JPH0295792A - Multistage root's-type vacuum pump - Google Patents
Multistage root's-type vacuum pumpInfo
- Publication number
- JPH0295792A JPH0295792A JP24454588A JP24454588A JPH0295792A JP H0295792 A JPH0295792 A JP H0295792A JP 24454588 A JP24454588 A JP 24454588A JP 24454588 A JP24454588 A JP 24454588A JP H0295792 A JPH0295792 A JP H0295792A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- pump section
- pump
- discharged
- condensate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 230000002093 peripheral effect Effects 0.000 claims abstract description 21
- 239000000498 cooling water Substances 0.000 claims abstract description 20
- 239000007789 gas Substances 0.000 description 96
- 238000001816 cooling Methods 0.000 description 10
- 238000007789 sealing Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000000112 cooling gas Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 206010014020 Ear pain Diseases 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 208000007176 earache Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えば、食品乾燥装置における水蒸気や、医
薬品製造装置におけるメタノールやヘキサン、及び半導
体製造装置における四塩化炭素等の凝縮性気体吸引用の
多段ルーツ形真空ポンプに関する。本発明は吸込圧が、
大気圧からto−3Torrレヘルまでの領域において
、高圧縮比状態で運転され、凝縮性気体、或いはその一
部にcE縮性気体を含む気体を吸引する多段ルーツ形真
空ポンプに適用されることができる。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to suction of condensable gases such as water vapor in food drying equipment, methanol and hexane in pharmaceutical manufacturing equipment, and carbon tetrachloride in semiconductor manufacturing equipment. This invention relates to a multi-stage Roots-type vacuum pump. In the present invention, the suction pressure is
It can be applied to multistage Roots-type vacuum pumps that operate at high compression ratios in the range from atmospheric pressure to to-3 Torr level and suck condensable gases or gases that partially contain cE condensable gases. can.
〔従来の技術、及び発明が解決しようとする課題〕一般
にその吸込気体の一部、或いは全てが凝縮性気体である
食品乾燥の真空乾燥装置、薬品製造装置の真空蒸留装置
、半導体製造装置の真空蒸着装置等の真空源機械として
油回転式真空ポンプを使用すると、その封油に凝縮液が
混入し封油の劣化が著しく、長期の連続運転が困難であ
り、また凝縮液のみを取り出すことはできない。また水
封式真空ポンプを使用した場合は、それに使用される封
水に凝縮液が混入し、封水と共に排出され、凝縮液の回
収が困難であるばかりか、排水による公害を生じさせる
こともある。また従来逆流冷却式多段ルーツ式真空ポン
プはその内部に封油や封液を使用しないことから、凝縮
性気体を取り扱う装置の真空源機械として多くが使用さ
れてきた。[Prior art and problems to be solved by the invention] Generally, a part or all of the suction gas is a condensable gas, such as vacuum drying equipment for food drying, vacuum distillation equipment for pharmaceutical manufacturing equipment, and vacuum for semiconductor manufacturing equipment. When an oil rotary vacuum pump is used as a vacuum source machine for evaporation equipment, etc., condensate gets mixed into the sealing oil, causing significant deterioration of the sealing oil, making long-term continuous operation difficult, and it is difficult to extract only the condensate. Can not. Furthermore, when a water ring type vacuum pump is used, condensate gets mixed into the seal water used and is discharged together with the seal water, making it difficult to recover the condensate and also causing pollution due to the drainage water. be. Conventional backflow cooling multi-stage Roots vacuum pumps do not use sealing oil or sealing liquid inside, so they have often been used as vacuum source machines for devices that handle condensable gases.
第7図に示されている3段逆流冷却式ルーツ式真空ポン
プにおいては、各ポンプ区分は、共通の2本の水平軸を
有し、これらの軸に支承されるロータと、ロータを内蔵
するハウジングにより構成され、第1ポンプ区分100
の吐出口102と第2ポンプ区分200の吸込口201
は連結管路103.104.105により連結し、連結
管路103と104の間に冷却器112を設け、連結管
路104から分岐し、第1ポンプ区分100のハウジン
グへ逆流冷却用気体を導く逆流管路106が設けられ、
また連結管104から分岐し、冷却器112の下部に設
けられた凝縮液槽113へ凝縮液を導く凝縮液管路10
7が設けられ、凝縮液槽113の入口と出口には仕切弁
114.115が設けられている。In the three-stage counterflow-cooled Roots vacuum pump shown in FIG. 7, each pump section has two common horizontal shafts, a rotor supported on these shafts, and a rotor containing The first pump section 100 is configured by a housing.
and the suction port 201 of the second pump section 200.
are connected by connecting lines 103, 104, 105, a cooler 112 is provided between connecting lines 103 and 104, branching from connecting line 104, and leading backflow cooling gas to the housing of the first pump section 100. A backflow conduit 106 is provided,
Further, a condensate pipe line 10 branches from the connecting pipe 104 and leads the condensate to a condensate tank 113 provided at the bottom of the cooler 112.
7 is provided, and gate valves 114 and 115 are provided at the inlet and outlet of the condensate tank 113.
第2ポンプ区分200の吐出口202と第3ポンプ区分
300の吸込口301は連結管路203.204.20
5により連結し、連結管路203と204の間に冷却器
212を設け、連結管路204から分岐し、第2ポンプ
区分200のハウジングへ逆流冷却用気体を導く逆流管
路206が設けられ、また連結管204から分岐し、冷
却器212の下部に設けられた凝縮液槽213へ凝縮液
を導く凝縮液管路207が設けられ、凝縮液槽213の
入口と出口には仕切弁214,215が設けられている
。The outlet 202 of the second pump section 200 and the inlet 301 of the third pump section 300 are connected to the connecting pipe 203.204.20.
5, a cooler 212 is provided between the connecting pipes 203 and 204, and a backflow pipe 206 is provided which branches from the connecting pipe 204 and leads backflow cooling gas to the housing of the second pump section 200; Further, a condensate pipe line 207 is provided which branches from the connecting pipe 204 and leads the condensate to a condensate tank 213 provided at the lower part of the cooler 212. is provided.
第3ポンプ区分300の吐出口302には吐出管路30
3.304,305が設けられ、吐出管路303と30
4の間に冷却器312を設け、吐出管路304から分岐
し、第3ポンプ区分300のハウジングへ逆流冷却用気
体を汚く逆流管路306が設けられ、また吐出管路30
4から分岐し、冷却器312の下部に設けられた凝縮液
槽313へ凝縮液を導く凝縮液管路307が設けられ、
凝縮液槽313の人口と出口には仕切弁314.315
が設けられている。The discharge port 302 of the third pump section 300 has a discharge conduit 30
3. 304, 305 are provided, and discharge pipes 303 and 30
A cooler 312 is provided between the discharge line 304 and a backflow line 306 is provided which branches off from the discharge line 304 and carries the backflow cooling gas to the housing of the third pump section 300.
A condensate pipe line 307 is provided which branches from 4 and leads the condensate to a condensate tank 313 provided at the bottom of the cooler 312.
Gate valves 314 and 315 are installed at the intake and outlet of the condensate tank 313.
is provided.
第7図に示されている3段逆流冷却式ルーツ式真空ポン
プの作用は、以下の通りである。各ポンプ区分の吸込口
より流入し圧縮された気体は、吐出連結管路へ吐出され
、連結管路を通り冷却器に流入し冷却され、該気体に含
まれる凝縮性気体の1部は、その圧力と温度に従い凝縮
し冷却器の下部に設けられた凝縮液槽に流入する。他方
非凝縮気体は連結管路を通り再び逆流冷却用気体として
、各ポンプ区分へ流入する気体と、次段のポンプ区分の
吸込口へ流入する気体とに分かれる。以上の作用が各ポ
ンプ区分において順次反復され、吸込気体をポンプの吸
込圧力から、大気圧まで圧縮する。The operation of the three-stage counterflow cooling roots type vacuum pump shown in FIG. 7 is as follows. The compressed gas that flows in from the suction port of each pump section is discharged to the discharge connecting pipe, flows into the cooler through the connecting pipe, and is cooled, and a part of the condensable gas contained in the gas is It condenses according to pressure and temperature and flows into the condensate tank located at the bottom of the cooler. On the other hand, the non-condensable gas passes through the connecting line and is split again as counterflow cooling gas into gas that flows into each pump section and gas that flows into the suction of the next pump section. The above operations are repeated in sequence in each pump section to compress the suction gas from the pump suction pressure to atmospheric pressure.
以上の作用を行うために、第7図に示されている3段逆
流冷却式ルーツ式真空ポンプにおいては、各ポンプ区分
において発生した圧縮熱を外部へ放熱し、ポンプの過熱
を防止するために連結管路を流れる気体を冷却するため
の複数の外部冷却器が設けられている。また更に、各ポ
ンプ区分が水平に配置されているために、各ポンプ区分
の冷却器内において、生じた凝縮液が冷却器及び連結管
路内に滞留し、正常なポンプの連続運転が不可能となる
ことを防止する目的で、各ポンプ区分の冷却器の下部に
、凝縮液槽を設ける必要がある。このため各冷却器及び
凝縮液槽を含むポンプ装置の小型化を実現する上で必ず
しも有利ではない。In order to perform the above-mentioned functions, the three-stage reverse-cooled Roots vacuum pump shown in Fig. 7 radiates the compression heat generated in each pump section to the outside to prevent the pump from overheating. A plurality of external coolers are provided for cooling the gas flowing through the connecting conduit. Furthermore, since each pump section is arranged horizontally, condensate generated in the cooler of each pump section accumulates in the cooler and the connecting pipe, making it impossible to operate the pump normally. In order to prevent this, it is necessary to provide a condensate tank below the cooler of each pump section. For this reason, it is not necessarily advantageous in realizing downsizing of the pump device including each cooler and the condensate tank.
またポンプを連続運転をするためには、ポンプ運転中に
各凝縮液槽より凝縮液を排出する必要が有り、大気圧よ
り低い圧力状態にある凝縮液槽より大気圧である外部へ
、凝縮液を排出するために、凝縮液槽の入口に設けた仕
切弁を閉じ、出口の仕切弁を開放して凝縮液を排出し、
排出後再び出口の仕切弁を閉じ、入口の仕切弁を開くと
いう、弁操作が必要となる。このためポンプの連続運転
のための無人化、及び省力化を実現する上での障害とな
っており、凝縮液の連続的な排出が困難であった。更に
は、上述の仕切弁の操作を行っても、凝縮液槽を一時的
に大気圧力にすることから、ポンプ内への大気の侵入を
完全に防ぐことができず、−時的なポンプの吸込圧力の
変動が生じ、安定したポンプの吸込圧力を実現する上で
の障害となる。In addition, in order to operate the pump continuously, it is necessary to discharge the condensate from each condensate tank during pump operation. To discharge the condensate, close the gate valve provided at the inlet of the condensate tank, open the gate valve at the outlet, and discharge the condensate.
After discharging, valve operations are required to close the outlet gate valve and open the inlet gate valve again. This has been an obstacle to achieving unmanned operation and labor saving for continuous operation of the pump, and it has been difficult to continuously discharge the condensate. Furthermore, even if the gate valve is operated as described above, the condensate tank is temporarily brought to atmospheric pressure, so it is not possible to completely prevent atmospheric air from entering the pump. Fluctuations in suction pressure occur, which becomes an obstacle to achieving stable pump suction pressure.
本発明の主な目的は、前述の従来のポンプ装置における
課題に鑑み、凝縮性気体、或いはその一部に凝縮性気体
を含む気体を吸引する多段ルーツ形真空ポンプにおいて
、特別な外部冷却器及び凝縮液槽を使用せずに、ポンプ
を過熱することのない温度に冷却し、ポンプを構成する
各ポンプ区分を垂直に配列し、最上部のポンプ区分にポ
ンプの吸込口を設け、各ポンプ区分の吐出口と次段のポ
ンプ区分の吸込口を連通ずる外周気体流路を下り勾配に
し、各ポンプ区分における圧縮と冷却により生じた凝縮
液は、非凝縮性気体と共に滞留することなく、ポンプ内
部及び外周気体流路を流下し、最下段のポンプ区分に設
けられたポンプの吐出口から排出させられることにより
、凝縮液を排出するための特別な弁操作を行うことなく
、凝縮液を連続的に排出することを可能とし、安定な吸
込圧力状態でのポンプの連続運転を可能とすることにあ
る。The main object of the present invention is to provide a multi-stage Roots-type vacuum pump that sucks condensable gas or a gas containing condensable gas in part, in view of the above-mentioned problems with conventional pump devices. Cool the pump to a temperature that does not overheat it, without using a condensate tank, and arrange the pump sections vertically, with the pump suction in the top pump section, and The outer peripheral gas flow path that communicates the discharge port of the pump section with the suction port of the next pump section is sloped downward, so that the condensed liquid generated by compression and cooling in each pump section does not stagnate with non-condensable gas and flows inside the pump. The condensate flows down the outer peripheral gas flow path and is discharged from the discharge port of the pump provided in the lowest pump section, allowing the condensate to be continuously discharged without the need for special valve operation to discharge the condensate. The objective is to enable continuous operation of the pump under stable suction pressure conditions.
また本発明の他の目的は、従来ポンプの外部に設けられ
た複数の冷却器及び凝縮液槽を不要とすることにより、
ポンプの小型化を実現することにある。Another object of the present invention is to eliminate the need for multiple coolers and condensate tanks that were conventionally provided outside the pump.
The goal is to make the pump more compact.
〔課題を解決するための手段、及び作用〕本発明におい
ては、ルーツ形真空ポンプが、垂直に配置された複数の
ポンプ区分により形成され、吸込口は最上部のポンプ区
分に設け、吐出口は最下段のポンプ区分に設け、各ポン
プ区分に共通の2本の垂直軸が設けられ、該2本の垂直
軸に支承されるルーツ形ロータが設けられ、各ポンプ区
分を構成し、該ルーツ形ロータを内蔵する該ハウジング
には該ハウジングの外周部に各ポンプ区分の吐出口と次
段ポンプ区分の吸込口に連通ずる下り勾配となった外周
気体流路と、該外周気体流路の外周に位置する冷却水路
が設けられていることを特(衣とする多段ルーツ形真空
ポンプが提供される。[Means and operations for solving the problem] In the present invention, a roots-type vacuum pump is formed by a plurality of vertically arranged pump sections, the suction port is provided in the uppermost pump section, and the discharge port is provided in the uppermost pump section. The lowest pump section is provided with two vertical shafts common to each pump section, and a Roots-shaped rotor is provided that is supported on the two vertical shafts, constituting each pump section, and having a roots-shaped rotor. The housing that houses the rotor has a downwardly sloped outer gas flow path that communicates with the discharge port of each pump section and the suction port of the next stage pump section on the outer periphery of the housing. A multi-stage Roots-type vacuum pump is provided, which is characterized in that it is provided with a cooling channel located therein.
本発明による多段ルーツ形真空ポンプは下記のように作
用する。The multi-stage Roots vacuum pump according to the invention operates as follows.
最上部ポンプ区分に設けられた吸込口より吸引された気
体は、各ポンプ区分の吸込口から、ハウジング内部へ吸
込まれ、ロータの作動にもとづき移送・圧縮され吐出気
体として吐出口より外周気体流路に吐出される。該吐出
気体は冷却水路を流れる冷却水により充分に冷却された
外周気体流路の外壁により冷却され、該吐出気体に含ま
れる凝縮性気体はその圧力と温度に従い凝縮し、非凝縮
性気体と共に、下り勾配になっている外周気体流路を滞
留することなく流れ、次段のポンプ区分の吸込口に到達
する。以上の作用が最上部のポンプ区分から順次各ポン
プ区分において反IRされ、ポンプ内部において凝縮し
た凝縮液と非凝縮性気体は、最下部のポンプ区分に設け
られたポンプの吐出口から連続的に排出される。The gas sucked from the suction port provided in the uppermost pump section is sucked into the housing from the suction port of each pump section, is transferred and compressed based on the operation of the rotor, and is discharged from the discharge port into the outer circumferential gas flow path. is discharged. The discharged gas is cooled by the outer wall of the peripheral gas flow path, which is sufficiently cooled by the cooling water flowing through the cooling waterway, and the condensable gas contained in the discharged gas is condensed according to its pressure and temperature, and together with the non-condensable gas, The gas flows without stagnation through the outer circumferential gas flow path, which has a downward slope, and reaches the suction port of the next stage pump section. The above action is reversed in each pump section sequentially from the top pump section, and the condensate and non-condensable gas condensed inside the pump are continuously discharged from the discharge port of the pump provided in the bottom pump section. It is discharged.
本発明の一実施例として、第1ポンプ区分1、第2ポン
プ区分2、第3ポンプ区分3、を持つ3段ルーツ形真空
ポンプが第1図に示される。第2図は、第1図に示され
るポンプの■−■断面図であり、第3図はト1断面図、
第4図はIV−1’/断面図、第5図はV−V断面図で
ある。As an embodiment of the invention, a three-stage Roots-type vacuum pump having a first pump section 1, a second pump section 2, and a third pump section 3 is shown in FIG. FIG. 2 is a cross-sectional view of the pump shown in FIG. 1, and FIG. 3 is a cross-sectional view of the pump shown in FIG.
FIG. 4 is a cross-sectional view taken along IV-1', and FIG. 5 is a cross-sectional view taken along line V-V.
本ポンプの構造は、以下の通りである。The structure of this pump is as follows.
第1図において、隔壁4で第1ポンプ区分1と第2ポン
プ区分2に区切られ、隅壁5で第2ポンプ区分2と第3
ポンプ区分3に区切られており、第2図において第1シ
ヤフト71と第2シヤフト72は、垂直に設けられ、各
ポンプ区分を貫通し、上下の各2個所の軸受機構74で
支承され、タイミングギヤセット73で互いに反対方向
に回転するように組みこまれている。第1シヤフト71
は、軸封機構75を貫通し電動機により駆動される。In FIG. 1, a partition wall 4 separates the first pump section 1 and a second pump section 2, and a corner wall 5 separates the second pump section 2 and the third pump section 2.
The first shaft 71 and the second shaft 72 are vertically provided in FIG. 2, pass through each pump section, and are supported by two upper and lower bearing mechanisms 74. They are assembled in a gear set 73 so that they rotate in opposite directions. 1st shaft 71
passes through the shaft sealing mechanism 75 and is driven by an electric motor.
各ポンプ区分の構造は、以下の通りである。The structure of each pump section is as follows.
第1図及び第3図において、第1ポンプ区分1は、吸込
口13と吐出口14とを有するハウジング11と一対の
軸71 、72に支承されるロータ12A12Bから成
り、ハウジング11の外周部には、吐出口14に連通し
、次段の第2ポンプ区分へ向かう外周気体流路15A
、 15Bを有し、該外周気体流路15A 、 15B
の外周部には冷却水路400を有する。1 and 3, the first pump section 1 consists of a housing 11 having a suction port 13 and a discharge port 14, and a rotor 12A12B supported on a pair of shafts 71 and 72. is an outer circumferential gas flow path 15A that communicates with the discharge port 14 and heads to the second pump section of the next stage.
, 15B, and the outer peripheral gas flow paths 15A, 15B.
It has a cooling water channel 400 on the outer periphery.
第1図及び第4図において、第2ポンプ区分2は、吸込
口23と吐出口24とを有するハウジング21と一対の
軸71 、72に支承されるロータ22A。1 and 4, the second pump section 2 includes a housing 21 having an inlet 23 and an outlet 24, and a rotor 22A supported on a pair of shafts 71, 72.
22Bから成り、ハウジング21の外周部には、前段の
第1ポンプ区分より吸込口23に連通ずる外周気体流路
15A 、 15Bと吐出口24に連通し、次段の第3
ポンプ区分へ向かう外周気体流路25A25Bを有し、
該外周気体流路15A 、 15B 、 25A 。22B, and on the outer periphery of the housing 21, there are outer circumferential gas flow paths 15A and 15B that communicate with the suction port 23 from the first pump section of the previous stage, and a third pump section that communicates with the discharge port 24 and the third pump section of the next stage.
It has an outer circumferential gas flow path 25A25B toward the pump section,
The peripheral gas flow paths 15A, 15B, 25A.
25Bの外周部には冷却水路400を有する。A cooling water channel 400 is provided on the outer circumferential portion of 25B.
第1図及び第5図において、第3ポンプ区分3は、吸込
口33と吐出口34とを有するハウジング31と一対の
軸71 、72に支承されるロータ32A。1 and 5, the third pump section 3 includes a housing 31 having a suction port 33 and a discharge port 34, and a rotor 32A supported on a pair of shafts 71 and 72.
32Bから成り、ハウジング31の外周部には、前段の
第2ポンプ区分より吸込口33に連通ずる外周気体流路
25A、25Bと、該外周気体流路25A。32B, and on the outer periphery of the housing 31 are outer circumferential gas passages 25A, 25B that communicate with the suction port 33 from the second pump section in the previous stage, and the outer circumferential gas passage 25A.
25Bの外周部には冷却水路400を有する。A cooling water channel 400 is provided on the outer circumferential portion of 25B.
第1図〜第5図において、冷却水入口401は外周気体
流路の外周部に設けられた冷却水路400により冷却水
出口402に連通ずる。In FIGS. 1 to 5, a cooling water inlet 401 communicates with a cooling water outlet 402 through a cooling water channel 400 provided on the outer periphery of the outer circumferential gas flow path.
本ポンプ装置の作動を第1図〜第6図を用いて説明する
と下記の通りである。The operation of this pump device will be explained below using FIGS. 1 to 6.
第1ポンプ区分1において、第3図に示すように、ポン
プの吸込気体G81は、ポンプの吸込口81を通り第1
ポンプ区分の吸込口13から吸込気体G13として吸込
まれ、ロータ12A 、 12Bの動作にもとづき移送
・圧縮され、吐出気体G14として吐出口14より外周
気体流路15A 、 15Bに吐出される。吐出気体G
14は冷却水路400を流れる冷却水W400により、
充分に冷却された外周気体流路15A 、 15Bの外
壁により冷却され、吐出気体G14に含まれる凝縮気体
の一部は、その圧力と温度に従い凝縮し、非凝縮性気体
G23と共に下り勾配となった外周気体流路15A 、
15Bを滞留することなく流れ、次段の第2ポンプ区
分2の吸込口23に到達する。In the first pump section 1, as shown in FIG.
Suction gas G13 is sucked in from the suction port 13 of the pump section, transferred and compressed based on the operation of the rotors 12A, 12B, and discharged as discharge gas G14 from the discharge port 14 into the peripheral gas channels 15A, 15B. Discharged gas G
14 is caused by the cooling water W400 flowing through the cooling water channel 400,
A part of the condensed gas contained in the discharged gas G14, which was cooled by the sufficiently cooled outer walls of the peripheral gas channels 15A and 15B, condensed according to its pressure and temperature, and became a downward gradient together with the non-condensable gas G23. outer peripheral gas flow path 15A,
15B without stagnation and reaches the suction port 23 of the second pump section 2 at the next stage.
第2ポンプ区分2において、第4図に示すように、吸込
気体G23として吸込まれ、ロータ22A22Bの動作
にもとづき移送・圧縮され吐出気体G24として吐出口
24より外周気体流路25A。In the second pump section 2, as shown in FIG. 4, suction gas G23 is sucked in, transferred and compressed based on the operation of the rotor 22A22B, and discharged gas G24 from the discharge port 24 to the outer peripheral gas flow path 25A.
25Bに吐出される。吐出気体G24は冷却水路400
を流れる冷却水W400により、充分に冷却された外周
気体流路25A、25Bの外壁により冷却され、吐出気
体G24に含まれる凝縮気体の一部は、その圧力と温度
に従い心痛し、非凝縮性気体G33と共に下り勾配とな
った外周気体流路25A、25Bを滞留することなく流
れ、次段の第3ポンプ区分3の吸込口33に到達する。25B. The discharged gas G24 is a cooling water channel 400
A part of the condensed gas contained in the discharged gas G24 is cooled by the cooling water W400 flowing through the outer walls of the sufficiently cooled outer peripheral gas flow paths 25A and 25B, and some of the condensed gas contained in the discharged gas G24 is converted into non-condensable gas according to its pressure and temperature. Together with G33, the gas flows through the outer circumferential gas flow paths 25A and 25B, which have a downward slope, without stagnation, and reaches the suction port 33 of the third pump section 3 at the next stage.
第3ポンプ区分3において、第5図に示すように、吸込
気体033として吸込まれ、ロータ32A。In the third pump section 3, as shown in FIG. 5, suction gas 033 is drawn into the rotor 32A.
32Bの動作にもとづき移送・圧縮され吐出気体G34
として吐出口34より送り出される。The discharged gas G34 is transferred and compressed based on the operation of 32B.
It is sent out from the discharge port 34 as a liquid.
ポンプの吐出口82からの排出気体および液体はそのま
ま外部へ排出することができ、また気液分離器9を接続
することにより非凝縮気体と凝縮液を排気口92と排液
口93からそれぞれ排出することができる。The discharged gas and liquid from the discharge port 82 of the pump can be discharged to the outside as they are, and by connecting the gas-liquid separator 9, non-condensable gas and condensed liquid can be discharged from the exhaust port 92 and drain port 93, respectively. can do.
気液分離239は、その下部には内方が下向きに開口し
外部へ導出された管状の排液口93と、上部には、lj
F気口92を有する円筒体ををする。気液分離器9にお
いて、第1図及び第6図に示すように、ポンプ内部にお
いて凝縮した凝1宿液と非1疑縮性の吐出気体G82は
、気液分離器9へ導入され、凝縮液は気液分離器の内部
で排液口93の高さまで貯溜され、非凝縮性気体が排液
口93より吐出されないように、液封しながら凝縮液の
高さに応して、外部に連続的に排出される。気液分離器
9の上部には消音室94を設けることができ、非凝縮性
の吐出気体G95は、消音室94で消音され、排気口9
2より外部へ排気されることができる。The gas-liquid separator 239 has a tubular drain port 93 at its lower part that opens downward from the inside and is led out to the outside, and an lj
A cylindrical body with an F air port 92 is formed. In the gas-liquid separator 9, as shown in FIG. 1 and FIG. The liquid is stored inside the gas-liquid separator up to the height of the drain port 93, and in order to prevent non-condensable gas from being discharged from the drain port 93, the liquid is sealed and drained outside according to the height of the condensate. Continuously discharged. A muffling chamber 94 can be provided in the upper part of the gas-liquid separator 9, and the non-condensable discharged gas G95 is muffled in the muffling chamber 94, and the exhaust port 9
2 can be exhausted to the outside.
第1図の多段ルーツ形真空ポンプにおいては、最上部の
ポンプ区分に設けられたポンプの吸込口より吸引された
気体は、各ポンプ区分の吸込口から、ハウジング内部へ
吸入され、ロータの動作にもとづき移送・圧縮され吐出
気体として吐出口より外周気体流路に吐出される。該吐
出気体は冷却水路を流れる冷却水により、充分に冷却さ
れた外周気体流路の外壁により冷却され、該吐出気体に
含まれる8Am性気体の一部は、その圧力と温度に従い
凝縮し、非凝縮性気体と共に下り勾配となった外周気体
流路を滞留することなく流れ、次段のポンプ区分の吸込
口に到達する。In the multistage roots-type vacuum pump shown in Fig. 1, the gas sucked from the pump suction port provided in the uppermost pump section is sucked into the housing from the suction port of each pump section, and is used for the operation of the rotor. The gas is then transferred, compressed, and discharged from the discharge port into the outer peripheral gas flow path as discharged gas. The discharged gas is cooled by the cooling water flowing through the cooling channel and by the sufficiently cooled outer wall of the peripheral gas flow path, and a part of the 8Am gas contained in the discharged gas condenses according to its pressure and temperature and becomes non-condensed. It flows along with the condensable gas through the downwardly sloped peripheral gas flow path without stagnation, and reaches the suction port of the next stage pump section.
以上の作用が最上部のポンプ区分から順次各ポンプ区分
において反復されポンプ内部において凝縮した凝縮液と
非凝縮性気体は、最下部のポンプ区分に設けられたポン
プの吐出口から、大気圧力である気液分離器に導かれ、
凝縮液は気液分#器の内部で排液口の高さまで貯溜され
、非凝縮性気体が排液口より吐出されないように、液封
しながら凝縮液の高さに応して、外部に連続的に排出さ
れる。一方弁凝縮性気体は気液分離器の上部に設けられ
た排気口より外部へ排出される。The above action is repeated in each pump section sequentially from the top pump section, and the condensate and non-condensable gas condensed inside the pump are discharged from the pump discharge port provided in the bottom pump section at atmospheric pressure. guided to a gas-liquid separator,
The condensate is stored inside the gas-liquid separator up to the height of the drain port, and to prevent non-condensable gas from being discharged from the drain port, the condensate is sealed and drained outside according to the height of the condensate. Continuously discharged. On the other hand, the valve condensable gas is discharged to the outside from an exhaust port provided at the top of the gas-liquid separator.
なお気液分離器は必ずしも必須のものではなく、場合に
よっては省略することができる。Note that the gas-liquid separator is not necessarily essential, and can be omitted depending on the case.
以上はポンプ区分3段の場合について記述したが、3段
に限らず、4段以上にすることができる。Although the above description has been made regarding the case where the pump section has three stages, the number is not limited to three stages, and it is possible to have four or more stages.
なお4段以上の場合においても初段は第3図の構成、最
終段は第5図の構成をとることになる。Note that even in the case of four or more stages, the first stage has the configuration shown in FIG. 3, and the last stage has the configuration shown in FIG. 5.
また第1図に示される多段ルーツ形真空ポンプには逆流
冷却機構(例えば特開昭59−115489号、特開昭
63−154884号参照)を適用することも可能であ
る。Further, it is also possible to apply a backflow cooling mechanism (see, for example, Japanese Patent Laid-Open No. 59-115489 and Japanese Patent Laid-open No. 63-154884) to the multi-stage Roots type vacuum pump shown in FIG.
本発明によれば、凝縮性気体、またはその一部に凝縮性
気体を含む気体を吸引する多段ルーツ形真空ポンプにお
いて、特別な外部冷却器及び凝縮液槽を使用せずに、ポ
ンプを過熱することのない温度に冷却し、ポンプを構成
する各ポンプ区分を垂直に配列し、最上部のポンプ区分
にポンプの吸込口を設け、各ポンプ区分の吐出口と次段
のポンプ区分の吸込口を連通ずる外周気体流路が下り勾
配にされ、各ポンプ区分における圧縮と冷却により生し
た凝縮液は、ポンプ内部及び外周気体流路を流下し、最
下段のポンプ区分に設けられたポンプの吐出口から排出
されることにより、凝縮液を排出するための特別な弁操
作を行うことなく、凝縮液が連続的に排出され、安定な
吸込圧力状態でのポンプの連続運転が可能となる。According to the present invention, in a multi-stage Roots-type vacuum pump that sucks a condensable gas or a gas containing a condensable gas in a part thereof, the pump can be heated without using a special external cooler and a condensate tank. Each pump section that makes up the pump is arranged vertically, the uppermost pump section has a suction port, and the discharge port of each pump section and the suction port of the next pump section are connected to each other. The communicating outer gas flow path is sloped downward, and the condensate produced by compression and cooling in each pump section flows down inside the pump and through the outer gas flow path, and reaches the pump discharge port provided in the lowest pump section. By discharging the condensate from the pump, the condensate is continuously discharged without any special valve operation for discharging the condensate, and the pump can be operated continuously under stable suction pressure conditions.
また本発明によれば、従来ポンプの外部に設けられた複
数の冷却器及び凝縮液槽が不要であり、ポンプの小型化
が可能となる。Further, according to the present invention, there is no need for a plurality of coolers and condensate tanks that were conventionally provided outside the pump, and the pump can be made smaller.
第1図は本発明の一実施例としての多段ルーツ形真空ポ
ンプの構造図、第2図は第1図に示されるポンプのII
−II断面図、第3図はm−m断面図、第4図はIV
−IV断面図、第5図はV−V断面図、第6図は気液分
離器を示す図、第7図は従来形の逆流冷却式多段ルーツ
形真空ポンプの概要を示す図である。
(符号の説明)
1・・・第1ポンプ区分、 11・・・ハウジング、
12A・12B・・・ロータ、 13・・・吸込口、
14・・・吐出口、
15A−15B・・・第1、第2ポンプ区分間の外周気
体流路、
2・・・第2ポンプ区分、 21・・・ハウジング、
22A・22B・・・ロータ、 23・・・吸込口、
24・・・吐出口、
25A・25B・・・第2、第3ポンプ区分間の外周気
体流路、
3・・・第3ポンプ区分、 3I・・・ハウジング、
32A・32B・・・ロータ、 33・・・吸込口、
34・・・吐出口、
4・・・第1、第2ポンプ区分の仕切壁、5・・・第2
、第3ポンプ区分の仕切壁、71・・・第1シヤフト、
72・・・第2シヤフト、73・・・タイミングギ
ヤセット、
74・・・軸受機構、 75・・・軸封機構、8
1・・・ポンプの吸込口、
82・・・ポンプの吐出口、
013・・・第1ポンプ区分の吸込気体、G14・・・
第1ポンプ区分の吐出気体、G23・・・第2ポンプ区
分の吸込気体、G24・・・第2ポンプ区分の吐出気体
、G33・・・第3ポンプ区分の吸込気体、G34・・
・第3ポンプ区分の吐出気体、081・・・ポンプの吸
込気体、
G82・・・凝縮液と非凝縮性の吐出気体、9・・・気
液分離器、
91・・・気液分離器の入口、
92・・・排気口、 93・・・排液口、94
・・・消音室、
G95・・・非凝縮性の吐出気体、
100・・・第1ポンプ区分、
101・・・吸込口、
103、104 、105・・・連結管路、106・・
・逆流管路、
112・・・冷却器、
114.115・・・仕切弁、
201・・・吸込口、
203 、204 、205・・・連結管路、206・
・・逆流管路、
212・・・冷却器、
214.215・・・仕切弁、
301・・・吸込口、
303.304,305・・・連結管路、306・・・
逆流管路、
312・・・冷却器、
314.315・・・仕切弁、
W2O3・・・冷却水、
102・・・吐出口、
107・・・凝縮液管路、
113・・・凝縮液槽、
200・・・第2ポンプ区分、
202・・・吐出口、
20?・・・(耳痛液管路、
213・・・凝縮液槽、
300・・・第3ポンプ区分、
302・・・吐出口、
307・・・凝縮液管路、
313・・・凝縮液槽、
400・・・冷却水路、
401・・・冷却水入口、
402・・・冷却水出口。FIG. 1 is a structural diagram of a multi-stage roots-type vacuum pump as an embodiment of the present invention, and FIG. 2 is a diagram showing the structure of the pump shown in FIG.
-II sectional view, Figure 3 is mm-m sectional view, Figure 4 is IV
-IV sectional view, FIG. 5 is a V-V sectional view, FIG. 6 is a diagram showing a gas-liquid separator, and FIG. 7 is a diagram showing an outline of a conventional backflow cooling multistage Roots vacuum pump. (Explanation of symbols) 1... First pump section, 11... Housing,
12A/12B...Rotor, 13...Suction port,
14...Discharge port, 15A-15B...Outer peripheral gas flow path between the first and second pump sections, 2...Second pump section, 21...Housing,
22A/22B... Rotor, 23... Suction port,
24...Discharge port, 25A/25B...Outer peripheral gas flow path between the second and third pump sections, 3...Third pump section, 3I...Housing,
32A/32B...Rotor, 33...Suction port,
34...Discharge port, 4...Partition wall of the first and second pump sections, 5...Second
, third pump section partition wall, 71... first shaft,
72... Second shaft, 73... Timing gear set, 74... Bearing mechanism, 75... Shaft sealing mechanism, 8
1... Suction port of the pump, 82... Discharge port of the pump, 013... Suction gas of the first pump section, G14...
Discharge gas of the first pump section, G23... Suction gas of the second pump section, G24... Discharge gas of the second pump section, G33... Suction gas of the third pump section, G34...
・Discharge gas of the third pump section, 081... Pump suction gas, G82... Condensate and non-condensable discharge gas, 9... Gas-liquid separator, 91... Gas-liquid separator Inlet, 92...Exhaust port, 93...Drain port, 94
...Muffling chamber, G95...Non-condensable discharge gas, 100...First pump section, 101...Suction port, 103, 104, 105...Connecting pipe line, 106...
・Reverse flow pipe line, 112...Cooler, 114.115...Gate valve, 201...Suction port, 203, 204, 205...Connection pipe line, 206...
...Reverse flow pipe line, 212...Cooler, 214.215...Gate valve, 301...Suction port, 303.304,305...Connection pipe line, 306...
Backflow pipe line, 312...Cooler, 314.315...Gate valve, W2O3...Cooling water, 102...Discharge port, 107...Condensate pipe line, 113...Condensate tank , 200...Second pump section, 202...Discharge port, 20? ...(Earache fluid pipe line, 213... Condensate tank, 300... Third pump section, 302... Discharge port, 307... Condensate pipe line, 313... Condensate tank , 400... Cooling water channel, 401... Cooling water inlet, 402... Cooling water outlet.
Claims (1)
ンプ区分により形成され、吸込口は最上部のポンプ区分
に設け、吐出口は最下部のポンプ区分に設け、各ポンプ
区分に共通の2本の垂直軸が設けられ、該2本の垂直軸
に支承されるルーツ形ロータが設けられ、各ポンプ区分
を構成し、該ルーツ形ロータを内蔵する該ハウジングに
は該ハウジングの外周部に各ポンプ区分の吐出口と次段
ポンプ区分の吸込口に連通する下り勾配となった外周気
体流路と、該外周気体流路の外周に位置する冷却水路が
設けられている、 ことを特徴とする多段ルーツ形真空ポンプ。 2、該ポンプ区分の最下段のものの吐出側に気液分離器
が設けられる、請求項1記載の多段ルーツ形真空ポンプ
。[Claims] 1. A roots-type vacuum pump is formed by a plurality of vertically arranged pump sections, the suction port is provided in the top pump section, the discharge port is provided in the bottom pump section, and each The pump sections are provided with two common vertical axes, a Roots-shaped rotor supported on the two vertical axes is provided, and the housing constituting each pump section and containing the Roots-shaped rotor is provided with a roots-shaped rotor. A downwardly sloping peripheral gas flow path that communicates with the discharge port of each pump section and the suction port of the next stage pump section is provided on the outer peripheral portion of the housing, and a cooling water channel is provided on the outer periphery of the peripheral gas flow path. A multi-stage roots-type vacuum pump characterized by: 2. The multi-stage Roots vacuum pump according to claim 1, wherein a gas-liquid separator is provided on the discharge side of the lowest pump section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63244545A JP2588595B2 (en) | 1988-09-30 | 1988-09-30 | Multi-stage rotary vacuum pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63244545A JP2588595B2 (en) | 1988-09-30 | 1988-09-30 | Multi-stage rotary vacuum pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0295792A true JPH0295792A (en) | 1990-04-06 |
JP2588595B2 JP2588595B2 (en) | 1997-03-05 |
Family
ID=17120293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63244545A Expired - Lifetime JP2588595B2 (en) | 1988-09-30 | 1988-09-30 | Multi-stage rotary vacuum pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2588595B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2383379A (en) * | 2001-10-24 | 2003-06-25 | Aisin Seiki | A multi-stage vacuum pump |
US6991440B2 (en) * | 2001-06-22 | 2006-01-31 | Ghh-Rand Schraubenkompressoren Gmbh | Two-stage screw compressor |
CN102878083A (en) * | 2012-08-04 | 2013-01-16 | 百事德机械(江苏)有限公司 | Cooling structure of roots vacuum pump |
CN103089647A (en) * | 2011-11-08 | 2013-05-08 | 大卫·金 | Multistage dry vacuum pump |
CN106949050A (en) * | 2017-05-22 | 2017-07-14 | 马德宝真空设备集团有限公司 | A kind of lobe pump |
JP2018096337A (en) * | 2016-12-16 | 2018-06-21 | 株式会社アンレット | Root blower |
WO2020160770A1 (en) | 2019-02-06 | 2020-08-13 | Ateliers Busch Sa | Multistage pump body and multistage gas pump |
RU2780601C1 (en) * | 2019-02-06 | 2022-09-28 | Ателье Буш Са | Body of a multi-stage pump and multi-stage pump for gas |
JP2023088357A (en) * | 2021-12-15 | 2023-06-27 | 株式会社アンレット | Multistage roots vacuum pump |
-
1988
- 1988-09-30 JP JP63244545A patent/JP2588595B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6991440B2 (en) * | 2001-06-22 | 2006-01-31 | Ghh-Rand Schraubenkompressoren Gmbh | Two-stage screw compressor |
GB2383379A (en) * | 2001-10-24 | 2003-06-25 | Aisin Seiki | A multi-stage vacuum pump |
US6776586B2 (en) | 2001-10-24 | 2004-08-17 | Aisin Seiki Kabushiki Kaisha | Multi-stage vacuum pump |
GB2383379B (en) * | 2001-10-24 | 2005-05-18 | Aisin Seiki | Multi-stage vacuum pump |
CN103089647B (en) * | 2011-11-08 | 2015-09-02 | 大卫·金 | Multi-stage dry vacuum pump |
CN103089647A (en) * | 2011-11-08 | 2013-05-08 | 大卫·金 | Multistage dry vacuum pump |
CN102878083A (en) * | 2012-08-04 | 2013-01-16 | 百事德机械(江苏)有限公司 | Cooling structure of roots vacuum pump |
JP2018096337A (en) * | 2016-12-16 | 2018-06-21 | 株式会社アンレット | Root blower |
CN106949050A (en) * | 2017-05-22 | 2017-07-14 | 马德宝真空设备集团有限公司 | A kind of lobe pump |
CN106949050B (en) * | 2017-05-22 | 2020-04-21 | 马德宝真空设备集团有限公司 | Roots pump |
WO2020160770A1 (en) | 2019-02-06 | 2020-08-13 | Ateliers Busch Sa | Multistage pump body and multistage gas pump |
RU2780601C1 (en) * | 2019-02-06 | 2022-09-28 | Ателье Буш Са | Body of a multi-stage pump and multi-stage pump for gas |
US12116895B2 (en) | 2019-02-06 | 2024-10-15 | Ateliers Busch Sa | Multistage pump body and multistage gas pump |
JP2023088357A (en) * | 2021-12-15 | 2023-06-27 | 株式会社アンレット | Multistage roots vacuum pump |
Also Published As
Publication number | Publication date |
---|---|
JP2588595B2 (en) | 1997-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0166851B1 (en) | Screw type vacuum pump | |
RU1784072C (en) | Multistage vacuum roots-type pump | |
JPH0270990A (en) | Reverse flow cooling type multistage root type vacuum pump with built-in cooling water passage | |
JPH0295792A (en) | Multistage root's-type vacuum pump | |
US3059396A (en) | A device for drawing off gaseous components from a gas-vapour mixture | |
JPS59115489A (en) | Counter-flow cooling system multistage root type vacuum pump | |
KR100347229B1 (en) | Discharge silencer provided with drain recovering function | |
CN107489605A (en) | The big pumping speed vacuum suction unit of low-carbon, oil-free | |
CN207195187U (en) | A kind of air-cooled Roots vacuum pump and pump group | |
CN208564988U (en) | A kind of Fuel Tanking Unit of sliding valve vacuum pump | |
CN101182845B (en) | Dry-type vacuum pump | |
CN206368814U (en) | A kind of two-stage air cooling Roots screw vacuum unit | |
CN109268268A (en) | Marine turbing integral type integrates water ring vacuum pump | |
CN207363840U (en) | The big pumping speed vacuum suction unit of low-carbon, oil-free | |
CN217270810U (en) | Multistage air-cooled high-pressure-difference roots pump | |
US3475034A (en) | Gas-tight seal | |
CN211230827U (en) | Circulating water type vacuum pump | |
KR20090034304A (en) | System for creating a vacuum in a tanning dryer | |
CN106523365B (en) | The horizontal moisture trap of liquid film coagulation and its gas-water separation method | |
CN105351195B (en) | Middle back pressure compressor and there is its air conditioner, Teat pump boiler | |
CN210683817U (en) | Leather vacuum drying control system | |
CN111852859A (en) | Gas-liquid mixing and conveying device with three-jaw rotor | |
CN215949818U (en) | Energy-saving vacuum pump system of dry type large-pressure-difference roots vacuum pump based on full-bearing seal | |
EP1072797A1 (en) | Liquid ring pump with combined heat exchanger and separator | |
CN219317139U (en) | Double-chamber deaerator vacuum pump water and impurity removal system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |