパーの回転に同期した一
画面毎に正負に変わる交番パルスに変換して前記
焦電型赤外線ビジコンのチヨツパーに同期した正
負交互に発生する赤外線像信号に加え、両極性画
面の信号差を画像表示することを特徴とする温度
分布画像再生装置。
1 comprising a pyroelectric infrared vidicon, a chopper that periodically blocks infrared rays incident on a target of the pyroelectric infrared vidicon, and a visible light vidicon that images approximately the same field of view as the pyroelectric infrared vidicon; An infrared image signal is generated by converting the visible contour signal of the object obtained from the visible light vidicon into an alternating pulse that changes positive and negative for each screen in synchronization with the rotation of the chopper, and generates an alternating positive and negative pulse synchronized with the chopper of the pyroelectric infrared vidicon. In addition to this, a temperature distribution image reproducing device is characterized in that it displays an image of a signal difference between a bipolar screen.
JP9950381A 1981-06-25 1981-06-25 Reproducer for picture of temperature distribution Granted JPS57212885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9950381A JPS57212885A (en) 1981-06-25 1981-06-25 Reproducer for picture of temperature distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9950381A JPS57212885A (en) 1981-06-25 1981-06-25 Reproducer for picture of temperature distribution

Publications (2)

Publication Number Publication Date
JPS57212885A JPS57212885A (en) 1982-12-27
JPH0311154B2 true JPH0311154B2 (en) 1991-02-15

Family

ID=14249068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9950381A Granted JPS57212885A (en) 1981-06-25 1981-06-25 Reproducer for picture of temperature distribution

Country Status (1)

Country Link
JP (1) JPS57212885A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198644A (en) * 1983-04-27 1984-11-10 Matsushita Electric Ind Co Ltd Pyroelectric thermo image pick-up apparatus
JP2003018437A (en) * 2001-07-05 2003-01-17 Fuji Photo Film Co Ltd Imaging apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512347A (en) * 1974-05-31 1976-01-09 Fujitsu Ltd
JPS53118309A (en) * 1977-03-25 1978-10-16 Nec Corp Television image pickup device
JPS5454689A (en) * 1977-10-11 1979-05-01 Nec Corp Pyrovidicon image pickup apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512347A (en) * 1974-05-31 1976-01-09 Fujitsu Ltd
JPS53118309A (en) * 1977-03-25 1978-10-16 Nec Corp Television image pickup device
JPS5454689A (en) * 1977-10-11 1979-05-01 Nec Corp Pyrovidicon image pickup apparatus

Also Published As

Publication number Publication date
JPS57212885A (en) 1982-12-27

Similar Documents

Publication Publication Date Title
JPH03174886A (en) Resolution improvement in television system and circuit device
US4851899A (en) Field-sequential color television camera
US5644359A (en) Image input apparatus having a white balance correction means and a method of inputting an image using the image input apparatus
JPS59174074A (en) Reproducing circuit for output signal of solid state image pickup device
US4246598A (en) Color television camera system having solid-state opto-electric transducers for luminance and chrominance signals
US4682218A (en) Surveying instrument with image display unit
CA2035240C (en) Apparatus for recovering a film signal from a television video signal
US4660098A (en) Apparatus for producing copies of a video image utilizing line pattern rotation
JPH0311154B2 (en)
JPS62190980A (en) High-resolution television camera
US4200884A (en) Signal processing system for a solid state television camera
JPS598990B2 (en) Scanning position deviation correction device for color television camera
US3586764A (en) T.v. camera employing a liminance pickup tube and a color pickup tube for multiplexed red and blue signals
JPS5839178A (en) High-resolution television system
JPH06189175A (en) Image pickup device
JPS60178324A (en) Picture display system of infrared-ray imaging apparatus
JPH03238985A (en) Image pickup device
JP2552399B2 (en) Electronic endoscopic device
JP2748860B2 (en) Digital converter
JPH03129978A (en) Solid-state image pickup device
SU603982A1 (en) Information display
JPH0246076A (en) Video signal processor
JPS6025394A (en) Color image pickup device provided with plural solid- state image pickup elements
JPH067691B2 (en) Presentation method of stereoscopic embedded image
JPS59198644A (en) Pyroelectric thermo image pick-up apparatus