JPH0297602A - Composite alloy steel powder and sintered alloy steel - Google Patents
Composite alloy steel powder and sintered alloy steelInfo
- Publication number
- JPH0297602A JPH0297602A JP63244377A JP24437788A JPH0297602A JP H0297602 A JPH0297602 A JP H0297602A JP 63244377 A JP63244377 A JP 63244377A JP 24437788 A JP24437788 A JP 24437788A JP H0297602 A JPH0297602 A JP H0297602A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- powder
- alloy steel
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 108
- 229910000851 Alloy steel Inorganic materials 0.000 title claims abstract description 94
- 239000002131 composite material Substances 0.000 title claims abstract description 49
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 57
- 239000000956 alloy Substances 0.000 claims abstract description 57
- 239000000203 mixture Substances 0.000 claims abstract description 53
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 38
- 239000010959 steel Substances 0.000 claims abstract description 38
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 35
- 238000010791 quenching Methods 0.000 claims abstract description 32
- 230000000171 quenching effect Effects 0.000 claims abstract description 32
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 31
- 239000002245 particle Substances 0.000 claims abstract description 26
- 238000005496 tempering Methods 0.000 claims abstract description 26
- 239000012535 impurity Substances 0.000 claims abstract description 24
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- 238000004663 powder metallurgy Methods 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 22
- 238000005255 carburizing Methods 0.000 claims description 17
- 239000012467 final product Substances 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 14
- 229910000967 As alloy Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 238000005245 sintering Methods 0.000 abstract description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 37
- 238000010438 heat treatment Methods 0.000 description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 229910001566 austenite Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000005204 segregation Methods 0.000 description 8
- 238000004513 sizing Methods 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910003296 Ni-Mo Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical group [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical group O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 101150018425 Cr1l gene Proteins 0.000 description 1
- 101150007129 MRRF gene Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野l
この発明は、粉末冶金による焼結部品の製造に供される
合金鋼粉および焼結後に熱処理を施して使用される高強
度焼結合金鋼に関するものである。Detailed Description of the Invention [Industrial Application Fields] This invention relates to alloy steel powder used in the production of sintered parts by powder metallurgy, and high-strength sintered alloy steel used after heat treatment after sintering. It is related to.
【背景技術J 鉄系焼結材料は自動車部品などに多く利用されている。[Background technology J Iron-based sintered materials are widely used in automobile parts.
最近これら部品の軽量化が指向され、高強度化が要望さ
れている。Recently, efforts have been made to reduce the weight of these parts, and there is a demand for increased strength.
焼結部品を高強度とするため、種々の合金鋼粉を用いる
ことは周知の技術である。これらの高強度焼結部品は、
高密度であることを要求されることが多い、完全に均一
な合金鋼粉は鋼粉粒子が固くなるので、鉄粉粒子表面に
合金元素の粉末を部分的に拡散付着させた、複合合金鋼
粉として、鋼粉の圧縮性を高める努力がなされている。It is a well-known technique to use various alloyed steel powders to increase the strength of sintered parts. These high strength sintered parts are
Completely uniform alloyed steel powder, which is often required to have a high density, makes the steel powder particles hard, so composite alloy steel is made by partially diffusing and adhering alloying element powder to the surface of the iron powder particles. Efforts have been made to improve the compressibility of steel powder as a powder.
しかし、このような複合合金鋼粉を用いる方法において
も、その合金組成や製造方法および使用方法が適切でな
い場合には、十分な焼結体特性を期待することができな
い。However, even in a method using such a composite alloy steel powder, if the alloy composition, manufacturing method, and usage method are not appropriate, sufficient sintered body properties cannot be expected.
特開昭61−231102号公報では、合金組成を高合
金化することによって、焼結材料の強度を高める試みが
なされている。しかし、Niを7%以上含む高合金組成
であるため、コストが高いことのほか、焼結した状態で
硬さが高(なり、サイジングや切削加工が不可能となる
。また焼結後、残留オーステナイトが多くなり、引張強
さを130k g f/mm2以上の高強度とするため
には、サブゼロ処理などの特別の熱処理が必要となって
コスト上昇の要因になるなど問題が多い。JP-A-61-231102 attempts to increase the strength of a sintered material by increasing the alloy composition. However, since it has a high alloy composition containing 7% or more Ni, it is not only expensive, but also has high hardness in the sintered state, making sizing and cutting impossible. This increases the amount of austenite, and in order to achieve a high tensile strength of 130 kg f/mm2 or more, special heat treatment such as sub-zero treatment is required, which causes many problems, such as increasing costs.
また、残留オーステナイトが時間の経過と共に分解し1
部品の変形などの経時変化をもたらすことなども問題と
なる。In addition, residual austenite decomposes over time and
Another problem is that it causes changes over time such as deformation of parts.
特公昭45 9649号公報では、成形後の熱処理に際
して寸法変化が少なく、高強度の焼結体を与える低合金
鋼粉が開示されている。この低合金鋼粉は鉄粉とNi、
MoおよびCuの化合物との混合物をh0熱して合金成
分を拡散付着させ、集合(e L、た粒子を粉砕し、さ
らに焼鈍することにより得られるものである。しかし、
この低合金鋼粉はCI−1を0.50〜2. OOm
騎%含んでおり、Cuが粒界に偏折してε−Cu脆化層
を生成し、機械的特性を劣化させるので、好ましくない
。Japanese Patent Publication No. 45-9649 discloses a low-alloy steel powder that exhibits little dimensional change during heat treatment after forming and provides a high-strength sintered body. This low alloy steel powder contains iron powder and Ni,
It is obtained by heating a mixture of Mo and Cu compounds to allow the alloy components to diffuse and adhere, pulverizing the aggregated particles, and further annealing.However,
This low alloy steel powder has a CI-1 of 0.50 to 2. OOm
This is not preferable because Cu is polarized at grain boundaries and forms an ε-Cu embrittlement layer, deteriorating mechanical properties.
圭た、本発明者らの一人は、特に焼結のままで、その後
の熱処理なしに用いられる場合に好適な、複合合金鋼粉
の組成を提案している(特開昭6″l−89601>。Keita, one of the present inventors, has proposed a composition of composite alloy steel powder that is particularly suitable for use as sintered without any subsequent heat treatment (Japanese Patent Application Laid-Open No. 6''1-89601). >.
この合金鋼粉はNigよび/またはOLlと〜10とを
含み、高い焼結体硬さと焼結の際の寸法安定性を与える
合金組成を有している。しかし、焼結体の引張強さが1
30kgf/ m m’以−Lを実現しうるものではな
い。This alloy steel powder contains Nig and/or OLl and ~10, and has an alloy composition that provides high sintered body hardness and dimensional stability during sintering. However, the tensile strength of the sintered body is 1
30kgf/mm'-L or more cannot be achieved.
さらに、本発明者らの一人らは、鋼粉表面に2種以上の
合ご成分が拡散付着され、かつ44 g m以下の粒度
における各合金成分の含有雀がそれぞれ鋼粉全体の平均
含有啜の0.9〜1.9倍の範囲にある複合合金鋼粉を
提案している(特開昭61−130401号公報)。し
かし、この合金鋼粉を用いて製造した焼結体は、引張時
にオーステナイトからマルテン寸イトへの歪誘起変態が
起こらず、また圧縮性不足で密度が十分でないため、弓
張強さ130kg+’/mゴ以上を実現することはでき
ない。Furthermore, one of the present inventors has discovered that two or more types of alloy components are diffused and adhered to the surface of the steel powder, and that the content of each alloy component in the particle size of 44 g m or less is the average content of the entire steel powder. has proposed a composite alloy steel powder in the range of 0.9 to 1.9 times (Japanese Unexamined Patent Publication No. 130401/1983). However, the sintered body manufactured using this alloy steel powder does not undergo strain-induced transformation from austenite to martenite during tension, and has insufficient compressibility and density, resulting in a bow tensile strength of 130 kg+'/m. It is impossible to achieve more than Go.
焼結部品に浸炭焼入れ処理を施したものは、部品内部の
靭性が高いと共に1表面部は硬くて耐摩耗・けに富み、
−Vに疲労強度も高い。従って、南東などの高強度部品
として最も実用的価値が高い3しかしなから、従来の焼
結体を単に浸炭焼入れするのみでは、引・IK強さ13
0kgf/mm″トス上の高強度を得ることは困難であ
る。Sintered parts subjected to carburizing and quenching have high toughness inside the part, and the surface is hard and has high wear resistance and scratch resistance.
-V also has high fatigue strength. Therefore, it has the highest practical value as a high-strength part such as Southeast.
It is difficult to obtain high strength above 0 kgf/mm'' toss.
問題のひとつは、焼結体が空孔を有するため。One of the problems is that the sintered body has pores.
浸炭挙動が通常の鋼材と異なり、適切な炭素濃度分布が
得にくいことである。そのため強度が不−1−分となる
。1:れな解決するため、焼結体の密度を十分高めてか
ら浸炭する試みがなされた。焼結鋼l聞はそのひとつで
、高強度材料が()られている。The carburizing behavior is different from normal steel materials, making it difficult to obtain an appropriate carbon concentration distribution. Therefore, the strength becomes less than 1-min. 1: In order to solve this problem, an attempt was made to sufficiently increase the density of the sintered body and then carburize it. Sintered steel is one of them, and is a high-strength material.
しかし、この方法は特殊な設備を必要とし、熱間鋼箔に
用いる金型の寿命が短いためコストが嵩む場合が多く、
適用は限定されている。However, this method requires special equipment and is often costly due to the short lifespan of the mold used for hot-working steel foil.
Application is limited.
一方、焼結体を冷間調造あるいはコイニング!7、:上
回を7,6〜7.8 g / c rr?と高めて高強
度材を得ることも試みられた(特公昭49−16325
4″;公報)、この方法は熱間調造設備が不要であると
いう利点を持つが、7.6g/cn3以上の高密度とす
るj二めに、冷間調造またはコイニングの圧力を高圧力
とする必要があり、金”J4命が短いという問題を有す
る。On the other hand, cold preparation or coining of sintered bodies! 7.: Above 7.6~7.8 g/c rr? Attempts were also made to obtain high-strength materials by increasing the
4''; Publication), this method has the advantage of not requiring hot processing equipment, but it requires a high density of 7.6 g/cn3 or more.Secondly, it requires high pressure during cold processing or coining. The problem is that there is a need to apply pressure, and Kim's J4 life is short.
さらに、熱処理を行う焼結部品において、高合金化、高
密度化により、高強度を得ている例は多い。しかし、特
開昭62−146203で開示された熱処理焼結体の引
張強さは120kgf/mrrI″以下であり、それ以
上の高強度化の要望に対しては満足できない。Furthermore, in sintered parts that undergo heat treatment, there are many examples of high strength being obtained by increasing the alloy and density. However, the tensile strength of the heat-treated sintered body disclosed in JP-A-62-146203 is less than 120 kgf/mrrI'', and cannot satisfy the demand for higher strength.
まj−1特開昭54−50409では、密度が7、6
g / c rn’の焼結熱処理材を製造し、引張強さ
160kgf/mm″を得る技術が開示されているが、
衝撃値は2.5 k g f −m/cm″以下であ−
ノで、靭性は低い。最近、焼結部品の高強度化に対する
要請はますます強くなり、その結果、焼結後に熱処理を
施す使用方法が重要・itを増しでいる。この場合、熱
処理後は焼結体がきわめで硬くなるので、切削やサイジ
ングによる寸法矯正が困難となる。In Maj-1 JP-A-54-50409, the density is 7, 6
A technique for producing a sintered heat-treated material with a tensile strength of 160 kgf/mm'' has been disclosed.
The impact value is 2.5 kg f-m/cm" or less.
The toughness is low. Recently, there has been an increasing demand for higher strength of sintered parts, and as a result, the use of heat treatment after sintering has become increasingly important. In this case, the sintered body becomes extremely hard after heat treatment, making it difficult to correct the dimensions by cutting or sizing.
そこで、熱処理前にこれらの1程を加えることになるか
ら、切削やサイジングをできる限り容易にするように、
焼結体の熱処理前の硬さ従って強度を低くおさえ、その
後の熱処理で高強度(品硬度)とする必要がある。Therefore, since we will add about 1 of these before heat treatment, we will make cutting and sizing as easy as possible.
It is necessary to keep the hardness and therefore the strength of the sintered body low before heat treatment, and increase the strength (product hardness) through subsequent heat treatment.
これまでの複合合金鋼粉では、このような如上に適した
仕様が十分に検討されておらず、新しい仕様を有する合
金鋼粉の出現が待たれていたものである。For conventional composite alloy steel powders, the specifications suitable for these conditions have not been sufficiently studied, and the appearance of alloy steel powders with new specifications has been awaited.
本発明の目的は、高合金組成とすることなく、また特殊
な設備を必要とすることなく4比較的低合金組成で高強
度、高靭性の焼結合金鋼を得るための粉末冶金用複合合
金鋼粉および熱処理焼結鋼を提供することにある。この
ことによって焼結体の熱処理前の切削ないしサイジング
を容易にすると共に、焼結処理後に高強度、高靭性の焼
結体を得るという相反する技術を同時に実現することが
できる。The object of the present invention is to obtain a composite alloy for powder metallurgy to obtain a sintered alloy steel with a relatively low alloy composition and high strength and high toughness without requiring a high alloy composition or special equipment. Our objective is to provide steel powder and heat-treated sintered steel. This makes it possible to facilitate the cutting or sizing of the sintered body before heat treatment, and to simultaneously realize the contradictory techniques of obtaining a sintered body with high strength and high toughness after the sintering treatment.
【発明の開示1
本発明者らは、焼結体の高強度化ならびに高靭性化につ
いて鋭意研究した結果、用いる鋼粉の組成および焼結体
の密度の両者が焼結体の高強度化、高靭性化に著しく影
響することを見出した。Disclosure of the Invention 1 As a result of intensive research into increasing the strength and toughness of a sintered body, the present inventors have found that both the composition of the steel powder used and the density of the sintered body can increase the strength and toughness of the sintered body. It has been found that this has a significant effect on increasing toughness.
本発明者らの着眼点は、Ni−Mo系複合合金鋼粉にお
いて、焼結に引続いて浸炭焼入れを行う場合の組成を適
正化することである。すなわは。The focus of the present inventors is to optimize the composition of Ni-Mo composite alloy steel powder when carburizing and quenching is performed subsequent to sintering. Sunawa.
浸炭焼入れは、低炭素の焼結鋼に炭素を拡散させなから
焼入れする手法であるから、熱処理前の切削性やサイジ
ング性を与えるには、低炭素の合金鋼として組成を選択
し、その組成が熱処理後、炭素を含む状態で所望の強度
を与えるものであればよい。Carburizing and quenching is a method of quenching low carbon sintered steel without diffusing carbon. Therefore, in order to give machinability and sizing properties before heat treatment, a composition is selected as a low carbon alloy steel, and its composition is It may be any material as long as it provides the desired strength in a state containing carbon after heat treatment.
本発明者らの知見によれば、炭素が共存しない状態では
、MoやNiに比べて焼結体を硬くしに(いため、熱処
理前の焼結体の切削やサイジングを考えた場合、Niよ
りも自由に増量することができる。一方、浸炭後の強度
上昇にはMoはNiよりも寄与が大きい、そこで、これ
までに存在するN i−Mo系複合合金鋼粉の組成(M
oをWで置きかえた場合も含む)よりも、Niにくらべ
てMoをより多盪に使用することにより、きわめて良い
結果が得られると考えたのである。According to the findings of the present inventors, in a state where carbon does not coexist, the sintered body becomes harder than Mo or Ni. On the other hand, Mo contributes more than Ni to the increase in strength after carburizing, so the composition of the existing Ni-Mo composite alloy steel powder (M
It was thought that extremely good results could be obtained by using Mo more frequently than Ni (including the case where o was replaced with W).
本発明者らが得た焼結体の強度および靭性と組成および
密度との関係を述べる。The relationship between the strength and toughness and the composition and density of the sintered body obtained by the present inventors will be described.
NiとMoの含有量かそれぞれ、 (X)0.58%Ni−3,21%M。The content of Ni and Mo, respectively, (X) 0.58%Ni-3, 21%M.
(Yl、07%Ni−3,42%Mo (Z)1.09%Ni−0,6%M。(Yl, 07%Ni-3,42%Mo (Z) 1.09%Ni-0.6%M.
の組成の複合合金鋼粉を用い、これに黒鉛と潤滑剤(ス
テアリン酸亜鉛)を添加し、仮焼結したのち、成形圧力
を変化して再圧縮を行い密度を変化させた。Graphite and a lubricant (zinc stearate) were added to this composite alloy steel powder, which was pre-sintered, and then recompressed by changing the compacting pressure to change the density.
その後、本焼結(1250℃×30分、アンモニア分解
ガス中)し、油焼入れ(870℃×60分、不活性ガス
中加熱)、tSO℃×60分の焼戻しを行った。これら
の焼結体の密度と引張強さおよびシャルピー衝撃値との
関係を第1図、第2図に示す6密度7.0 g / c
tn’以上で上記(X)。Thereafter, main sintering (1250°C x 30 minutes, in ammonia decomposition gas) was performed, oil quenching (870°C x 60 minutes, heating in inert gas), and tempering at tSO°C x 60 minutes. The relationship between the density, tensile strength, and Charpy impact value of these sintered bodies is shown in Figures 1 and 2. 6 Density 7.0 g/c
Above (X) if tn' or more.
(Y)の焼結体は引張強さ130kgf/mm’以上を
有すると共に高靭性であることがわかる6さらに、密度
を7.3 g / c try’以上にすると、引張強
さを150kgf/mm2以上にすることができる。It can be seen that the sintered body of (Y) has a tensile strength of 130 kgf/mm' or more and high toughness.6 Furthermore, when the density is increased to 7.3 g/c try' or more, the tensile strength is 150 kgf/mm2. You can do more than that.
本発明は上記の知見をもとに構成されたものである。す
なわち本発明は。The present invention is constructed based on the above findings. That is, the present invention.
(1)合金成分が粉末状に鉄粉粒子表面に部分的に拡散
付着された複合合金鋼粉であって、合金成分として、N
iと、MoまたはWのうちの少なくとも一方とを含み、
合金組成が、
Ni:0.50〜3.50重量%
M o + 1 / 2 W : 0.65〜3.50
重量%で、残部がFeおよび不可避不純物から成り、か
つ該鋼粉のうち45μm以下の粒度におけるNiおよび
M o + 1 / 2 Wの含有量がそれぞれ該鋼粉
全体の平均含有量の2.0〜4.2倍の範囲にあること
を特徴とする粉末冶金用複合合金鋼粉6(2)最終製品
合金成分としてNiと、MoまたはWのうちの少なくと
も一方とを含み1合金組成が、
Ni:0.50〜3.50重量%
M o + 1 / 2 W : 0.65〜3.50
i量%で、残部がFe、Cおよび不可避不純物から成
り、かつ密度が7.0 g / c rd以上で、浸炭
焼入れ焼戻し後の引張強さが130kgf/mm2以上
を有することを特徴とする高強度焼結合金鋼。(1) A composite alloy steel powder in which an alloying component is partially diffused and attached to the surface of iron powder particles in powder form, and N as an alloying component.
i and at least one of Mo or W,
The alloy composition is: Ni: 0.50 to 3.50% by weight Mo + 1/2 W: 0.65 to 3.50
In terms of weight%, the balance consists of Fe and unavoidable impurities, and the content of Ni and Mo + 1 / 2 W in the particle size of 45 μm or less of the steel powder is 2.0% of the average content of the entire steel powder, respectively. Composite alloy steel powder for powder metallurgy 6 (2) Final product characterized by being in the range of ~4.2 times Ni and at least one of Mo or W as alloy components. : 0.50 to 3.50% by weight Mo + 1/2 W : 0.65 to 3.50
i amount%, the balance consists of Fe, C and unavoidable impurities, the density is 7.0 g/crd or more, and the tensile strength after carburizing, quenching and tempering is 130 kgf/mm2 or more. Strength sintered alloy steel.
(3)最終製品合金成分としてC,Niと、 M。(3) C, Ni, and M as final product alloy components.
またはWのうちの少なくとも一方とを含み1合金組成が
、
C:0.3 〜0.8 重量%
Ni:0.50〜3.50重量%
M o + 1 / 2 W : 0.65〜3.50
重量%で、残部がFeおよび不可避不純物から成り、か
つ密度が7.0g/cn3以上で、焼入れ焼戻し後の引
張強さが13.Ok g f/mrri″以上を有する
ことを特徴とする高強度高靭性焼結合金鋼。or W: C: 0.3 to 0.8 wt% Ni: 0.50 to 3.50 wt% Mo + 1/2 W: 0.65 to 3 .50
Weight%, the balance consists of Fe and unavoidable impurities, the density is 7.0 g/cn3 or more, and the tensile strength after quenching and tempering is 13. A high-strength, high-toughness sintered alloy steel characterized by having a sintered alloy steel having a sintered alloy steel having a sintered alloy steel having a sintered alloy with a high strength and a high toughness.
(4)発明(1)に記載の複合合金鋼粉を用いて製造し
た焼結合金鋼であって、最終製品合金成分としてNiと
、MoまたはWのうちの少なくとも一方とを含み、合金
組成が
Ni:0.50〜3.50重量%
M o + 1 / 2 W : 0.65〜3.50
重量%で、残部がFe、cgよび不可避不純物から成り
、かつ密度が7.0 g / c rry’以上で、浸
炭焼入れ焼戻し後の引張強さが130kgf/mtti
’以上を有することを特徴とする高強度焼結合金鋼。(4) A sintered alloy steel manufactured using the composite alloy steel powder according to invention (1), which contains Ni and at least one of Mo or W as a final product alloy component, and has an alloy composition. Ni: 0.50 to 3.50% by weight Mo + 1/2 W: 0.65 to 3.50
Weight%, the balance consists of Fe, CG and unavoidable impurities, and the density is 7.0 g/crry' or more, and the tensile strength after carburizing, quenching and tempering is 130 kgf/mtti.
A high-strength sintered alloy steel characterized by having more than '.
(5)発明(1)に記載の複合合金鋼粉を用いて製造し
た焼結合金鋼であって、最終製品合金成分としてC,N
iと、MoまたはWのうちの少なくとも一方とを含み、
合金組成が、
C:0.3 〜0.8 重量%
Ni:0.50〜3.50重量%
M o + 1 / 2 W : 0.65〜3.50
重量%で、残部がFeおよび不可避不純物から成り、か
つ密度が7.0g/c−以上で、焼入れ焼戻し後の引張
強さが130kgf/mrrf’以上を有することを特
徴とする高強度高靭性焼結合金鋼。(5) A sintered alloy steel manufactured using the composite alloy steel powder according to invention (1), wherein the final product alloy components include C and N.
i and at least one of Mo or W,
The alloy composition is: C: 0.3 to 0.8 wt% Ni: 0.50 to 3.50 wt% Mo + 1/2 W: 0.65 to 3.50
A high-strength, high-toughness sintered material having a density of 7.0 g/c- or more and a tensile strength of 130 kgf/mrrf' or more after quenching and tempering, with the remainder consisting of Fe and unavoidable impurities in weight%. Combined metal steel.
である。It is.
なお、本発明において複合合金鋼粉とは、鉄粉粒子表面
に合金元素、例えばNi、MoやWが部分的に拡散付着
された鋼粉を言う。In the present invention, composite alloy steel powder refers to steel powder in which alloying elements such as Ni, Mo, and W are partially diffused and adhered to the surface of iron powder particles.
上記数値限定の意義について説明する。The significance of the above numerical limitation will be explained.
Ni:0.50〜3.50重量%
NiはFe基地に固溶して焼結体を強化し、また靭性を
向上させるのに役立つ。0.50重量%未満であると固
溶強化および焼入れ性向上による高強度化とマトリック
スの靭性改善効果が得られない。一方、3.50重量%
を超えると、過剰なオーステナイト相が生成し、強度低
下が生じる。Ni: 0.50 to 3.50% by weight Ni is dissolved in the Fe base to strengthen the sintered body and is useful for improving toughness. If it is less than 0.50% by weight, it is not possible to obtain high strength due to solid solution strengthening and hardenability improvement, and the effect of improving matrix toughness. On the other hand, 3.50% by weight
If it exceeds this, excessive austenite phase will be generated, resulting in a decrease in strength.
Mo : 0.65−3.50重量%
MoはFe基地中に固溶し、焼結体を強化すると共に、
炭化物を形成して強度および硬さを向上させるほか、焼
入れ性の上昇にも効果が大きい。Mo: 0.65-3.50% by weight Mo solidly dissolves in the Fe base, strengthens the sintered body, and
In addition to forming carbides to improve strength and hardness, it is also highly effective in increasing hardenability.
0.65重量%未満であると固溶強化および焼入れ性向
上による高強度化が得られない。一方、3.50重量%
を超えると靭性が阻害される。なお、M o ’4は0
.65mM%以上で高強度が得られるが、0.85if
f1%以上にすると、−層の高強度化が達成でき好まし
い。If it is less than 0.65% by weight, high strength due to solid solution strengthening and hardenability improvement cannot be obtained. On the other hand, 3.50% by weight
Exceeding this will impede toughness. Note that M o '4 is 0
.. High strength can be obtained at 65mM% or more, but at 0.85if
When it is f1% or more, high strength of the negative layer can be achieved, which is preferable.
以上、基本合金成分としてNiとMoにういて述べたが
、Moの一部または全部をその2倍の重量のWで置きか
えることができる6ごこでWの重置を2倍とするのは、
焼結鋼の特性変化に及ぼすWの効果は、その172重量
のMoの効果に等しいからである。Above, we have mentioned Ni and Mo as the basic alloy components, but in 6 cases where part or all of Mo can be replaced with twice the weight of W, doubling the amount of W is ,
This is because the effect of W on the change in properties of sintered steel is equal to the effect of its 172 weight Mo.
C:0.3〜0.8重量%
Cは安価な強化元素であるが、熱処理焼結体のC量が0
.3重量%未満では、引張強さI300kgf/mrr
r’以上の高強度が得られない。多量含有すると炭化物
を形成して強度靭性を低下させ、またオーステナイト生
成の要因となるため、熱処理焼結体のCffiを0.3
〜0.8重量%の範囲とした。Cff1の影響について
本発明者らが得た結果を、以下に述べる。C: 0.3 to 0.8% by weight C is an inexpensive reinforcing element, but if the amount of C in the heat-treated sintered body is 0.
.. If it is less than 3% by weight, the tensile strength I300kgf/mrr
A high strength higher than r' cannot be obtained. If it is contained in a large amount, it will form carbides, reduce strength and toughness, and cause austenite formation, so Cffi of the heat-treated sintered body should be set to 0.3
The range was 0.8% by weight. The results obtained by the present inventors regarding the influence of Cff1 will be described below.
Ni、Moが上記範囲にある複合合金鋼粉について、製
品C量か0.1〜1,0重量%になるように黒鉛量を変
えて添加し、さらに潤滑剤として1重量%のステアリン
酸亜鉛を添加して混合粉を製造した。これらの鋼粉につ
いて成型焼結した後、油焼入れ(870℃×30分)後
180℃X60分焼戻して熱処理焼結鋼を製造し、引張
試験とシャルピー衝撃試験を行った。その結果を第3図
および第4図に示す。CMが0.3〜0.8重量%の範
囲において高強度、高靭性が得られる。For composite alloy steel powder with Ni and Mo in the above range, graphite is added in varying amounts so that the product C content is 0.1 to 1.0% by weight, and 1% by weight of zinc stearate is added as a lubricant. was added to produce a mixed powder. These steel powders were molded and sintered, then oil quenched (870° C. for 30 minutes) and then tempered at 180° C. for 60 minutes to produce heat-treated sintered steel, which was then subjected to a tensile test and a Charpy impact test. The results are shown in FIGS. 3 and 4. High strength and high toughness can be obtained when the CM content is in the range of 0.3 to 0.8% by weight.
Cの添加は、部品の使用目的により焼結時に黒鉛相を合
金鋼粉に混合して添加する場合と、焼結後に浸炭焼入れ
により添加する場合がある。Depending on the intended use of the part, C may be added by mixing graphite phase with alloy steel powder during sintering, or may be added by carburizing and quenching after sintering.
浸炭焼入れの場合には、部品断面でC含有量の分布が生
じるが、C含有量は必ずしも全断面で上記範囲内にある
必要はなく、浸炭部において満足すれば良い。In the case of carburizing and quenching, a distribution of C content occurs in the cross section of the part, but the C content does not necessarily have to be within the above range in the entire cross section, and it is sufficient that it is satisfied in the carburized part.
高い密度の焼結製品を得るには、原料となる合金鋼粉の
圧縮性が高い必要がある。In order to obtain a sintered product with high density, the raw material alloy steel powder must have high compressibility.
そのためには、NiとMoおよび/またはWと鉄粉粒子
表面に拡散付着された、いわゆる複合合金鋼粉が適して
いる。完全に均一なブリアロイ鋼粉は、一般に圧縮性が
低く、高密度とするのに不利である。For this purpose, a so-called composite alloy steel powder in which Ni, Mo and/or W are diffused and adhered to the surface of iron powder particles is suitable. Completely homogeneous Brialloy steel powder generally has low compressibility and is disadvantageous for high density production.
通常の鉄粉とNi粉、Mo粉右よび/またはW扮との混
合粉末では、焼結中の合金元素の拡散が不十分で1強度
の上昇が不十分である。複合合金鋼粉であっても、拡散
合金化の程度が低ければ。With a mixed powder of ordinary iron powder, Ni powder, Mo powder, and/or W powder, the diffusion of alloying elements during sintering is insufficient, and the increase in strength is insufficient. Even if it is a composite alloy steel powder, if the degree of diffusion alloying is low.
やはり焼結体の強度が不足する。拡散合金化の進行程度
を見るため1合金鋼粉のうち45um以下の粒度のもの
におけるNiまたはM o + 1 / 2 Wの含有
量が鋼粉全体の平均のNiまたはMo+1/2Wの含有
量のそれぞれ何倍であるかを調べ。The strength of the sintered body is still insufficient. In order to see the progress of diffusion alloying, the content of Ni or Mo + 1/2 W in one alloy steel powder with a particle size of 45 um or less was compared to the average content of Ni or Mo + 1/2 W in the entire steel powder. Find out how many times each is.
これを「拡散偏析度」として指標に用いる。This is used as an index as the "degree of diffusion segregation."
Ni、Mo+1/2Wについてのこの拡散偏析度がそれ
ぞれ4.2を越えると、熱処理焼結体の強度および圧縮
性が低下する。また、前述のように、拡散偏析度が2.
0未満でも、圧縮性が不足し、さらにオーステナイトが
マルテンサイトに歪誘起゛変態しないため、引張強さが
不十分である。When the degree of diffusion segregation for Ni and Mo+1/2W each exceeds 4.2, the strength and compressibility of the heat-treated sintered body decrease. Moreover, as mentioned above, the degree of diffusion segregation is 2.
Even if it is less than 0, compressibility is insufficient and furthermore, austenite does not undergo strain-induced transformation into martensite, resulting in insufficient tensile strength.
よって、拡散偏析度の範囲を2.0〜4.2とする。Therefore, the range of the degree of diffusion segregation is set to 2.0 to 4.2.
これは鉄粉や合金成分の粒度およびこれらの加熱温度を
調節することにより達成される。This is achieved by adjusting the particle size of the iron powder and alloy components and the temperature at which they are heated.
複合合金鋼粉組成は、焼結体の組成に適合させて、Ni
が0.50〜3.50重量%、Mo+l/2Wが0.6
5〜3.50重量%、残部はFeと不可避不純物である
。The composite alloy steel powder composition is adapted to the composition of the sintered body, and Ni
is 0.50 to 3.50% by weight, Mo+l/2W is 0.6
5 to 3.50% by weight, the remainder being Fe and unavoidable impurities.
不純物の許容範囲は。What is the acceptable range of impurities?
C:0−03重量%以内、好ましくは0.01重量%以
内
S i : O,1重量%以内、好ましくは0.05重
量%以内
Mn:0.4重量%以内、好ましくは0.15重量%以
内
Cr:0.3重量%以内
Cu:0.3重量%以内
Aβ:0.1重量%以内
P :0.02重量%以内
S :0.02重量%以内
0:0.25重量%以内、好ましくは0.15重量%以
内
N:0.01重量%以内、好ましくは
0、002重量%以内
である、上記元素のうち、Mn、Crなどは、許容範囲
以内ならば、むしろ強度を向上させる場合があり、むや
みに低くすることばかりが得策ではない。C: within 0-03% by weight, preferably within 0.01% by weight Si: O, within 1% by weight, preferably within 0.05% by weight Mn: within 0.4% by weight, preferably 0.15% by weight Cr: within 0.3 wt% Cu: within 0.3 wt% Aβ: within 0.1 wt% P: within 0.02 wt% S: within 0.02 wt% 0: within 0.25 wt% , preferably within 0.15% by weight N: within 0.01% by weight, preferably within 0.002% by weight Among the above elements, Mn, Cr, etc., if within the allowable range, rather improve the strength. It is not always a good idea to lower the value unnecessarily.
また焼結体の強度確保のために複合合金鋼粉の粒度は、
180μm以上の粒度の重量割合を10%以内とするこ
とが好ましい。In addition, to ensure the strength of the sintered body, the particle size of the composite alloy steel powder is
It is preferable that the weight proportion of particles with a particle size of 180 μm or more is within 10%.
次に熱処理について説明する。高強度を得るために、焼
結後、熱処理を行う。Next, heat treatment will be explained. To obtain high strength, heat treatment is performed after sintering.
熱処理は、表面付近で高硬度を得たい時は浸炭焼入れ焼
戻し処理を用いる。均一な強度を得たい時は焼結時に黒
鉛粉末により複合合金鋼粉にCを添加し、通常の焼入れ
焼戻し処理を行う。For heat treatment, carburizing, quenching, and tempering are used when high hardness is desired near the surface. If uniform strength is desired, carbon is added to the composite alloy steel powder using graphite powder during sintering, and the steel is subjected to normal quenching and tempering treatment.
この熱処理により1組織が焼戻しマルテンサイトとなり
、高強度、高靭性鋼が得られる。焼入れ温度は800〜
930℃が好ましく、800℃未満では加熱時に均一な
オーステナイト組織にならず、強度、靭性が低下する。This heat treatment turns one structure into tempered martensite, resulting in high strength and high toughness steel. Quenching temperature is 800~
The temperature is preferably 930°C, and if it is less than 800°C, a uniform austenite structure will not be formed during heating, resulting in a decrease in strength and toughness.
また、930℃を超えるとオーステナイトが粗大化し、
強度、靭性が低下する。In addition, when the temperature exceeds 930℃, austenite becomes coarse,
Strength and toughness decrease.
焼戻し温度は100〜250℃が好ましく、100℃未
満では靭性が低(,250℃を超えると強度が低下する
。成形および焼結は、密度向上のために、1回以上繰返
しても良い。The tempering temperature is preferably 100 to 250°C; if it is less than 100°C, the toughness is low (and if it exceeds 250°C, the strength is reduced). The molding and sintering may be repeated one or more times to improve the density.
すなわち、成形−焼結−コイニング(サイジング)ある
いは、成形−予備焼結−コイニング(サイジング)−本
焼結といった再圧縮法が有用である。That is, a recompression method such as molding-sintering-coining (sizing) or molding-preliminary sintering-coining (sizing)-main sintering is useful.
〔発明を実施するための最良の形態1
実施例1〜3、比較例1〜3
はじめに原料となる複合合金鋼粉の製造について、実施
例と比較例を示す。[BEST MODE FOR CARRYING OUT THE INVENTION 1 Examples 1 to 3, Comparative Examples 1 to 3 First, examples and comparative examples will be shown regarding the production of composite alloy steel powder as a raw material.
まず、−80メツシユのアトマイズ純鉄粉に、−325
メツシユの酸化ニッケル粉末、−325メツシュの二酸
化モリブデン粉末を所定量混合し、水素ガス中800℃
で120分間加熱して、酸化ニッケルと三酸化モリブデ
ンを還元し、鉄粉粒子のまわりにNiとMoを拡散付着
させた複合合金鋼粉を得た。First, add -325 to the atomized pure iron powder of -80 mesh.
A predetermined amount of mesh nickel oxide powder and -325 mesh molybdenum dioxide powder were mixed and heated to 800°C in hydrogen gas.
was heated for 120 minutes to reduce nickel oxide and molybdenum trioxide to obtain a composite alloy steel powder in which Ni and Mo were diffused and adhered around iron powder particles.
「拡散偏析度」の影響を調べる目的で、上記純鉄粉に、
−325メツシユの金属Ni粉末および金属Mo粉末を
所定量混合し、水素ガス中の加熱温度を700℃、75
0℃、800℃、850℃、1050℃と変化させて、
複合合金鋼粉を作製した。In order to investigate the influence of "diffusion segregation degree", the above pure iron powder was
- A predetermined amount of metallic Ni powder and metallic Mo powder of 325 mesh were mixed, and the heating temperature in hydrogen gas was set to 700 °C and 75 °C.
By changing the temperature to 0℃, 800℃, 850℃, 1050℃,
Composite alloy steel powder was produced.
この複合合金鋼粉の組成は、
Ni:2.10〜2.18重量%
Mo : 1.12〜1.23重量%
であり、ほかに、
C:0.002重量%
5ilo−04重量%
Mn:0.07重量%
Cu:0.01重量%
P :0.006重量%
S :0.006重量%
0 :0.07〜0.13重fi%
N :0.0007〜0.0019重量%を含有して
いた。また、何れの鋼粉も180μm以上の粒度の含有
量は0.9〜2.5重量%であった。The composition of this composite alloy steel powder is: Ni: 2.10-2.18% by weight Mo: 1.12-1.23% by weight, and in addition, C: 0.002% by weight, 5ilo-04% by weight, Mn : 0.07% by weight Cu: 0.01% by weight P: 0.006% by weight S: 0.006% by weight 0: 0.07-0.13% by weight N: 0.0007-0.0019% by weight It contained. Moreover, the content of particle size of 180 μm or more in each steel powder was 0.9 to 2.5% by weight.
これらの合金鋼粉に、潤滑剤としてステアリン酸亜鉛を
0.9重量%添加し、圧カフ t / c rn”で成
形し、900℃で30分間、水素ガス中で仮焼結し、7
t / c rn”でコイニングの後、1250℃で
90分間、水素ガス中で本焼結し、密度7.28〜7.
51g/crn’の焼結体を得た。To these alloy steel powders, 0.9% by weight of zinc stearate was added as a lubricant, molded with a pressure cuff t/crn'', pre-sintered in hydrogen gas at 900°C for 30 minutes, and
After coining at t/crn'', main sintering was performed in hydrogen gas at 1250°C for 90 minutes, resulting in a density of 7.28-7.
A sintered body weighing 51 g/crn' was obtained.
これをカーボンポテンシャル0.8重量%、900℃で
6.5時間浸炭し、直ちに油焼入し、180℃で120
分間焼戻しだ。強度測定は、平行部5mmφの引張試験
片によった。結果をまとめて第1表に示す。This was carburized with a carbon potential of 0.8% by weight at 900°C for 6.5 hours, immediately oil quenched, and heated to 120°C at 180°C.
Tempered for a minute. The strength was measured using a tensile test piece with a parallel portion of 5 mmφ. The results are summarized in Table 1.
第1表に見られるように、拡散偏析度が2.0〜4.2
の範囲内であれば強度が大きい。As seen in Table 1, the degree of diffusion segregation is between 2.0 and 4.2.
If it is within the range of , the strength is high.
実施例4〜16、比較例4〜6
アトマイズ純鉄粉に酸化ニッケルと二酸化モリブデンを
配合し、第2表に示すようなNi、M。Examples 4 to 16, Comparative Examples 4 to 6 Nickel oxide and molybdenum dioxide were blended with atomized pure iron powder to produce Ni and M as shown in Table 2.
および/またはW量の異なる15種の複合合金鋼粉を作
製した。合金鋼粉作製時の加熱温度は800℃とした。And/or 15 types of composite alloy steel powders having different amounts of W were prepared. The heating temperature during the production of alloy steel powder was 800°C.
さらに、Ni%MoおよびCuを含む合金鋼粉を加熱温
度850℃で作成した(比較例6)。合金鋼粉の180
gmよりも粗い粒度の含有量は、何れも0.5〜3.0
重量%の範囲内であった。焼結浸炭および焼入れ焼戻し
条件は実施例1〜3と同様である。試験結果をまとめて
第2表に示す。Furthermore, alloy steel powder containing Ni%Mo and Cu was produced at a heating temperature of 850°C (Comparative Example 6). Alloy steel powder 180
The content of particles coarser than gm is 0.5 to 3.0.
It was within the range of % by weight. The sintering, carburizing and quenching and tempering conditions were the same as in Examples 1-3. The test results are summarized in Table 2.
第2表に見られるように、化学組成が
Ni:0.50〜3.50重量%
Mo : 0.65〜3.50重量%
の範囲内でかつ拡散偏析度が適切であれば、130kg
f/mm3以上の引張強さを示した。特にMoが085
重量%以上がさらに好ましい結果を示した。As shown in Table 2, if the chemical composition is within the range of Ni: 0.50 to 3.50% by weight and Mo: 0.65 to 3.50% by weight and the degree of diffusion segregation is appropriate, the weight of 130 kg
It exhibited a tensile strength of f/mm3 or more. Especially Mo is 085
More than % by weight showed more favorable results.
実施例17〜24、比較例7
ここでは、焼結密度と引張強さの関係について、実施例
と比較例を示す。Examples 17 to 24, Comparative Example 7 Here, Examples and Comparative Examples will be shown regarding the relationship between sintered density and tensile strength.
合金鋼粉としては、実施例1で用いた、2.15%Ni
−1,18%Mo複合合金鋼粉を使用した。As the alloy steel powder, the 2.15% Ni used in Example 1 was used.
-1,18% Mo composite alloy steel powder was used.
この合金鋼粉に、黒鉛粉を添加し、または添加せず、ス
テアリン酸亜鉛を0.9重量%添加し、所定の圧力で第
1次成形(通常の成形)を行い、H2ガス中、所定の温
度で60分、第1次焼結(仮焼結または通常の焼結)を
行い、場合によっては第2次の成形(コイニングまたは
サイジング)を所定の圧力で行い、さらに場合によって
は第2次の焼結(本焼結)を、H2ガス中、1300℃
で60分行い、実施例1と同じ条件で浸炭および焼入れ
焼戻しを施して、引張強さを測定した。結果をまとめて
第3表に示す。To this alloy steel powder, 0.9% by weight of zinc stearate was added with or without graphite powder, and primary molding (normal molding) was performed at a predetermined pressure. Primary sintering (preliminary sintering or normal sintering) is performed at a temperature of The next sintering (main sintering) was performed at 1300°C in H2 gas.
Carburizing, quenching and tempering were carried out under the same conditions as in Example 1, and the tensile strength was measured. The results are summarized in Table 3.
このように密度は7.0g/crn”以上であれば、引
張強さは130kgf/mrn”が得られ、7.3g/
c m″以上らば一層高い強度が得られた。In this way, if the density is 7.0 g/crn" or more, the tensile strength is 130 kgf/mrn", which is 7.3 g/crn".
cm'' or more, even higher strength was obtained.
実施例25〜31、比較例8〜14
複合合金鋼粉な次の手順で作成した。原料鉄粉として、
水アトマイズ純鉄粉を用いた。粒度は一80メツシュ、
化学組成は
C:0.002重量%
Si:0.03重量%
Mn:0.04重量%
Cu:O,01重量%
P:0.005重量%
S:0.007重量%
0:0.086重量%
N:0.0008重量%
であった。合金原料としては、Niについては、カーボ
ニルニッケル粉、Moについては二酸化モリブデン(M
oOa ) 、Wについては三酸化タングステン(WO
3)を用いた。いずれの合金成分原料も一325メツシ
ュであった。Examples 25 to 31, Comparative Examples 8 to 14 Composite alloy steel powders were prepared according to the following procedure. As raw iron powder,
Water atomized pure iron powder was used. Particle size is 180 mesh.
The chemical composition is C: 0.002% by weight Si: 0.03% by weight Mn: 0.04% by weight Cu: O, 01% by weight P: 0.005% by weight S: 0.007% by weight 0:0.086 Weight % N: 0.0008 weight %. As alloy raw materials, carbonyl nickel powder is used for Ni, and molybdenum dioxide (M
oOa ), W is tungsten trioxide (WO
3) was used. All alloy component raw materials were 1325 mesh.
鉄粉と合金成分原料とを後に示す所定の組成になるよう
に均一に混合し、水素ガス雰囲気中、850℃で60分
加熱し、鉄粉粒子に合金元素粉末を部分的に拡散付着さ
せ、その後解砕して、複合合金鋼粉とした。 これらの
合金鋼粉に、ステアリン酸亜鉛1重量%を添加し、全型
中成形圧力6t/crrrで成形した。引続き、アンモ
ニア分解ガス雰囲気中、1250℃で60分の焼結を行
って、焼結体を得た。熱処理前の加工性を知るための指
標として、これらの焼結体の引張強さを求めた。Iron powder and alloy component raw materials are uniformly mixed so as to have a predetermined composition shown later, and heated in a hydrogen gas atmosphere at 850°C for 60 minutes to partially diffuse and adhere the alloy element powder to the iron powder particles. Thereafter, it was crushed to obtain composite alloy steel powder. To these alloy steel powders, 1% by weight of zinc stearate was added and molded at a molding pressure of 6 t/crrr in the entire mold. Subsequently, sintering was performed at 1250° C. for 60 minutes in an ammonia decomposition gas atmosphere to obtain a sintered body. The tensile strength of these sintered bodies was determined as an indicator of workability before heat treatment.
次に焼結体の熱処理を行った。これは880℃において
カーボンポテンシャル0.85%で200分の浸炭を行
い、油中に焼入れした。その後、180℃で60分の焼
戻しを行った。熱処理後の強度の指標として、引張強さ
を求めた。Next, the sintered body was heat treated. This was carburized for 200 minutes at 880° C. with a carbon potential of 0.85% and quenched in oil. Thereafter, tempering was performed at 180° C. for 60 minutes. Tensile strength was determined as an index of strength after heat treatment.
作成した複合合金鋼粉の組成を第4表にまとめて示す、
実施例25〜31および比較例8〜13は1本発明の組
成範囲およびその周辺の組成を選んでおり、比較例14
は従来の標準的な複合合金鋼粉組成である。The composition of the composite alloy steel powder prepared is summarized in Table 4.
Examples 25 to 31 and Comparative Examples 8 to 13 selected compositions in and around the composition range of the present invention, and Comparative Example 14
is the conventional standard composite alloy steel powder composition.
第5表にこれらの鋼粉を試験した結果を示す。Table 5 shows the results of testing these steel powders.
圧縮性は6 t / c rn”の成形圧力で7.05
g/crn’程度の密度が高密度焼結体用鋼粉として望
まれる0本発明の高Mo低Ni組成の熱処理後の焼結体
は、6 t / c rn’の成形圧力で107〜12
6kgf/mrn’の引張強さを示した。また、熱処理
前の焼結体の引張強さが40 k g f / m−程
度以内ならば、切削やサイジングを困難なく行うことが
できる。Compressibility is 7.05 at a molding pressure of 6 t/c rn”
The density of the high-Mo, low-Ni composition of the present invention after heat treatment is desired as a steel powder for high-density sintered bodies having a density of about 107 to 12 g/crn' at a compacting pressure of 6 t/crn'.
It showed a tensile strength of 6 kgf/mrn'. Further, if the tensile strength of the sintered body before heat treatment is within about 40 kg f/m, cutting and sizing can be performed without difficulty.
実施例A−E、比較例F−に
何れも一325メツシュのNi扮、Mo酸化物扮(Mo
Oa)を−80メツシユのFe粉と所定の割合で混合し
、水素ガス雰囲気中にて1000℃で1時間還元焼鈍後
解砕して複合合金鋼粉を製造した。この時の化学組成お
よび拡散偏析度を第6表に比較例と共に示す。In both Examples A-E and Comparative Example F-, 1325 mesh Ni layer and Mo oxide layer (Mo
Oa) was mixed with -80 mesh Fe powder at a predetermined ratio, and after reduction annealing at 1000° C. for 1 hour in a hydrogen gas atmosphere, it was crushed to produce a composite alloy steel powder. The chemical composition and degree of diffusion segregation at this time are shown in Table 6 together with comparative examples.
これらの鋼粉に0.75重量%の黒鉛粉と潤滑剤として
のステアリン酸亜鉛を1重量%添加して、7 t /
c rn’の圧力で成形した。0.75% by weight of graphite powder and 1% by weight of zinc stearate as a lubricant were added to these steel powders to produce 7 t/w.
It was molded at a pressure of cr'.
次に850℃で30分間アンモニア分解ガス雰囲気中で
焼結し、7t/crn’の圧力で再圧縮成形を行った。Next, it was sintered at 850°C for 30 minutes in an ammonia decomposition gas atmosphere, and recompression molded at a pressure of 7t/crn'.
その後、1250℃で30分間アンモニア分解ガス雰囲
気中で焼結した。さらに870℃で60分間不活性ガス
中で加熱し油焼入れ、引き続き180℃で60分間オイ
ルバス中で加熱し空冷する焼入れ焼戻し処理を施し、引
張試験とシャルピー衝撃試験に供した。焼結体の化学組
成、密度、引張強さおよび衝撃値の実験結果を第7表に
示す。Thereafter, it was sintered at 1250° C. for 30 minutes in an ammonia decomposition gas atmosphere. Further, it was subjected to oil quenching by heating at 870°C for 60 minutes in an inert gas, followed by quenching and tempering by heating at 180°C for 60 minutes in an oil bath and cooling in air, and subjected to a tensile test and a Charpy impact test. The experimental results of the chemical composition, density, tensile strength and impact value of the sintered bodies are shown in Table 7.
本発明範囲の化学組成および密度において150kgf
/mm2以上の引張強さと4kgf −m / c r
n’以上のシャルピー衝撃値を示すことがわかる。150 kgf at the chemical composition and density within the range of the present invention
/mm2 or more tensile strength and 4kgf-m/cr
It can be seen that the Charpy impact value is n' or more.
実施例L−P、比較例Q〜■
第6表に示す複合合金鋼粉に、0.75重量%の黒鉛粉
と潤滑剤としてのステアリン酸亜鉛を1重量%添加して
、7 t / c rn’の圧力で成形し、1250℃
で30分間アンモニア分解ガス雰囲気中で焼結した。さ
らに870℃で60分間不活性ガ各中で加熱し油焼入れ
、引き続き180℃で60分間オイルバス中で加熱し空
冷する焼入れ焼戻し処理を施し、引張試験とシャルピー
衝撃試験に供した。Examples LP, Comparative Examples Q~■ 0.75% by weight of graphite powder and 1% by weight of zinc stearate as a lubricant were added to the composite alloy steel powder shown in Table 6, and 7 t/c was added. Molded at a pressure of rn', 1250℃
The sample was sintered for 30 minutes in an ammonia decomposition gas atmosphere. Further, it was subjected to a quenching and tempering treatment by heating at 870°C for 60 minutes in an inert gas bath, followed by heating at 180°C for 60 minutes in an oil bath and cooling in air, and subjected to a tensile test and a Charpy impact test.
実験結果を第8表に示す。本発明の化学組成範囲におい
て130kgf/mm2以上の引張強さと3.5 k
g f −m/cm’以上のシャルピー衝撃値を示す。The experimental results are shown in Table 8. Tensile strength of 130 kgf/mm2 or more and 3.5 k within the chemical composition range of the present invention
It shows a Charpy impact value of g f -m/cm' or more.
複合合金鋼粉の化学組成
[産業上の利用可能性]
以上の説明から明らかなように、本発明の熱処理焼結鋼
は、極めて高い強度と靭性な兼ね備えるものであり、高
強度、高靭性が必要な焼結部品に有用である。本発明に
よる合金鋼粉は、今後の焼結部品の高強度化方向に合致
し、しかも高密度と加工性の両者が要求される場合に、
きわめて優れた適性を示すものである。従って、今まで
よりも高負荷で形状の複雑な機械部品を粉末冶金によっ
て製造することが容易になると考えられ、大きな効果を
期待することができる。Chemical composition of composite alloy steel powder [Industrial applicability] As is clear from the above explanation, the heat-treated sintered steel of the present invention has extremely high strength and toughness. Useful for required sintered parts. The alloy steel powder according to the present invention meets the future trend of increasing the strength of sintered parts, and can be used when both high density and workability are required.
This indicates extremely high aptitude. Therefore, it is thought that it will be easier to manufacture mechanical parts with higher loads and complicated shapes by powder metallurgy than ever before, and great effects can be expected.
第1図は本発明者らが得た熱処理焼結体の組成に対する
密度と引張強さとの関係を説明するグラフ、第2図は第
1図と同じ焼結体の組成に対する密度とシャルピー衝撃
値との関係を説明するグラフ、第3図はNi、Moの含
有量が本発明の範囲内にある熱処理焼結体のC量と引張
強さとの関係を説明するグラフ、第4図は第3図と同じ
焼結体のC量とシャルピー衝撃値との関係を説明するグ
ラフである。Figure 1 is a graph explaining the relationship between density and tensile strength for the composition of the heat-treated sintered body obtained by the present inventors, and Figure 2 is the density and Charpy impact value for the same composition of the sintered body as in Figure 1. Figure 3 is a graph explaining the relationship between C content and tensile strength of a heat-treated sintered body whose Ni and Mo contents are within the range of the present invention. It is a graph explaining the relationship between the amount of C and the Charpy impact value of the same sintered compact as the figure.
Claims (1)
着された複合合金鋼粉において、合金成分として、Ni
とMoとを含み、合金組成が Ni:0.50〜3.50重量% Mo:0.65〜3.50重量% で、残部がFeおよび不可避不純物から成り、かつ該鋼
粉のうち45μm以下の粒度におけるNiおよびMoの
含有量がそれぞれ該鋼粉全体の平均含有量の2.0〜4
.2倍の範囲にあることを特徴とする粉末冶金用複合合
金鋼粉。 2、最終製品合金成分としてNiとMoとを含み、合金
組成が Ni:0.50〜3.50重量% Mo:0.65〜3.50重量% で、残部がFe、Cおよび不可避不純物から成り、かつ
密度が7.0g/cn^3以上で、焼入れ焼戻し後の引
張強さが130kgf/mm^2以上であることを特徴
とする高強度焼結合金鋼。 3、最終製品合金成分としてC、NiとMoとを含み、
合金組成が C:0.3〜0.8重量% Ni:0.50〜3.50重量% Mo:0.65〜3.50重量% で、残部がFeおよび不可避不純物から成り、かつ密度
が7.0g/cm^3以上で、焼入れ焼戻し後の引張強
さが130kgf/mm^3以上であることを特徴とす
る高強度高靭性焼結合金鋼。 4、請求範囲1に記載の複合合金鋼粉を用いて製造した
焼結合金鋼であって、最終製品合金成分としてNiとM
oとを含み、合金組成がNi:0.50〜3.50重量
% Mo:0.65〜3.50重量% で、残部がFe、Cおよび不可避不純物から成り、かつ
密度が7.0g/cm^3以上で浸炭焼入れ焼戻し後の
引張強さが130kgf/mm^3以上であることを特
徴とする高強度焼結合金鋼。 5、請求範囲1に記載の複合合金鋼粉を用いて製造した
焼結合金鋼であって、最終製品合金成分としてC、Ni
とMoとを含み、合金組成が C:0.3〜0.8重量% Ni:0.50〜3.50重量% Mo:0.65〜3.50重量% で、残部がFeおよび不可避不純物から成り、かつ密度
が7.0g/cm^2以上で、焼入れ焼戻し後の引張強
さが130kgf/mm^2以上であることを特徴とす
る高強度高靭性焼結合金鋼。 6、合金成分が粉末状に鉄粉粒子表面に部分的に拡散付
着された複合合金鋼粉において、合金成分としてNiと
MoおよびWとを含み、合金組成が Ni:0.50〜3.50重量% Mo+1/2W:0.65〜3.50重量%で、残部が
Feおよび不可避不純物から成 り、かつ該鋼粉のうち45μm以下の粒度におけるNi
およびMo+1/2Wの含有量がそれぞれ該鋼粉全体の
平均含有量の2.0〜4.2倍の範囲にあることを特徴
とする粉末冶金用複合合金鋼粉。 7、最終製品合金成分がNiとMoおよびWとを含み、
合金組成が Ni:0.50〜3.50重量% Mo+1/2W:0.65〜3.50重量%で、残部が
Fe、Cおよび不可避不純物から成り、かつ密度が7.
0g/cm^3以上で、浸炭焼入れ焼戻し後の引張強さ
が130kgf/mm^2以上であることを特徴とする
高強度焼結合金鋼。 8、最終製品合金成分がC、NiとMoおよびWとを含
み、合金組成が C:0.3〜0.8重量% Ni:0.50〜3.50重量% Mo+1/2W:0.65〜3.50重量%で、残部が
Feおよび不可避不純物から成 り、かつ密度が7.0g/cm^3以上で、焼入れ焼戻
し後の引張強さが130kgf/mm^2以上であるこ
とを特徴とする高強度高靭性焼結合金鋼。 9、請求範囲6に記載の複合合金鋼粉を用いて製造した
焼結合金鋼であって、最終製品合金成分としてNiとM
oおよびWとを含み、残部がFeおよび不可避不純物か
ら成り、合金組成が Ni:0.50〜3.50重量% Mo+1/2W:0.65〜3.50重量%で、残部が
Fe、Cおよび不可避不純物から成り、かつ密度が7.
0g/cm^3以上で、浸炭焼入れ焼戻し後の引張強さ
が130kgf/mm^2以上であることを特徴とする
高強度焼結合金鋼。 10、請求範囲6に記載の複合合金鋼粉を用いて製造し
た焼結合金鋼であって、最終製品合金成分としてC、N
iとMoおよびWとを含み、合金組成が C:0.3〜0.8重量% Ni:0.50〜3.50重量% Mo+1/2W:0.65〜3.50重量%で、残部が
Feおよび不可避不純物から成 り、かつ密度が7.0g/cm^3以上で、焼入れ焼戻
し後の引張強さが130kgf/mm^2以上であるこ
とを特徴とする高強度高靭性焼結合金鋼。 11、合金成分が粉末状に鉄粉粒子表面に部分的に拡散
付着された複合合金鋼粉において、合金成分として、N
iとWとを含み、合金組成が Ni:0.50〜3.50重量% W:1.30〜7.00重量% で、残部がFeおよび不可避不純物から成り、かつ該鋼
粉のうち45μm以下の粒度におけるNiおよびWの含
有量がそれぞれ該鋼粉全体の平均含有量の2.0〜4.
2倍の範囲にあることを特徴とする粉末冶金用複合合金
鋼粉。 12、最終製品合金成分としてNiとWとを含み、合金
組成が Ni:0.50〜3.50重量% W:1.30〜7.00重量% で、残部がFe、Cおよび不可避不純物から成り、かつ
密度が7.0g/cm^3以上で、浸炭焼入れ焼戻し後
の引張強さが130kgf/mm^2以上であることを
特徴とする高強度焼結合金鋼。 13、最終製品合金成分としてC、NiとWとを含み、
合金組成が C:0.3〜0.8重量% Ni:0.50〜3.50重量% W:1.30〜7.00重量% で、残部がFeおよび不可避不純物から成り、かつ密度
が7.0g/cm^3以上で、焼入れ焼戻し後の引張強
さが130kgf/mm^2以上であることを特徴とす
る高強度高靭性焼結合金鋼。 14、請求範囲11に記載の複合合金鋼粉を用いて製造
した焼結合金鋼であって、最終製品合金成分としてNi
とWとを含み、合金組成が Ni:0.50〜3.50重量% W:1.30〜7.00重量% で、残部がFe、Cおよび不可避不純物から成り、かつ
密度が7.0g/cm^3以上で、浸炭焼入れ焼戻し後
の引張強さが130kgf/mm^2以上であることを
特徴とする高強度焼結合金鋼。 15、請求範囲11に記載の複合合金鋼粉を用いて製造
した焼結合金鋼であって、最終製品合金成分としてNi
とWとを含み、合金組成が C:0.3〜0.8重量% Ni:0.50〜3.50重量% W:1.30〜7.00重量% で、残部がFeおよび不可避不純物から成り、かつ密度
が7.0g/cm^3以上で、焼入れ焼戻し後の引張強
さが130kgf/mm^2以上であることを特徴とす
る高強度高靭性焼結合金鋼。[Claims] 1. In a composite alloy steel powder in which an alloy component is partially diffused and adhered to the surface of iron powder particles in powder form, Ni as an alloy component
and Mo, the alloy composition is Ni: 0.50 to 3.50% by weight, Mo: 0.65 to 3.50% by weight, the balance is Fe and unavoidable impurities, and the steel powder has a diameter of 45 μm or less. The content of Ni and Mo in the particle size of is 2.0 to 4 of the average content of the whole steel powder, respectively.
.. Composite alloy steel powder for powder metallurgy, characterized in that it is in a double range. 2. The final product contains Ni and Mo as alloy components, and the alloy composition is Ni: 0.50 to 3.50% by weight, Mo: 0.65 to 3.50% by weight, and the balance is Fe, C, and unavoidable impurities. A high-strength sintered alloy steel having a density of 7.0 g/cm^3 or more and a tensile strength after quenching and tempering of 130 kgf/mm^2 or more. 3. Contains C, Ni and Mo as final product alloy components,
The alloy composition is C: 0.3 to 0.8% by weight, Ni: 0.50 to 3.50% by weight, Mo: 0.65 to 3.50% by weight, with the balance consisting of Fe and unavoidable impurities, and the density is A high-strength, high-toughness sintered alloy steel characterized by having a tensile strength of 7.0 g/cm^3 or more and a tensile strength after quenching and tempering of 130 kgf/mm^3 or more. 4. A sintered alloy steel manufactured using the composite alloy steel powder according to claim 1, which contains Ni and M as the final product alloy components.
o, the alloy composition is Ni: 0.50 to 3.50% by weight, Mo: 0.65 to 3.50% by weight, the balance consists of Fe, C and unavoidable impurities, and the density is 7.0g/ A high-strength sintered alloy steel having a tensile strength of 130 kgf/mm^3 or more after carburizing, quenching and tempering at cm^3 or more. 5. A sintered alloy steel manufactured using the composite alloy steel powder according to claim 1, which contains C and Ni as the final product alloy components.
and Mo, and the alloy composition is C: 0.3 to 0.8% by weight, Ni: 0.50 to 3.50% by weight, Mo: 0.65 to 3.50% by weight, and the balance is Fe and unavoidable impurities. A high-strength, high-toughness sintered alloy steel, characterized in that it has a density of 7.0 g/cm^2 or more and a tensile strength of 130 kgf/mm^2 or more after quenching and tempering. 6. Composite alloy steel powder in which alloy components are partially diffused and attached to the surface of iron powder particles in the form of powder, which contains Ni, Mo and W as alloy components, and has an alloy composition of Ni: 0.50 to 3.50. Weight% Mo + 1/2W: 0.65 to 3.50% by weight, the balance consisting of Fe and unavoidable impurities, and Ni in the steel powder with a particle size of 45 μm or less
A composite alloy steel powder for powder metallurgy, characterized in that the content of Mo and Mo+1/2W is in a range of 2.0 to 4.2 times the average content of the entire steel powder. 7. The final product alloy component contains Ni, Mo and W,
The alloy composition is Ni: 0.50 to 3.50% by weight, Mo+1/2W: 0.65 to 3.50% by weight, the balance is Fe, C, and inevitable impurities, and the density is 7.
A high-strength sintered alloy steel having a tensile strength of 0 g/cm^3 or more and a tensile strength of 130 kgf/mm^2 or more after carburizing and quenching and tempering. 8. Final product alloy components include C, Ni, Mo and W, alloy composition: C: 0.3-0.8% by weight Ni: 0.50-3.50% by weight Mo+1/2W: 0.65 ~3.50% by weight, with the remainder consisting of Fe and unavoidable impurities, and has a density of 7.0g/cm^3 or more and a tensile strength of 130kgf/mm^2 or more after quenching and tempering. High strength, high toughness sintered alloy steel. 9. A sintered alloy steel manufactured using the composite alloy steel powder according to claim 6, which contains Ni and M as final product alloy components.
o and W, the balance is Fe and unavoidable impurities, and the alloy composition is Ni: 0.50 to 3.50% by weight, Mo+1/2W: 0.65 to 3.50% by weight, and the balance is Fe and C. and unavoidable impurities, and has a density of 7.
A high-strength sintered alloy steel having a tensile strength of 0 g/cm^3 or more and a tensile strength of 130 kgf/mm^2 or more after carburizing and quenching and tempering. 10. A sintered alloy steel manufactured using the composite alloy steel powder according to claim 6, which contains C and N as the final product alloy components.
i, Mo and W, and the alloy composition is C: 0.3 to 0.8% by weight, Ni: 0.50 to 3.50% by weight, Mo+1/2W: 0.65 to 3.50% by weight, and the balance is composed of Fe and inevitable impurities, has a density of 7.0 g/cm^3 or more, and has a tensile strength of 130 kgf/mm^2 or more after quenching and tempering. . 11. In a composite alloy steel powder in which alloy components are partially diffused and adhered to the surface of iron powder particles in powder form, N as an alloy component
i and W, the alloy composition is Ni: 0.50 to 3.50% by weight, W: 1.30 to 7.00% by weight, the balance is Fe and unavoidable impurities, and 45 μm of the steel powder The Ni and W contents in the following grain sizes are respectively 2.0 to 4.0% of the average content of the steel powder as a whole.
Composite alloy steel powder for powder metallurgy, characterized in that it is in a double range. 12. The final product contains Ni and W as alloy components, and the alloy composition is Ni: 0.50 to 3.50% by weight, W: 1.30 to 7.00% by weight, and the balance is Fe, C, and unavoidable impurities. A high-strength sintered alloy steel having a density of 7.0 g/cm^3 or more and a tensile strength of 130 kgf/mm^2 or more after carburizing and quenching and tempering. 13. Contains C, Ni and W as final product alloy components,
The alloy composition is C: 0.3 to 0.8% by weight, Ni: 0.50 to 3.50% by weight, W: 1.30 to 7.00% by weight, with the balance consisting of Fe and unavoidable impurities, and the density is A high-strength, high-toughness sintered alloy steel having a tensile strength of 7.0 g/cm^3 or more and a tensile strength after quenching and tempering of 130 kgf/mm^2 or more. 14. A sintered alloy steel manufactured using the composite alloy steel powder according to claim 11, which contains Ni as the final product alloy component.
and W, the alloy composition is Ni: 0.50-3.50% by weight, W: 1.30-7.00% by weight, the balance consists of Fe, C and unavoidable impurities, and the density is 7.0g. /cm^3 or more, and has a tensile strength of 130 kgf/mm^2 or more after carburizing, quenching and tempering. 15. A sintered alloy steel manufactured using the composite alloy steel powder according to claim 11, which contains Ni as the final product alloy component.
and W, and the alloy composition is C: 0.3-0.8% by weight, Ni: 0.50-3.50% by weight, W: 1.30-7.00% by weight, and the balance is Fe and unavoidable impurities. A high-strength, high-toughness sintered alloy steel characterized by having a density of 7.0 g/cm^3 or more and a tensile strength of 130 kgf/mm^2 or more after quenching and tempering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63244377A JPH0694562B2 (en) | 1987-09-30 | 1988-09-30 | Method for producing composite alloy steel powder and sintered alloy steel |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24407487 | 1987-09-30 | ||
JP62-244074 | 1987-09-30 | ||
JP63-137400 | 1988-06-06 | ||
JP13740088 | 1988-06-06 | ||
JP63244377A JPH0694562B2 (en) | 1987-09-30 | 1988-09-30 | Method for producing composite alloy steel powder and sintered alloy steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0297602A true JPH0297602A (en) | 1990-04-10 |
JPH0694562B2 JPH0694562B2 (en) | 1994-11-24 |
Family
ID=27317463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63244377A Expired - Lifetime JPH0694562B2 (en) | 1987-09-30 | 1988-09-30 | Method for producing composite alloy steel powder and sintered alloy steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0694562B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5308702A (en) * | 1991-09-05 | 1994-05-03 | Kawasaki Steel Corporation | Iron-based powder composition for use in powder metallurgy, process for its production and process for producing iron-base sintered material |
JP2015010272A (en) * | 2013-07-02 | 2015-01-19 | Ntn株式会社 | Sintered machine part and production method thereof |
CN105855555A (en) * | 2016-04-05 | 2016-08-17 | 广东省钢铁研究所 | Preparing method for iron and cobalt magnetically soft alloy device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244706A (en) * | 1975-10-06 | 1977-04-08 | Caterpillar Tractor Co | Article made of powdered metal and having corrosionnresisting surface |
JPS5328012A (en) * | 1976-08-06 | 1978-03-15 | Ford Motor Co | Method of preliminarily improving quenchability of ironnbased metallic powder to be alloyed |
JPS5644702A (en) * | 1979-09-04 | 1981-04-24 | Metallurg Ind Inc | Powdery metal filter composition and its manufacture |
JPS6164849A (en) * | 1984-09-06 | 1986-04-03 | Toyota Motor Corp | High strength iron sintered alloy |
-
1988
- 1988-09-30 JP JP63244377A patent/JPH0694562B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244706A (en) * | 1975-10-06 | 1977-04-08 | Caterpillar Tractor Co | Article made of powdered metal and having corrosionnresisting surface |
JPS5328012A (en) * | 1976-08-06 | 1978-03-15 | Ford Motor Co | Method of preliminarily improving quenchability of ironnbased metallic powder to be alloyed |
JPS5644702A (en) * | 1979-09-04 | 1981-04-24 | Metallurg Ind Inc | Powdery metal filter composition and its manufacture |
JPS6164849A (en) * | 1984-09-06 | 1986-04-03 | Toyota Motor Corp | High strength iron sintered alloy |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5308702A (en) * | 1991-09-05 | 1994-05-03 | Kawasaki Steel Corporation | Iron-based powder composition for use in powder metallurgy, process for its production and process for producing iron-base sintered material |
JP2015010272A (en) * | 2013-07-02 | 2015-01-19 | Ntn株式会社 | Sintered machine part and production method thereof |
CN105855555A (en) * | 2016-04-05 | 2016-08-17 | 广东省钢铁研究所 | Preparing method for iron and cobalt magnetically soft alloy device |
CN105855555B (en) * | 2016-04-05 | 2018-05-11 | 广东省钢铁研究所 | A kind of preparation method of iron cobalt magnetically soft alloy device |
Also Published As
Publication number | Publication date |
---|---|
JPH0694562B2 (en) | 1994-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4954171A (en) | Composite alloy steel powder and sintered alloy steel | |
KR101912378B1 (en) | Iron based powders for powder injection molding | |
JP4183346B2 (en) | Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same | |
JPH03120336A (en) | Manufacture of synchronizer hub | |
JPS5918463B2 (en) | Wear-resistant sintered alloy and its manufacturing method | |
WO2014196123A1 (en) | Alloy steel powder for powder metallurgy and production method for iron-based sintered body | |
CN110198797B (en) | Powder containing free graphite | |
WO1994027764A1 (en) | Alloy steel powder for sinter with high strength, high fatigue strength and high toughness, sinter, and process for producing the sinter | |
JP6515955B2 (en) | Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body | |
US4804409A (en) | Alloy steel powder for powder metallurgy | |
JP6271310B2 (en) | Iron-based sintered material and method for producing the same | |
JPH0849047A (en) | Alloy steel powder for powder metallurgy | |
JP3272886B2 (en) | Alloy steel powder for high strength sintered body and method for producing high strength sintered body | |
JPH0297602A (en) | Composite alloy steel powder and sintered alloy steel | |
JP2005330573A (en) | Alloy steel powder for powder metallurgy | |
EP0334968B1 (en) | Composite alloy steel powder and sintered alloy steel | |
KR102533137B1 (en) | Iron-based mixed powder for powder metallurgy and iron-based sintered body | |
JP3475545B2 (en) | Mixed steel powder for powder metallurgy and sintering material containing it | |
WO2018142778A1 (en) | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body | |
JP6645631B1 (en) | Alloy steel powder for powder metallurgy and iron-base mixed powder for powder metallurgy | |
JPH10219410A (en) | High density sintered alloy material, and its production | |
JP2018123412A (en) | Iron-based powdery mixture for powder metallurgy and production method therefor, and sintered compact excellent in tensile strength and impact resistance | |
JPH02153046A (en) | High strength sintered alloy steel | |
CA1339554C (en) | Composite alloy steel powder and sintered alloy stell | |
JP2003147405A (en) | Alloy steel powder for iron sintering heat treatment material |