JPH0298423A - Liquid crystal polymer film - Google Patents
Liquid crystal polymer filmInfo
- Publication number
- JPH0298423A JPH0298423A JP25277088A JP25277088A JPH0298423A JP H0298423 A JPH0298423 A JP H0298423A JP 25277088 A JP25277088 A JP 25277088A JP 25277088 A JP25277088 A JP 25277088A JP H0298423 A JPH0298423 A JP H0298423A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- film
- thickness
- crystal polymer
- thermotropic liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000106 Liquid crystal polymer Polymers 0.000 title claims abstract description 29
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 title claims abstract description 14
- 239000004974 Thermotropic liquid crystal Substances 0.000 claims abstract description 17
- 239000002344 surface layer Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 229920000728 polyester Polymers 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 abstract 4
- 230000035939 shock Effects 0.000 abstract 4
- 239000010408 film Substances 0.000 description 53
- 238000000034 method Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- UJUWWKHUFOKVEN-UHFFFAOYSA-N 3-hydroxy-2-(2-hydroxyphenyl)benzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1C1=CC=CC=C1O UJUWWKHUFOKVEN-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N benzene-dicarboxylic acid Natural products OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶ポリマフィルムに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to liquid crystal polymer films.
[従来の技術]
液晶ポリマフィルムとしては、サーモトロピック液晶ポ
リマからなるフィルムが知られている(たとえば、特開
昭58−53418号公報)。[Prior Art] As a liquid crystal polymer film, a film made of a thermotropic liquid crystal polymer is known (for example, Japanese Patent Laid-Open No. 58-53418).
[発明が解決しようとする課題]
しかし、上記従来の液晶ポリマフィルムは、溶融状態で
二軸延伸したり、あるいは高温延伸しているため耐衝撃
性が不良であり、工業的な用途展開が難しいという欠点
があった。[Problems to be Solved by the Invention] However, the conventional liquid crystal polymer films described above have poor impact resistance because they are biaxially stretched in a molten state or stretched at high temperatures, making it difficult to develop industrial applications. There was a drawback.
本発明はかかる問題点を改善し、液晶ポリマの持つ機械
特性を維持したまま、耐衝撃性が良好な液晶ポリマフィ
ルムを提供することを目的とする。An object of the present invention is to improve such problems and provide a liquid crystal polymer film that has good impact resistance while maintaining the mechanical properties of the liquid crystal polymer.
[課題を解決するための手段]
本発明は、サーモトロピック液晶ポリマを主成分とする
組成物からなるフィルムであって、長手方向と幅方向の
ヤング率の差(長手方向−幅方向)が−500〜600
kg/mm2、厚さが1〜100μmの範囲であること
を特徴とする液晶ポリマフィルムに関するものである。[Means for Solving the Problems] The present invention provides a film made of a composition containing a thermotropic liquid crystal polymer as a main component, wherein the difference in Young's modulus between the longitudinal direction and the width direction (longitudinal direction - width direction) is - 500-600
The present invention relates to a liquid crystal polymer film having a thickness of 1 to 100 μm.
本発明におけるサーモトロピック液晶ポリマは特に限定
されず、例えばエチレンテレフタレート/オキシ安息香
酸共重合体、2,6−ナフ1へ1酸/オキシ安息香酸共
重合体、オキシ安息香酸/ビフェノール/テレフタル酸
共重合体等公知のものを使用することができるがサーモ
トロピック液晶ポリエステルの場合に耐衝撃性がより一
層良好となるので特に望ましい。The thermotropic liquid crystal polymer in the present invention is not particularly limited, and examples thereof include ethylene terephthalate/oxybenzoic acid copolymer, 2,6-naph 1 to 1 acid/oxybenzoic acid copolymer, oxybenzoic acid/biphenol/terephthalic acid copolymer, and so on. Although known polymers and the like can be used, thermotropic liquid crystal polyester is particularly preferred because it provides even better impact resistance.
本発明フィルムは上記サー−しトロピック液晶ポリマか
らなるフィルムであるが、長手方向と幅方向のヤング率
の差(長手方向−幅方向)が−500〜600kg/m
m2、好ましくは一450〜500kQ/mm2 、さ
らに好ましくは一300〜300kg/mm2であるこ
とが必要である。The film of the present invention is a film made of the above-mentioned thermotropic liquid crystal polymer, and the difference in Young's modulus between the longitudinal direction and the width direction (longitudinal direction - width direction) is -500 to 600 kg/m.
m2, preferably -450 to 500 kQ/mm2, more preferably -300 to 300 kg/mm2.
ヤング率の差が上記の範囲より小さくても逆に大きくて
も耐衝撃性が不良となるので好ましくない。If the difference in Young's modulus is smaller or larger than the above range, the impact resistance will be poor, which is not preferable.
本発明フィルムはフィルム厚さが1〜100μm1好ま
しくは2〜75μm1ざらに好ましくは3〜40μmで
あることが必要である。厚さが上記の範囲より小さくて
も、逆に大きくても耐衝撃性が不良となるので好ましく
ない。The film of the present invention needs to have a film thickness of 1 to 100 μm, preferably 2 to 75 μm, and more preferably 3 to 40 μm. If the thickness is smaller than the above range, or conversely if it is larger than the above range, the impact resistance will be poor, so it is not preferable.
本発明フィルムの厚さ斑は20%以下、好ましくは10
%以下、さらに好ましくは5%以下であることが必要で
ある。厚さ斑が上記の範囲より大きいと耐衝撃性が不良
となるので好ましくない。The thickness unevenness of the film of the present invention is 20% or less, preferably 10% or less.
% or less, more preferably 5% or less. If the thickness unevenness is larger than the above range, the impact resistance will be poor, which is not preferable.
本発明フィルムは表層部が長手方向に配向し、中央部が
幅方向に配向している場合、特に、その表層部の厚さA
(両面の厚さの和)とフィルム全厚ざBの比、A/Bが
0.01〜0.7の範囲、特に0.1〜0.5の範囲の
場合に耐衝撃性がより一層良好となるので特に望ましい
。In particular, when the film of the present invention has a surface layer oriented in the longitudinal direction and a central portion oriented in the width direction, the thickness of the surface layer is A
(sum of the thicknesses of both sides) and the total thickness of the film (B), when A/B is in the range of 0.01 to 0.7, especially in the range of 0.1 to 0.5, the impact resistance becomes even better. This is particularly desirable because it provides good results.
本発明フィルムはその表面の突起の平均高さが30〜5
00nmの場合に厚さ斑がより一層良好となるので特に
望ましい。The average height of the protrusions on the surface of the film of the present invention is 30 to 5.
In the case of 00 nm, thickness unevenness becomes even better, so it is particularly desirable.
本発明フィルムは、長手方向と幅方向のヤング率がとも
に500kg/mm2以上である場合に耐衝撃性がより
一層良好となるので特に好ましい。It is particularly preferable that the film of the present invention has a Young's modulus of 500 kg/mm 2 or more in both the longitudinal direction and the width direction, since the impact resistance will be even better.
また、本発明フィルムのサーモトロピック液晶ポリマフ
ィルムの表面層の厚さA(両面の和、単位nm)と少な
くとも片面の幅方向の表面平均粗ざRa (nm)の比
、Ra/Aが00OO1〜10の範囲の場合に耐衝撃性
がより一層良好となるので特に望ましい。Further, the ratio of the thickness A (sum of both surfaces, unit: nm) of the surface layer of the thermotropic liquid crystal polymer film of the film of the present invention to the average surface roughness Ra (nm) in the width direction of at least one side, Ra/A, is 00OO1 to A value in the range of 10 is particularly desirable because the impact resistance becomes even better.
本発明フィルムは上記サーモトロピック液晶ポリマフィ
ルムであるが仙の熱可塑性樹脂フィルムとの積層によっ
てフィルムの耐衝撃性をざらに向上させることもできる
。Although the film of the present invention is the above-mentioned thermotropic liquid crystal polymer film, the impact resistance of the film can be greatly improved by laminating it with a thermoplastic resin film.
次に本発明フィルムの製造方法について説明する。Next, a method for producing the film of the present invention will be explained.
サーモトロピック液晶ポリマを公知の溶融押出機を用い
、口金のスリットからシート状に押し出し、キャスティ
ングロールで冷却して未延伸フィルムを作る。この場合
、ドラフト比(口金スリット間隙/未延伸フィルム厚さ
の比)を]O〜100とし、かつ、交流電場を印加しな
がらキャストする方法が本発明範囲の厚さ斑を所定のフ
ィルム厚さで製造し、かつ本発明範囲のヤング率を得る
のに極めて有効である。次にこの未延伸フィルムを幅方
向に延伸するが、この場合の延伸速度を200.0〜2
000’O%/分とし、マイクロ波加熱しながら3.0
〜20.0倍の延伸倍率で行なうことが、本発明範囲の
ヤング率、厚さ斑を得るのに極めて有効である。延伸温
度はポリマの種類によって必ずしも一定ではないが、ポ
リマのガラス転移点以上、融点以下で行なうのが本発明
範囲のヤング率、厚さ斑を得るのに有効である。次にこ
のフィルムは必要に応じて熱処理してもよい。その場合
の温度はポリマのガラス転移点以上、融点以下、時間は
0.1〜120秒の範囲が適切である。A thermotropic liquid crystal polymer is extruded into a sheet through a slit in a die using a known melt extruder, and is cooled with a casting roll to form an unstretched film. In this case, the method of casting while setting the draft ratio (ratio of die slit gap/unstretched film thickness) to ]0 to 100 and applying an alternating current electric field can reduce the thickness unevenness within the range of the present invention to a predetermined film thickness. It is extremely effective for producing a Young's modulus within the range of the present invention. Next, this unstretched film is stretched in the width direction, at a stretching speed of 200.0 to 2.
000'O%/min and 3.0% while microwave heating.
Stretching at a stretching ratio of ~20.0 times is extremely effective in obtaining Young's modulus and thickness unevenness within the range of the present invention. Although the stretching temperature is not necessarily constant depending on the type of polymer, it is effective to conduct the stretching at a temperature above the glass transition point and below the melting point of the polymer in order to obtain the Young's modulus and thickness unevenness within the range of the present invention. This film may then be heat treated if desired. In this case, the temperature is suitably above the glass transition point of the polymer and below the melting point, and the time is suitably within the range of 0.1 to 120 seconds.
[作用]
本発明は電気エネルギーを用いる特殊な製膜方法によっ
てサーモトロピック液晶ポリマフィルムの厚さ斑、ヤン
グ率を特定の範囲にできたため、それらの相乗作用によ
って優れた効果が1qられたものと推定される。[Function] In the present invention, the thickness unevenness and Young's modulus of the thermotropic liquid crystal polymer film can be made within a specific range by a special film forming method that uses electrical energy, and the synergistic effect of these has increased the excellent effect by 1q. Presumed.
[物性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法並びに効果の評価方法は次のとおりであ
る。[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the characteristic values and evaluating the effects of the present invention are as follows.
(1) ガラス転移点Tg、冷結晶化温度Tccおよ
び融点
パーキンエルフル社製のDSC(示差走査熱m計)■型
を用いて測定した。DSCの測定条件は次の通りである
。すなわち、試料10m(]をDSG装置にセットし、
等方性転移温度以上の温度で5分間溶融した侵、液体窒
素中に急冷する。この急冷試料を10℃/分で昇温し、
ガラス転移点Tgを検知する。ざらに昇温を続け、融点
、等方性転移温度を測定した。(1) Glass transition point Tg, cold crystallization temperature Tcc, and melting point Measured using a DSC (differential scanning calorimeter) type II manufactured by Perkinelfle. The DSC measurement conditions are as follows. That is, a 10 m sample (] was set in the DSG device,
Incubate the melt for 5 minutes at a temperature above the isotropic transition temperature and quench in liquid nitrogen. This rapidly cooled sample was heated at a rate of 10°C/min,
Detect the glass transition point Tg. The temperature was continued to rise gradually, and the melting point and isotropic transition temperature were measured.
(2) 表面平均粗さRa
小板研究所製の高精度薄膜段差測定器ET−10を用い
て測定した。条件は下記のとおりでおり、20回の測定
の平均値をもって値とした。(2) Surface average roughness Ra Measured using a high-precision thin film step measuring device ET-10 manufactured by Koita Research Institute. The conditions were as follows, and the average value of 20 measurements was taken as the value.
・触針先端半径:0.5μ「n
・触針荷重 : 5mQ
・測定長 :1mm
・カットオフ1直:o、oamm
なお、Ra、突起の平均間隔smの定義は、たとえば、
奈良治部著「表面粗さの測定・評価法」(総合技術セン
ター、1983)に示されているものである。・Stylus tip radius: 0.5 μ'n ・Stylus load: 5 mQ ・Measurement length: 1 mm ・Cutoff 1st shift: o, oamm The definition of Ra and average spacing of protrusions sm is, for example,
This is shown in "Measurement and Evaluation Method of Surface Roughness" by J. Nara (Sogo Technological Center, 1983).
(3) 平均突起高ざh
2検出器方式の走査型電子顕微鏡[ESM−3200、
■リオニクス(株)wA]と断面測定装置[PMS−1
、■リオニクス(株)製]においてフィルム表面の平坦
面の高さをOとして走査した時の突起の高さ測定値を画
像処理装置[I BAS2000、カールツアイス(株
)製1に送り、画像処理装置上にフィルム表面突起画像
を再構築する。次番こ、この表面突起画像で突起部分を
2値化して1qられた個々の突起の面積から円相当(¥
を求めこれをその突起の平均径とする。また、この2値
化された個々の突起部分の中で最も高い値をその突起の
高ざhとし、これを個々の突起について求める。この測
定を場所をかえて500回繰返し、測定された突起につ
いてその高さを把握する。(3) Average protrusion height h Two-detector scanning electron microscope [ESM-3200,
■Lionix Co., Ltd. wA] and cross-sectional measuring device [PMS-1]
, ■ manufactured by Lionix Co., Ltd.] with the height of the flat surface of the film set as O. The measured value of the height of the protrusion is sent to an image processing device [I BAS2000, manufactured by Carl Zeiss Co., Ltd. 1, and image processing is performed. Reconstruct the film surface projection image on the device. Next, with this surface protrusion image, the protrusion part is binarized and the area of each protrusion is calculated by 1q, which is equivalent to a circle (¥
Find this and use it as the average diameter of the protrusion. Furthermore, the highest value among the binarized individual protrusions is defined as the height h of the protrusion, and this is determined for each protrusion. This measurement is repeated 500 times at different locations, and the heights of the measured protrusions are determined.
(4) フィルムの厚さ斑
フィルムの幅方向(長さ1.5m>を電子式厚み計で連
続測定した。この中で最も厚い部分の厚ざと、最も薄い
部分の厚さとの差を平均厚さで割り、これに100を乗
じて厚さ斑(%)とした。(4) Film thickness unevenness The width direction of the film (length 1.5 m>) was continuously measured using an electronic thickness meter.The difference between the thickness of the thickest part and the thickness of the thinnest part was calculated as the average thickness. This was divided by 100 and multiplied by 100 to obtain the thickness unevenness (%).
(5)Vレグ率
インストロンタイプの引っ張り試験機を用いて、AST
M−D−882に規定された方法にしたがって、25°
C165%RHで、引っ張り速度30o mm7分で測
定した(試艮:5Qmm)。(5) V-leg ratio Using an Instron type tensile tester, AST
25° according to the method specified in M-D-882
Measurement was carried out at C165% RH at a tensile speed of 30 o mm for 7 minutes (trial run: 5 Q mm).
(6) 配向
フィルム断面ラマン法あるいは薄膜切片法(屈折率、赤
外分光法)でフィルムの長手方向、幅方向の分子配向の
厚さプロファイルを測定し、その配向度が長手方向〉幅
方向の場合を長手配向、長手方向く幅方向の場合を幅配
向と定義する。たとえば屈折率の場合は、大きい方が高
配向である。(6) Measure the thickness profile of molecular orientation in the longitudinal direction and width direction of the film using the oriented film cross-section Raman method or thin film section method (refractive index, infrared spectroscopy). The case is defined as a longitudinal direction, and the case where the direction is in the longitudinal direction and the width direction is defined as a width direction. For example, in the case of refractive index, the larger the index, the higher the orientation.
(7) 耐衝撃性
(a>ASTM−D−256に規定された方法に準じ、
東洋精機製作所のシャルピーインパクトテスターを用い
て、フィルムのシャルピー衝撃強度(単位: KCJ
−cm/mm2 )を測定L/ タ。ASTMでは強度
の表示は、Kg・cmであるが、ここではフィルムの断
面積で除して表わした。この測定をフィルムの長手方向
を支点に水平にセットした場合と幅方向を支点に水平に
レットした場合で行ない、その相加平均値をもって衝撃
強度値とした。(7) Impact resistance (a>according to the method specified in ASTM-D-256,
The Charpy impact strength of the film (unit: KCJ) was measured using a Toyo Seiki Seisakusho Charpy impact tester.
-cm/mm2) measured L/ta. In ASTM, strength is expressed in Kg·cm, but here it is expressed by dividing by the cross-sectional area of the film. This measurement was carried out when the film was set horizontally with the longitudinal direction as the fulcrum and when it was let horizontally with the width direction as the fulcrum, and the arithmetic average value was taken as the impact strength value.
(b)J l5−P−8116に規定された方法にした
がって、25℃、65%RHで、東洋精機製作所製のエ
ルメンドルフ引裂試験別を用いて、フィルムの長手方向
、・幅方向の引裂伝播抵抗(単位:C1/mm)を測定
し、両方向の相加平均値をもって引裂伝播抵抗とした。(b) The tear propagation resistance in the longitudinal and width directions of the film was measured using the Elmendorf tear test manufactured by Toyo Seiki Seisakusho at 25°C and 65% RH according to the method specified in Jl5-P-8116. (Unit: C1/mm) was measured, and the arithmetic average value in both directions was taken as the tear propagation resistance.
上記衝撃強度が20以上で、かつ、引裂伝播抵抗が10
0以上の場合を耐85撃性:良好、上記(a)、(b)
のうちどちらか一方でも不満足な場合は耐衝撃性:不良
と判定した。The above impact strength is 20 or more, and the tear propagation resistance is 10
85 impact resistance when 0 or more: Good, above (a), (b)
If either of these was unsatisfactory, the impact resistance was determined to be poor.
[発明の効果]
本発明は特殊な製膜方法により、特定厚さ、厚さ斑、ヤ
ング率のサーモトロピック液晶ポリマフィルムとしたの
で、耐衝撃性に優れた液晶ポリマフィルムが得られたも
のである。ざらに、製法の工夫により、溶融サーモトロ
ピック液晶ポリマを溶融状態で同時二軸延伸して作られ
たフィルムや200℃を越える非常な高温で二輪延伸さ
れたフィルムに比べて、フィルムの厚さ斑を小さくでき
、また、■業的な生産性(コスト)も有利なため、各種
用途に好ましく用いられる。[Effects of the Invention] The present invention uses a special film-forming method to produce a thermotropic liquid crystal polymer film with a specific thickness, uneven thickness, and Young's modulus, so a liquid crystal polymer film with excellent impact resistance can be obtained. be. In general, due to the improved manufacturing method, the thickness of the film is less uneven compared to films made by simultaneous biaxial stretching of molten thermotropic liquid crystal polymer in the molten state, or films made by two-wheel stretching at extremely high temperatures exceeding 200°C. It can be made small and also has advantageous industrial productivity (cost), so it is preferably used for various purposes.
本発明フィルムの用途は特に限定されないが、液晶ポリ
マの特性およびその耐衝撃性を生かして、磁気記録媒体
ベース1.感熱転写リボン、フレキシブル回路基板、包
装用として特に有用である。Although the use of the film of the present invention is not particularly limited, it can be used as a base material for magnetic recording media by taking advantage of the characteristics of liquid crystal polymer and its impact resistance. It is particularly useful for thermal transfer ribbons, flexible circuit boards, and packaging.
[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.
実施例1〜7、比較例1〜5
いくつかのサーモトロピック液晶ポリマを溶融押出機に
供給、290℃で溶融し、これらのポリマを口金からド
ラフト比を変えてシート状に押し出し、10〜1000
Wの交流電場(周波数13゜56MH2>を印加しなが
ら、表面温度ao’cのキャスティング・ドラムに巻き
つけて冷却固化し未延伸フィルムを得た(比較例1〜5
は電場をかけないで未延伸フィルムを作った)。これら
の未延伸フィルムをステンタで温度120℃にて横方向
に延伸した。この時マイクロ波加熱を併用したもの(実
施例1〜7)、しないものく比較例1〜5)を作った。Examples 1 to 7, Comparative Examples 1 to 5 Several thermotropic liquid crystal polymers were supplied to a melt extruder and melted at 290°C, and these polymers were extruded into a sheet form from a die with varying draft ratios, and
While applying an alternating current electric field of W (frequency 13°56 MH2), the film was wound around a casting drum with a surface temperature of ao'c and cooled and solidified to obtain an unstretched film (Comparative Examples 1 to 5).
produced an unstretched film without applying an electric field). These unstretched films were stretched in the transverse direction using a stenter at a temperature of 120°C. At this time, products using microwave heating (Examples 1 to 7) and comparative examples 1 to 5 without microwave heating were prepared.
延伸速度は3000%/分で行なった。また押出機の吐
出量を変更して最終フィルムの厚さの異なるものを作っ
た。これらのフィルムの厚さ、厚さ斑、長手方向、幅方
向のヤング率はは第1表に示したとおりであり、本発明
のパラメータが範囲内の場合は耐!j撃性が良好であっ
たが、そうでない場合は耐衝撃性が良好なフィルムは得
られなかった。−The stretching speed was 3000%/min. Furthermore, by changing the discharge rate of the extruder, final films with different thicknesses were produced. The thickness, thickness unevenness, and Young's modulus in the longitudinal direction and width direction of these films are as shown in Table 1. The impact resistance was good, but otherwise a film with good impact resistance could not be obtained. −
Claims (3)
物からなるフィルムであつて、長手方向と幅方向のヤン
グ率の差(長手方向−幅方向)が−500〜600kg
/mm^2、厚さが1〜100μm、厚さ斑が20%以
下の範囲であることを特徴とする液晶ポリマフィルム。(1) A film made of a composition containing a thermotropic liquid crystal polymer as a main component, and the difference in Young's modulus between the longitudinal direction and the width direction (longitudinal direction - width direction) is -500 to 600 kg.
/mm^2, a thickness of 1 to 100 μm, and a thickness unevenness of 20% or less.
幅方向に配向していることを特徴とする請求項1記載の
液晶ポリマフィルム。(2) The liquid crystal polymer film according to claim 1, wherein the surface layer portion of the film is oriented in the longitudinal direction, and the central portion is oriented in the width direction.
さ/フィルム全厚)が0.01〜0.7の範囲であるこ
とを特徴とする請求項1記載の液晶ポリマフィルム。(3) The liquid crystal polymer film according to claim 1, wherein the thickness ratio of the surface layer portion oriented in the longitudinal direction (surface layer portion thickness/total film thickness) is in the range of 0.01 to 0.7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25277088A JPH0298423A (en) | 1988-10-05 | 1988-10-05 | Liquid crystal polymer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25277088A JPH0298423A (en) | 1988-10-05 | 1988-10-05 | Liquid crystal polymer film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0298423A true JPH0298423A (en) | 1990-04-10 |
Family
ID=17242055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25277088A Pending JPH0298423A (en) | 1988-10-05 | 1988-10-05 | Liquid crystal polymer film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0298423A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5288529A (en) * | 1989-06-16 | 1994-02-22 | Foster-Miller Inc. | Liquid crystal polymer film |
-
1988
- 1988-10-05 JP JP25277088A patent/JPH0298423A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5288529A (en) * | 1989-06-16 | 1994-02-22 | Foster-Miller Inc. | Liquid crystal polymer film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0049108A1 (en) | Process for producing polyester film | |
JPH085127B2 (en) | Method for producing oriented semi-crystalline polyester film | |
JPH0379178B2 (en) | ||
JPH03216B2 (en) | ||
JP2611421B2 (en) | Method for producing polyester film | |
JPH0298423A (en) | Liquid crystal polymer film | |
JPS59215826A (en) | Manufacture of super high molecular weight polyethylene film | |
JPH04101827A (en) | Manufacture of biaxially oriented polyether ether ketone film | |
JPS5878729A (en) | Preparation of biaxially-oriented polyester film | |
JP3316900B2 (en) | Polyester film molding method | |
JP3640282B2 (en) | Method for producing biaxially stretched polyester film | |
JPH04316843A (en) | Laminated polyester film | |
JPH0480815B2 (en) | ||
JP2611425B2 (en) | Method for producing low shrinkage polyester film | |
JPH11207906A (en) | Biaxially oriented laminated polyester film | |
JP3134416B2 (en) | Polyester film | |
JPH11207814A (en) | Biaxially oriented polyester film and its production | |
JP2992586B2 (en) | Method for producing biaxially oriented polyester film | |
JP2707697B2 (en) | Easy heat sealing laminated polyester film | |
JPH03215B2 (en) | ||
JP3763158B2 (en) | Biaxially oriented polyester film | |
JPH02122915A (en) | Manufacture of polypropylene film | |
WO1992003495A1 (en) | Method of producing biaxially oriented polyether ether ketone film | |
JPH09131844A (en) | Biaxially oriented polyester film for capacitor | |
JPH0371976B2 (en) |