Nothing Special   »   [go: up one dir, main page]

JPH0299794A - Eddy current type turbomachinery - Google Patents

Eddy current type turbomachinery

Info

Publication number
JPH0299794A
JPH0299794A JP25043288A JP25043288A JPH0299794A JP H0299794 A JPH0299794 A JP H0299794A JP 25043288 A JP25043288 A JP 25043288A JP 25043288 A JP25043288 A JP 25043288A JP H0299794 A JPH0299794 A JP H0299794A
Authority
JP
Japan
Prior art keywords
fluid
guide member
discharge port
main flow
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25043288A
Other languages
Japanese (ja)
Other versions
JPH073238B2 (en
Inventor
Kanjiro Kinoshita
歓治郎 木下
Masafumi Yamamoto
雅史 山本
Toru Iwata
透 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP25043288A priority Critical patent/JPH073238B2/en
Publication of JPH0299794A publication Critical patent/JPH0299794A/en
Publication of JPH073238B2 publication Critical patent/JPH073238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To increase the compression ratio and improve the compression efficiency by installing an annular guide member in a main flow passage and connecting the inner peripheral side surface and the outer peripheral side surface of the guide member by a corner part and reducing the sectional area of the guide member on a discharge port side. CONSTITUTION:Since an annular guide member 4 is installed in a main flow passage 24, fluid smoothly flows in swirl form. Since the inner peripheral side surface 4a and the outer peripheral side surface 4b of the guide member 4 are connected by a corner part 4c having a prescribed radius of curvature, generation of turbulent flow of fluid on the peripheral surface of the guide member 4 is prevented, and a smooth flow is generated. Further, since the sectional area of the guide member 4 is reduced on a discharge port 62 side, the sectional area of the main flow passage 24 is increased as the fluid is compressed, and the smooth flow of fluid is obtained. Therefore, the compression ratio can be increased, and the compression efficiency can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、渦流形の真空ポンプ、圧縮機及びタービン等
、羽根車の回転により流体に螺旋運動を与え、この角運
動エネルギを圧力に変換する渦流形ターボ機械の改良に
関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention applies to swirl-type vacuum pumps, compressors, turbines, etc., which give a spiral motion to a fluid by rotating an impeller and convert this angular kinetic energy into pressure. This invention relates to improvements in vortex type turbomachinery.

(従来の技術) 従来より、この種の渦流形ターボ機械としては、例えば
、実開昭56−76188号公報に開示されているよう
に、多数の羽根を有する羽根車をハウジング内に回転可
能に配置し、上記羽根車を駆動モータの駆動によって回
転させ、流体をハウジングの吸込口より該ハウジング内
の主流路に吸い込み、該主流路内において流体を主流路
の軸方向に螺旋運動させながら移送しつつ圧縮し、吐出
口よりハウジング外に吐出させるようにしたものが知ら
れている。
(Prior Art) Conventionally, this type of vortex type turbomachine has been equipped with an impeller having a large number of blades rotatably in a housing, as disclosed in Japanese Utility Model Application Publication No. 56-76188, for example. The impeller is rotated by the drive of the drive motor, the fluid is sucked into the main channel in the housing from the suction port of the housing, and the fluid is transferred in the main channel while being spirally moved in the axial direction of the main channel. It is known that the fuel is compressed while being compressed, and is discharged from the discharge port to the outside of the housing.

この渦流形ターボ機械における羽根車は、第10図に示
すように、ハブ(a)の外周面(b)に多数の羽根(c
)が放射状に延設されて成り、該羽根(c)がハウジン
グ(d)内の主流路(e)に臨んでいる。そして、上記
羽根(C)は、ハブ(a)の前面から後端外周面に亘っ
て扇状に形成されており、流体は羽根前縁(f)の根元
より該羽根(c)に流入し、ハブ外周面(b)の円弧面
に倣って流れ、羽根後縁(g)である外周より流出して
再び羽根前縁(f)の根元より流入することになり、該
動作を繰り返して螺旋運動することになる。
As shown in FIG. 10, the impeller in this whirlpool turbomachine has a large number of blades (c) on the outer peripheral surface (b) of the hub (a).
) extend radially, and the vanes (c) face the main flow path (e) within the housing (d). The blade (C) is formed in a fan shape extending from the front surface of the hub (a) to the outer peripheral surface of the rear end, and fluid flows into the blade (c) from the root of the blade leading edge (f), The flow follows the arc surface of the hub's outer circumferential surface (b), flows out from the outer circumference which is the trailing edge (g) of the blade, and flows in again from the root of the leading edge (f) of the blade, repeating this action to create a spiral movement. I will do it.

(発明が解決しようとする課題) しかしながら、上述した渦流形ターボ機械において、上
記主流路(e)内には羽根車の羽1t(c)を単に臨ま
しているにすぎないため、流体が主流路(e)内でスム
ーズな螺旋運動を行い難く、高角運動エネルギを得るこ
とができず、圧力比が低いという問題があった。
(Problem to be Solved by the Invention) However, in the above-mentioned vortex type turbomachine, since the blades 1t(c) of the impeller are simply exposed in the main flow path (e), the fluid does not flow into the main flow path. (e) It was difficult to perform a smooth spiral motion, and there were problems in that high angular kinetic energy could not be obtained and the pressure ratio was low.

そこで、上記主流路(e)内に環状ガイド部材を設け、
流体が該ガイド部材の周囲に沿って螺旋運動するように
することが考えられる。しかしながら、上記ガイド部材
を単に設けるのみでは、ガイド部材の周面で乱流が生じ
たり、更には、流体圧力が出口側で高くなるにも拘らず
、圧力状態に対応した主流路(e)の横断面形状が得る
ことができないなどの問題がある。その結果、流体が充
分にスムーズな螺旋運動を行わないことになり、圧力比
の上昇が不十分である。
Therefore, an annular guide member is provided in the main flow path (e),
It is conceivable for the fluid to move helically around the guide member. However, if the guide member is simply provided, turbulent flow will occur on the circumferential surface of the guide member, and even though the fluid pressure will be high on the outlet side, the main flow path (e) will not be adjusted according to the pressure state. There are problems such as the inability to obtain a cross-sectional shape. As a result, the fluid does not move in a sufficiently smooth spiral motion, resulting in an insufficient increase in pressure ratio.

本発明は、斯かる点に鑑みてなされたもので、環状カイ
ド部材を滑らかな略半長円形断面とし、且つ吐出口に向
って細くすることにより、流体がスムーズな螺旋運動を
して高圧力比を得ることを目的とするものである。
The present invention has been made in view of the above, and by making the annular guide member have a smooth approximately semi-elliptical cross section and tapering it toward the discharge port, the fluid can move smoothly in a spiral manner and generate high pressure. The purpose is to obtain a ratio.

(課題を解決するための手段) 上記目的を達成するために、本発明が講じた手段は、第
1図〜第3図に示すように、先ず、流体の吸込口(61
)及び吐出口(62)が開設されると共に、流体の主流
路(24)を形成する中空環状部(23)を有するハウ
ジング(2)が形成されている。更に、該ハウジング(
2)内には、上記主流路(24)に臨む複数枚の羽根(
32)。
(Means for Solving the Problems) In order to achieve the above object, the means taken by the present invention are as shown in FIGS. 1 to 3.
) and a discharge port (62), and a housing (2) having a hollow annular portion (23) forming a main fluid passage (24). Furthermore, the housing (
2) includes a plurality of blades facing the main flow path (24).
32).

(32)、・・・が形成されていて、上記吸込口(61
)より主流路(24)に流入した流体を螺旋状に移送し
つつ圧縮して上記吐出口(62)よりl\ウジング(2
)外に吐出させる羽根車(3)が収納されると共に、上
記主流路(24)の略中心軸上には、流体の螺旋移動を
ガイドする環状ガイド部材(4)が配設されて成る渦流
形ターボ機械を対象としている。
(32), . . . are formed, and the suction port (61) is formed.
) into the main flow path (24), the fluid is compressed while being transferred spirally, and is then discharged from the discharge port (62) into the main flow path (24).
) An impeller (3) for discharging the fluid to the outside is housed therein, and an annular guide member (4) for guiding the spiral movement of the fluid is disposed approximately on the central axis of the main flow path (24). The target is turbomachinery.

そして、上記環状カイド部材(4)は吸込口(61)側
から吐出口(62)側に向って横断面積が漸次縮減する
ように形成されると共に、該環状ガイド部材(4)は断
面形状において上記羽根(32)の先端に近接して少な
くとも幅長さが羽根(32)の弦長に対応した平坦な内
周側面(4a)とほぼU字状の外周側面(4b)とによ
って略半長円形に形成されている。加えて、上記内周側
面(4a)と外周側面(4b)とは円弧状の隅角部(4
c)、(4c)を介して接続され、該隅角部(4c)、
(4c)は羽根車(3)の外径(D)に対する隅角部(
4c)の曲率半径(R)の比率(R/D)がほぼ0.0
2以上になるように設定された構成としている。
The annular guide member (4) is formed so that its cross-sectional area gradually decreases from the suction port (61) side to the discharge port (62) side, and the annular guide member (4) has a cross-sectional shape. Close to the tip of the blade (32), there is a flat inner peripheral side surface (4a) whose width corresponds to the chord length of the blade (32) and a substantially U-shaped outer peripheral side surface (4b), which is approximately half long. It is formed in a circular shape. In addition, the inner circumferential side surface (4a) and the outer circumferential side surface (4b) have an arcuate corner portion (4
c), connected via (4c), the corner (4c);
(4c) is the corner portion (
The ratio (R/D) of the radius of curvature (R) of 4c) is approximately 0.0
The configuration is such that the number is 2 or more.

(作用) 上記の構成により、本発明では、羽根車(3)を回転す
ると、流体は吸込口(61)より主流路(24)に吸込
まれ、該主流路(24)内において、羽を艮(32)の
前縁より該羽根(32)に流入し、後縁より流出して主
流路(24)内を回転し、再び羽根(32)に流入する
ことになる。そして、流体は環状ガイド部材(4)に沿
って螺旋運動し、上記羽根(32)により角運動エネル
ギを得て回転しつつ主流路(24)の軸方向に流れ、こ
の螺旋運動により圧縮されて吐出口(62)よりハウジ
ング(2)外に吐出される。
(Function) With the above configuration, in the present invention, when the impeller (3) is rotated, fluid is sucked into the main channel (24) from the suction port (61), and the blades are disposed in the main channel (24). It flows into the blade (32) from the leading edge of the blade (32), flows out from the trailing edge, rotates in the main channel (24), and flows into the blade (32) again. The fluid then moves in a spiral along the annular guide member (4), obtains angular kinetic energy from the vanes (32) and flows in the axial direction of the main channel (24) while rotating, and is compressed by this spiral movement. It is discharged to the outside of the housing (2) from the discharge port (62).

(発明の効果) 従って、本発明の渦流形ターボ機械によれば、環状カイ
ド部材(4)を主流路(24)に設けたために、流体が
スムーズに螺旋運動することになるので、圧縮比を向上
させることができる。更に、上記ガイド部材(4)の内
周側面(4a)と外周側面(4b)とを所定の曲率半径
を有する隅角部(4c)、(4c)で接続したために、
流体かガイド部材(4)の周面に沿って乱流等を生起す
ることなくスムーズに流れることになるので、螺旋運動
をよりスムーズに促進させることができ、より圧縮効率
を向上させることができる。また、上記ガイド部材(4
)の横断面積を吐出口(62)側で小さくしたために、
流体が圧縮されるに従って主流路(24)の断面積が大
きくなり、流体の流れが円滑になり、更に圧縮効率を向
上させることができる。
(Effects of the Invention) Therefore, according to the vortex type turbomachine of the present invention, since the annular guide member (4) is provided in the main flow path (24), the fluid moves smoothly in a spiral manner, so that the compression ratio can be reduced. can be improved. Furthermore, since the inner circumferential side surface (4a) and the outer circumferential side surface (4b) of the guide member (4) are connected by the corner portions (4c), (4c) having a predetermined radius of curvature,
Since the fluid flows smoothly along the circumferential surface of the guide member (4) without causing turbulence, the spiral motion can be promoted more smoothly and the compression efficiency can be further improved. . In addition, the above guide member (4
) was made smaller on the discharge port (62) side,
As the fluid is compressed, the cross-sectional area of the main channel (24) becomes larger, the fluid flow becomes smoother, and the compression efficiency can be further improved.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図及び第2図に示すように、(1)は渦流形ターボ
機械としての圧縮ポンプであって、気体等の各種流体を
螺旋状に移送しつつ圧縮して吐出するようにしている。
As shown in FIGS. 1 and 2, (1) is a compression pump as a vortex type turbomachine, which compresses and discharges various fluids such as gas while transferring them in a spiral shape.

該圧縮ポンプ(1)はハウジング(2)内に羽根車(3
)が収納されて構成されており、該ハウジング(2)は
、第1図において左右に分割された第1ハウジング部材
(21)と第2ハウジング部材(22)とを一体向に組
合わせて形成されている。そして、該両ハウジング部材
(21)。
The compression pump (1) has an impeller (3) in a housing (2).
) is housed therein, and the housing (2) is formed by integrally combining a first housing member (21) and a second housing member (22), which are divided into left and right parts in FIG. has been done. and both housing members (21).

(22)は、上記羽根車(3)の両端面を覆うディスク
部(21a)、  (22a)と、該ディスク部(21
a)、  (22a)の外周縁に連続形成され、半円弧
状の環状四部を有する半トーラス部(21b)、  (
22b)とより成り、該両半トーラス部(21b)、(
22b)で中空環状部(23)を形成しており、該中央
環状部(23)内が流体の主流路(24)に構成されて
いる。
(22) includes disk portions (21a) and (22a) that cover both end surfaces of the impeller (3), and the disk portion (21a) and (22a).
a), a semi-torus part (21b) that is continuously formed on the outer peripheral edge of (22a) and has four semicircular annular parts;
22b), and the two half-torus parts (21b), (
22b) forms a hollow annular portion (23), and the inside of the central annular portion (23) is configured as a main fluid passage (24).

上記中空環状部(23)内の主流路(24)には、流体
の流れを案内する環状ガイド部材(4)が配設されると
共に、中空環状部(23)の内周面からガイド部材(4
)の外周面に亘る所定幅のストリッパ部材(5)が設け
られていて、上記ガイド部材(4)を支持すると共に、
上記主流路(24)を高圧側と低圧側とに区画している
。そして、該ストリッパ部材(5)の内周部には上記羽
根車(3)が通る案内路(51)が削設されており、該
ストリッパ部材(5)の−側方(第2図において右側)
には第1ハウジング部材(21)の半トーラス部(2l
 b)に流体の吸込口(61)が、他側方(第2図にお
いて左側)には第2ハウジング部材(22)の半トーラ
ス部(22b)に流体の吐出口(62)がそれぞれ開設
されていて、該吸込口(61)から導入された流体と吐
出口(62)から吐出される流体とがストリッパ部材(
5)で合流しないように(か成されている。
An annular guide member (4) for guiding the flow of fluid is disposed in the main channel (24) in the hollow annular part (23), and a guide member ( 4
) is provided with a stripper member (5) having a predetermined width extending over the outer circumferential surface of the guide member (4), and supports the guide member (4).
The main flow path (24) is divided into a high pressure side and a low pressure side. A guide path (51) through which the impeller (3) passes is cut in the inner circumferential portion of the stripper member (5), and a guide path (51) is cut out on the inner circumferential portion of the stripper member (5). )
is the half-torus part (2l) of the first housing member (21).
A fluid suction port (61) is provided in b), and a fluid discharge port (62) is provided in the half-torus portion (22b) of the second housing member (22) on the other side (left side in FIG. 2). The fluid introduced from the suction port (61) and the fluid discharged from the discharge port (62) are connected to the stripper member (
5) to prevent them from merging.

更に、上記羽根車(3)は、円板状のハブ(31)の外
周面(31a)に複数枚の羽根(32)が放射状に延設
されて構成されている。該ハブ(31)の両端面は上記
両ハウジング部材(21)(22)のディスク部(21
a)、(22a)が近接して覆われており、該ハブ(3
1)の中央部に駆動軸(7)が連結されている。該駆動
軸(7)は上記主流路(24)及びガイド部材(4)と
同心上に位置し、上記第2ハウジング部材(22)のデ
ィスク部<22a)を貫通し、図示しないが、外端にモ
ータが連結されており、該モータの駆動により羽根車(
3)が回転するように成っている。また、上記ハブ外周
面(31a)は、駆動軸(7)と同心上の円筒面に形成
され、上記主流路(24)外14面の一部を構成してい
る。
Further, the impeller (3) is configured by a plurality of blades (32) extending radially on the outer peripheral surface (31a) of a disc-shaped hub (31). Both end surfaces of the hub (31) are connected to the disk portions (21) of the housing members (21) and (22).
a), (22a) are closely covered and the hub (3
A drive shaft (7) is connected to the center of the drive shaft (1). The drive shaft (7) is located concentrically with the main channel (24) and the guide member (4), passes through the disk portion <22a) of the second housing member (22), and has an outer end (not shown). A motor is connected to the impeller (
3) is designed to rotate. Further, the hub outer circumferential surface (31a) is formed as a cylindrical surface concentric with the drive shaft (7), and constitutes a part of the outer 14 surface of the main flow path (24).

上記羽根車(3)の羽根(32)は、第3図に示すよう
に、上記ハブ外周面(3t a)より遠心方向に突出し
て上記主流路(24)内に臨んでおり、上記ハブ(31
)の両端面に亘って形成されると共に、例えば、所定の
反りをaする翼形間に形成されている。更に、上記羽根
(32)は前縁(32a)、後縁(32b)及び先端(
32c)が直線状に形成されて正面視矩形状に形成され
、流体が羽根前縁(32a)から後縁(32b)に通り
抜けると、上記ハブ(31)の前面から後面に通り抜け
るように成っており、該羽根(32)の通過時の流れが
ほぼ軸流流れになり、この羽根(32)通過時に角運動
エネルギが流体に与えられるように構成されている。
The blades (32) of the impeller (3), as shown in FIG. 31
) is formed across both end faces of the airfoil, and is also formed, for example, between airfoils that have a predetermined curvature a. Further, the blade (32) has a leading edge (32a), a trailing edge (32b), and a tip (
32c) is formed in a straight line and has a rectangular shape when viewed from the front, and when the fluid passes from the leading edge (32a) to the trailing edge (32b) of the blade, it passes from the front surface to the rear surface of the hub (31). The fluid is configured so that the flow when it passes through the vanes (32) becomes a substantially axial flow, and angular kinetic energy is imparted to the fluid when it passes through the vanes (32).

一方、上記環状ガイド部材(4)は、第4図及び第5図
にも示すように、主流路(24)のほぼ中心軸上に設け
られており、真直な内周側面(4a)と略U字状の外周
側面(4b)とによって横断面略半長円形に形成されて
いる。該内周側面(4a)は上記羽根車(3)の羽根先
端(32c)が近接し、該羽根先端(32c)に倣って
横断面において直線状に形成されると共に、幅長さが羽
根(32)の弦長と同一に形成されている。そして、上
記内周側面(4a)の両端は円弧状の隅角部(4c)、
  (4c)を介して上記外周側面(4b)が接続され
ており、該隅角部(4c)は曲率半径(R)が4mmに
なるように設定されている。
On the other hand, as shown in FIGS. 4 and 5, the annular guide member (4) is provided approximately on the central axis of the main flow path (24), and has a straight inner circumferential side surface (4a). The cross section is formed into a substantially semi-elliptical shape by the U-shaped outer peripheral side surface (4b). The inner circumferential side surface (4a) is close to the blade tip (32c) of the impeller (3), is formed linearly in cross section following the blade tip (32c), and has a width similar to that of the blade (32c). 32) is formed to have the same chord length. Both ends of the inner circumferential side surface (4a) are arcuate corner portions (4c);
The outer circumferential side (4b) is connected to the corner (4c) through the corner (4c), and the radius of curvature (R) of the corner (4c) is set to be 4 mm.

つまり、上記隅角部(4c)は羽根車(3)の外径(D
)に対応して設定され、この羽根車の外径(D)に対す
る曲率半径(R)の比率(R/D)が0.02以上に設
定されており、本実施例では羽根車外径(D)が150
1であるので、隅角部(4c)の曲率半径(R)が上述
の如<31111Bよりやや大きく設定されている。
In other words, the corner portion (4c) is the outer diameter (D) of the impeller (3).
), and the ratio (R/D) of the radius of curvature (R) to the outer diameter (D) of this impeller is set to 0.02 or more. ) is 150
1, the radius of curvature (R) of the corner portion (4c) is set to be slightly larger than <31111B as described above.

更に、上記ガイド部材(4)は横断面積が吸込口(61
)側から吐出口(62)側に向って漸次縮減するように
形成されている。具体的には、第5図(a)、  (b
)、  (c)、  (d)に示すように、短径方向長
さ(4Y)が16mm及び外周側面(4b)の曲率半径
(4R)が8fflI11に設定されると共に、隅角部
(4c)、(4c)を含めて全周に亘って一定形状に形
成される一方、長径方向長さ(4X)は長円形における
長径長さの半分の長さで吸込口(61)側より90度宛
進むに従って22rarx、 20mm、  15+n
m、  14+u+になるように形成されている。
Furthermore, the guide member (4) has a cross-sectional area equal to that of the suction port (61).
) side toward the discharge port (62) side. Specifically, Fig. 5 (a), (b
), (c), and (d), the length in the minor axis direction (4Y) is set to 16 mm, the radius of curvature (4R) of the outer circumferential side surface (4b) is set to 8fflI11, and the corner portion (4c) , (4c) is formed in a constant shape over the entire circumference, while the length in the major axis direction (4 22rarx, 20mm, 15+n as it progresses
m, 14+u+.

また、上記ガイド部材(4)の外周側面(4b)には主
流路(24)の軸方向に複数個の支持片(41)、(4
1)、・・・が所定間隔を存して突設され、該支持片(
41)、  (41)、・・・の外端部が上記中空環状
部(23)に嵌合されて、上記ガイド部材(4)が支持
されると共に、該ガイド部材(4)と中空環状部(23
)との間が主流路(24)に成っている。
Further, on the outer circumferential side surface (4b) of the guide member (4), a plurality of support pieces (41), (4
1), ... are provided protrudingly at predetermined intervals, and the supporting pieces (
41), (41), ... are fitted into the hollow annular part (23), the guide member (4) is supported, and the guide member (4) and the hollow annular part (23
) is the main flow path (24).

第6図は内周側面(4a’)の幅長さが羽根(32)の
弦長より大きくしたものであり、つまり、短径方向長さ
を大きくしたもので、隅角部(4c)、  (4c)を
初めその他の構成は第5図に示すものと同様である。
In Fig. 6, the width of the inner circumferential side surface (4a') is larger than the chord length of the blade (32), that is, the length in the short axis direction is increased, and the corner portion (4c), (4c) and other configurations are the same as those shown in FIG. 5.

次に、この圧縮ポンプ(1)の圧縮動作について説明す
る。
Next, the compression operation of this compression pump (1) will be explained.

先ず、モータを駆動して駆動軸(7)を回転すると、羽
根車(3)がハウジング(2)内で回転し、各羽根(3
2)、  (32)、・・・が主流路(24)内を回転
移動することになる。一方、流体は吸込口(61)より
ハウジング(2)内の主流路(24)に吸込まれ、羽根
前縁(32a)より該羽根(32)に流入し、後縁(3
2b)より流出することになり、この羽根(32)によ
って流体に角運動エネルギが与えられ、流体はガイド部
材(4)の回りを回転し、再び羽根(32)に流入する
ことになる。そして、流体は上記回転を繰り返しつつ主
流路(24)の軸方向に移送され、螺旋運動して圧縮さ
れ、吐出口(62)よりハウジング(2)に吐出される
ことになる。
First, when the motor is driven to rotate the drive shaft (7), the impeller (3) rotates within the housing (2), and each blade (3) rotates.
2), (32), . . . rotate within the main channel (24). On the other hand, fluid is sucked into the main channel (24) in the housing (2) through the suction port (61), flows into the blade (32) through the blade leading edge (32a), and flows into the blade (32) through the blade leading edge (32a).
2b), the vane (32) imparts angular kinetic energy to the fluid, which causes it to rotate around the guide member (4) and enter the vane (32) again. Then, the fluid is transferred in the axial direction of the main channel (24) while repeating the above-mentioned rotation, is compressed by spiral movement, and is discharged from the discharge port (62) into the housing (2).

特に、上記ガイド部材(4)は、隅角部(4c)が曲率
半径(R)を4111111とした円弧状に形成される
と共に、横断面積が吐出口(62)に向って小さくなる
ようにしており、流体がスムーズに螺旋運動を行うこと
になる。すなわち、第7図及び第8図は第3図及び第6
図に対応して隅角部(4d)を鋭利なエツジ状に形成し
たものであり、この場合、流体が隅角部(4d)を通り
抜けると、第7図及び第8図(A)に、内周面(4a)
、  (4a′)又は外周面(4b)において乱流等が
生起することになる。この乱流等により流体の渦流流れ
が阻害されることになるので、上述の如く隅角部(4c
)を円弧状に形成している。
In particular, the guide member (4) is formed such that the corner portion (4c) is formed in an arc shape with a radius of curvature (R) of 4111111, and the cross-sectional area becomes smaller toward the discharge port (62). As a result, the fluid moves smoothly in a spiral manner. That is, Figures 7 and 8 are similar to Figures 3 and 6.
The corner part (4d) is formed into a sharp edge shape corresponding to the figure, and in this case, when the fluid passes through the corner part (4d), as shown in FIGS. 7 and 8 (A), Inner peripheral surface (4a)
, (4a') or the outer circumferential surface (4b). Since the vortex flow of the fluid is obstructed by this turbulence, etc., the corner portion (4c
) is formed in an arc shape.

そして、第9図は羽根車外径(D)に対する隅角部(4
c)の曲率半径(R)の比率(R/D)と締切点での圧
力比(△p)との関係を示しており、この圧力比(八P
)は比率(R/D)が0゜02近傍になると、急激に上
昇することになり、つまり、乱流等が生じることがなく
なり、流体がスムーズに流れることになる。そこで、本
実施例では曲率半径41I11の隅角部(4c)を形成
している。
FIG. 9 shows the corner portion (4
c) shows the relationship between the ratio (R/D) of the radius of curvature (R) and the pressure ratio (△p) at the cutoff point, and this pressure ratio (8P
) increases rapidly when the ratio (R/D) approaches 0°02, meaning that turbulence and the like will no longer occur and the fluid will flow smoothly. Therefore, in this embodiment, the corner portion (4c) is formed with a radius of curvature of 41I11.

従って、上記環状ガイド部材(4)を主流路(24)に
設けているので、流体がスムーズに螺旋運動するこにな
り、圧縮比を向上させることができる。更に、上記ガイ
ド部材(4)の内周側面(4a)と外周側面(4b)と
を所定の曲率半径を有する隅角部(4c)、(4c)で
接続したために、流体がガイド部材(4)の周面に沿っ
て乱流等を生起することなくスムーズに流れることにな
るので、螺旋運動をよりスムーズに促進させることがで
き、より圧縮効率を向上させることができる。また、上
記ガイド部材(4)の横断面積を吐出口(62)側で小
さくしたために、流体が圧縮されるに従って主流路(2
4)の断面積が大きくなり、流体の流れが円滑になり、
更に圧縮効率を向上させることができる。
Therefore, since the annular guide member (4) is provided in the main flow path (24), the fluid moves smoothly in a spiral manner, and the compression ratio can be improved. Furthermore, since the inner circumferential side surface (4a) and the outer circumferential side surface (4b) of the guide member (4) are connected by the corner portions (4c), (4c) having a predetermined radius of curvature, the fluid flows into the guide member (4). ) will flow smoothly without causing turbulence or the like along the circumferential surface of the cylinder, the spiral motion can be promoted more smoothly, and the compression efficiency can be further improved. In addition, since the cross-sectional area of the guide member (4) is made smaller on the discharge port (62) side, as the fluid is compressed, the main channel (2)
4) The cross-sectional area becomes larger, and the fluid flow becomes smoother.
Furthermore, compression efficiency can be improved.

尚、本実施例は圧縮ポンプ(1)について説明したが、
本発明はタービンなど各種の渦流形ターボ機械に適用す
ることができる。
In addition, although this embodiment has been explained about the compression pump (1),
The present invention can be applied to various types of vortex type turbomachines such as turbines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第9図は本発明の実施例を示し、第1図は圧縮
ポンプの縦断面図、第2図は第1図■−■線における断
面図である。第3図は主流路の拡大断面図、第4図は環
状ガイド部材の平面図、第5図(a)、  (b)、 
 (c)、  (d)はそれぞれ第4図a−a線、b−
b線、c−c線及びd−d線における横断面図、第6図
は他の環状ガイド部材を示す主流路の拡大断面図である
。第7図及び第8図は第3図及び第6図のガイド部材を
説明するだめの主流路の拡大断面図、第9図は羽根車外
径と隅角部の曲率半径との比率に対する圧力比の特性図
である。第10図は従来の渦流形ターボ機械を示す要部
の断面図である。 (1)・・・圧縮ポンプ、(2)・・・ハウジング、(
3)・・・羽根車、(4)・・・環状ガイド部材、(4
a)、(4a’)・・・内周側面、(4b)・・・外周
側路面、(4c)・・・隅角部、(5)・・・ストリッ
パ部材、(23)・・・中央環状部、(24)・・・主
流路、(32)・・・羽根、(32c)・・・先端、(
61)・・・吸込口、(62)・・・吐出口。 特 許 出 願 人 ダイキン工業株式会社代  理 
 人  弁理士 前 1)  弘ほか2名
1 to 9 show embodiments of the present invention, in which FIG. 1 is a longitudinal cross-sectional view of a compression pump, and FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1. Figure 3 is an enlarged sectional view of the main flow path, Figure 4 is a plan view of the annular guide member, Figures 5 (a), (b),
(c) and (d) are lines a-a and b- in Figure 4, respectively.
6 is an enlarged sectional view of the main flow path showing another annular guide member. 7 and 8 are enlarged cross-sectional views of the main flow path of the reservoir to explain the guide members of FIGS. 3 and 6, and FIG. 9 is the pressure ratio to the ratio of the outer diameter of the impeller and the radius of curvature of the corner portion. FIG. FIG. 10 is a sectional view of the main parts of a conventional vortex type turbomachine. (1)...Compression pump, (2)...Housing, (
3)... Impeller, (4)... Annular guide member, (4
a), (4a')... Inner peripheral side, (4b)... Outer circumferential road surface, (4c)... Corner, (5)... Stripper member, (23)... Center Annular part, (24)... Main channel, (32)... Vane, (32c)... Tip, (
61)...Suction port, (62)...Discharge port. Patent applicant Agent: Daikin Industries, Ltd.
Person Patent Attorney 1) Hiroshi and 2 others

Claims (1)

【特許請求の範囲】[Claims] (1)流体の吸込口(61)及び吐出口(62)が開設
されると共に、流体の主流路(24)を形成する中空環
状部(23)を有するハウジング(2)と、 該ハウジング(2)内に収納されると共に、上記主流路
(24)に臨む複数枚の羽根(32)、(32)、・・
・が形成されていて、上記吸込口(61)より主流路(
24)に流入した流体を螺旋状に移送しつつ圧縮して上
記吐出口(62)よりハウジング(2)外に吐出させる
羽根車(3)と、 上記主流路(24)の略中心軸上に配設されていて、流
体の螺旋移動をガイドする環状ガイド部材(4)とを備
えた渦流形ターボ機械であって、 上記環状カイド部材(4)は吸込口(61)側から吐出
口(62)側に向って横断面積が漸次縮減するように形
成されると共に、該環状ガイド部材(4)は断面形状に
おいて上記羽根(32)の先端に近接して少なくとも幅
長さが羽根(32)の弦長に対応した平坦な内周側面(
4a)とほぼU字状の外周側面(4b)とによって略半
長円形に形成され、 該内周側面(4a)と外周側面(4b)とは円弧状の隅
角部(4c)、(4c)を介して接続され、該隅角部(
4c)、(4c)は羽根車(3)の外径(D)に対する
隅角部(4c)の曲率半径(R)の比率(R/D)がほ
ぼ0.02以上になるように設定されていることを特徴
とする渦流形ターボ機械。
(1) A housing (2) having a hollow annular portion (23) having a fluid suction port (61) and a fluid discharge port (62) and forming a main fluid channel (24); ), and facing the main flow path (24), a plurality of blades (32), (32),...
・ is formed, and the main flow path (
24); an impeller (3) that spirally transfers and compresses the fluid that has flowed into the fluid passageway (24), and discharges the fluid out of the housing (2) from the discharge port (62); This is a vortex type turbomachine equipped with an annular guide member (4) arranged to guide the spiral movement of fluid, the annular guide member (4) extending from the suction port (61) side to the discharge port (62). ) side, and the annular guide member (4) is formed so that its cross-sectional shape is close to the tip of the blade (32) and has at least the width of the blade (32). Flat inner side surface corresponding to the string length (
4a) and a substantially U-shaped outer circumferential side surface (4b), and the inner circumferential side surface (4a) and outer circumferential side surface (4b) have arc-shaped corner portions (4c), (4c). ), and the corner part (
4c) and (4c) are set so that the ratio (R/D) of the radius of curvature (R) of the corner portion (4c) to the outer diameter (D) of the impeller (3) is approximately 0.02 or more. A vortex type turbomachine characterized by:
JP25043288A 1988-10-04 1988-10-04 Vortex type turbomachine Expired - Fee Related JPH073238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25043288A JPH073238B2 (en) 1988-10-04 1988-10-04 Vortex type turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25043288A JPH073238B2 (en) 1988-10-04 1988-10-04 Vortex type turbomachine

Publications (2)

Publication Number Publication Date
JPH0299794A true JPH0299794A (en) 1990-04-11
JPH073238B2 JPH073238B2 (en) 1995-01-18

Family

ID=17207796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25043288A Expired - Fee Related JPH073238B2 (en) 1988-10-04 1988-10-04 Vortex type turbomachine

Country Status (1)

Country Link
JP (1) JPH073238B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703136A2 (en) * 2005-02-02 2006-09-20 Gardner Denver Elmo Technology GmbH Lateral channel compressor
US8087876B2 (en) 2007-09-14 2012-01-03 Denso Corporation Fuel pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703136A2 (en) * 2005-02-02 2006-09-20 Gardner Denver Elmo Technology GmbH Lateral channel compressor
EP1703136A3 (en) * 2005-02-02 2007-04-04 Gardner Denver Elmo Technology GmbH Lateral channel compressor
US8087876B2 (en) 2007-09-14 2012-01-03 Denso Corporation Fuel pump

Also Published As

Publication number Publication date
JPH073238B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
US7186072B2 (en) Recirculation structure for a turbocompressor
US6338609B1 (en) Convex compressor casing
KR0161107B1 (en) Axial blower mounted inducer fluid road
EP0040534A1 (en) Compressor diffuser
JP2005524800A (en) Independent passage diffuser
JPH04262002A (en) Stationary blade structure for steam turbine
JP4888436B2 (en) Centrifugal compressor, its impeller and its operating method
JPH0783196A (en) Axial compressor
US3782850A (en) Energy transfer machine
RU2429386C2 (en) Fan unit with free radial wheel rotor
EP0226294A1 (en) Pitot tube for pitot type centrifugal pump
US6200094B1 (en) Wave augmented diffuser for centrifugal compressor
JPH0553955B2 (en)
JPH0299794A (en) Eddy current type turbomachinery
WO1999036701A1 (en) Centrifugal turbomachinery
JPH05340265A (en) Radial turbine moving blade
US5779440A (en) Flow energizing system for turbomachinery
JPS6144000Y2 (en)
JPS6357635B2 (en)
JPH0299795A (en) Eddy current type turbomachinery
JPH029992A (en) Vortex turbomachinery
JPH01170795A (en) Vortex turbo-machinery
JPH0299793A (en) Swirl type turbomachinery
JPH02169892A (en) Vortex type turbo-machine
JPH05248385A (en) Swirl impeller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees