【発明の詳細な説明】[Detailed description of the invention]
本発明はヒユーズに使用されるヒユーズ用材に
関するものである。
ヒユーズは配線や電気器具が短絡や過負荷によ
つて過大電流が流れたとき、それらが焼損するの
を防止するためのものである。
ヒユーズ用材としては小電流用にはPbとSnの
合金また、これにBi、Cd等を含んだいわゆるSn
−Pb系合金が、大電流用にはCu、黄銅、Al、Zn
等が用いられる。
本発明は、比較的大電流用でかつ高融点で溶断
するヒユーズ用材に関するものでヒユーズ性能と
しての、溶断時間のバラツキを少なくし、耐久性
能を向上させ、かつ周囲に与える熱的悪影響を極
力少なくし、また接続用挾持形メス端子と一体構
造が可能とした等を特徴とするものである。
従来、この種の比較的大電流用でかつ高融点で
溶断するヒユーズ用材は、次の如き幾多の欠点を
有していた。
(1) ヒユーズ用材は通電電流により発生するジユ
ール熱により徐々に温度が上昇しやがて赤熱状
態となつた後溶断するわけであるが、従来のこ
の種のヒユーズ用材においては、通電開始から
溶断に至るまでの時間が雰囲気温度、使用条件
等による影響を受けやすく溶断時間を安定的に
確保することは困難であつた。
(2) 従来の高融点ヒユーズ用材は、赤熱状態が比
較的長時間継続した後、溶断する場合がほとん
どであつて、その場合には赤熱状態が長時間保
持されることによる発生熱量によりヒユーズの
構成部品やヒユーズの周囲に多用されている樹
脂等を焼損せしめ、安全性を著しく低下させ実
用上の使用は不可能であつた。
(3) ヒユーズ用材は比較的電流が通電した際には
即座にその電流を遮断しなければならないが、
その場合ヒユーズ用材は金属蒸気を多量に発生
する場合が多く、電流遮断後の絶縁抵抗に悪影
響を及ぼしたり、またその金属蒸気自身がその
周囲に腐食等の悪影響を及ぼすことがあり、信
頼性の面で注意が必要であつた。
(4) ヒユーズは通常時定格電流値以下の電流が繰
返し流れるがその際にはヒユーズ用材に応力腐
食割れ性がある場合には長期間の繰返し使用に
より応力腐食割れが起因してヒユーズの破断に
至らしめる事がある。特にヒユーズ構成材とし
ての樹脂等が発散する雰囲気ガスにより応力腐
食割れに拍車をかけ何ら異状がないのにヒユー
ズが切れるといつた不具合いが発生することも
あつた。
(5) また従来のヒユーズ用材は融点、導電率等、
ヒユーズ本来の特性に重点を置き検討されてき
て強度面での検討が充分行なわれていなかつた
事もあつて挾持形メス端子とヒユーズエレメン
トが一品一体構造でなし得るような経済的Cu
合金は皆無であり、メス端子を具備する場合に
は別材料にてメス端子を製作しそれをスポツト
溶接、リベツトかしめ等の接続固定手段を用い
て一体と成していたのが現状である。
発明者らは以上の事項を全て満たすために、鋭
意研究した結果、Fe0.5〜3.5%、P0.01〜0.15%、
Zn0.01〜1.0%、Cu残部の成分を有するヒユーズ
用材を見い出したのである。
本発明は、上記知見に基づいてなされたもので
Fe0.5〜3.5%、P0.01〜0.15%、Zn0.01〜1.0%、
Cuが実質的に残部のCu合金であるが、B、Mg、
Al、Si、Mn、Co、Ni、Ag、Zr、Sn等を一種又
は二種以上を0.5%以下含有しても本発明のヒユ
ーズ用材に本質的な悪影響を与えない。
本発明のCu合金は鋳造、鍛造、押出し、熱間
圧延、冷間圧延、引抜き、線引き、プレスなどの
加工手段を適用でき所定の素材あるいは部品に容
易に製造でき、ヒユーズと挾持形メス端子の特性
として適度な融点、導電率、強度、伸びを確保し
たものである。
特に板条の素材にした後切断、プレスを行なう
場合、板条の素材は伸銅の一般的な設備を用いて
製造することが可能である。
ついで、この発明の成分範囲を上述の通りに限
定した理由を説明する。
(a) Fe
Fe成分は、赤熱後の溶断性を向上させると
ともに応力腐食割れを発生させることなく強度
を大きくするが、0.5%未満ではその効果はな
く3.5%を越えると導電性を害するのでその含
有量を0.5〜3.5%に定めた。
(b) P
P成分は、赤熱後の溶断性向上と素材を製造
する場合の溶解工程での脱酸剤として有効であ
るが、0.01%未満ではその効果はなく、0.15%
を越えて含有すると導電率が低下するとともに
脱酸能力も飽和するので、含有量を0.01〜0.15
%に定めた。
(c) Zn
Zn成分は、強度ならびに素材を製造する場
合の溶解工程での脱酸剤および脱ガス剤として
有効であるが、0.01%未満ではその効果はな
く、1.0%以上を越えて含有すると導電性と耐
応力腐食割れ性を損うとともに、ヒユーズ用材
の溶断の際に金属蒸気が多くなるのでその含有
量を0.01〜1.0%に定めた。
つぎに本発明の一実施例を説明する。
低周波溝型溶解炉を用いて所定の化学成分に調
整した後、半連続鋳造法により厚さ150mm×幅400
mm×長さ1500mmのケークを得、熱間圧延にて厚さ
11mmにし、表面スケール除去の面削を片面0.5mm
づつ両面について行ない、冷間圧延、焼鈍、酸洗
を繰返し厚さ0.3mmの条を得た。次にプレスによ
り第1図に示す所望の部品に打抜き成形した後、
第2図に示すヒユーズを製造し、供試品とした。
あわせて市販の比較材も供試材とした。
第1図に示す打抜き成形した供試品は、ヒユー
ズのエレメントを成すもので、可溶部1とその両
端に連設された接続用挾持形メス端子2,2′が
一体的に形成されていて不安定な接続箇所がなく
電気的にも強度的にも信頼性の高いものである。
また、第2図に示す供試品は、第1図のヒユー
ズエレメントに吸熱作用のあるセラミツク5を接
着し、それらを樹脂製ハウジング6の中に挿入し
た後上部に透明カバー4を装着したところのヒユ
ーズ体である。樹脂製ハウジング6の底面には、
接続用挾持形メス端子の開口部3,3′に相対す
る部分に、相手側板形オス端子の受入口7,7′
が設けられ相手板形オス端子を樹脂製ハウジング
6の受入口7,7′を貫通させ、挾持形メス端子
2,2′の開口部3,3′内に挿入させることによ
りその回路が接続するとともに異状時の保護を可
能ならしめるものである。
各供試材およびその物性、ヒユーズ性能等を表
1に示す。なお、物理的及び機械的性質と応力腐
食割れは条から試験片を採取し測定をした。尚応
力腐食割れについては素材を直角曲げ後、日本伸
銅協会標準TBMA T0001−1975「銅及び銅合金
の伸展材のアンモニア試験法」により試験を行な
つた。この試験結果を表1に示す。
The present invention relates to fuse materials used in fuses. Fuses are used to prevent wiring and electrical equipment from burning out when excessive current flows through them due to short circuits or overloads. For fuse materials, alloys of Pb and Sn are used for small currents, and so-called Sn containing Bi, Cd, etc.
−Pb-based alloys, Cu, brass, Al, Zn for large currents
etc. are used. The present invention relates to a fuse material that is used for relatively large currents and blows at a high melting point.The present invention relates to fuse materials that are used for relatively large currents and melt at a high melting point. It is also characterized by being able to be integrated with a clamp-type female terminal for connection. Conventionally, this type of fuse material that can be used for relatively large currents and blows at a high melting point has had the following drawbacks. (1) The temperature of fuse materials gradually rises due to the heat generated by the energizing current, and the temperature eventually reaches a red-hot state before fusing. However, with conventional fuse materials of this type, the temperature starts to melt from the start of energization. It has been difficult to stably secure the fusing time because the time required for fusing is easily influenced by ambient temperature, usage conditions, etc. (2) Conventional materials for high-melting fuses almost always melt after being in a red-hot state for a relatively long period of time. The resin, which is often used around the component parts and fuses, was burnt out, significantly reducing safety and making it impossible to use it for practical purposes. (3) When a current is applied to fuse materials, the current must be cut off immediately; however,
In such cases, fuse materials often generate a large amount of metal vapor, which may have a negative effect on insulation resistance after the current is cut off, and the metal vapor itself may cause corrosion or other negative effects on the surrounding area, reducing reliability. Care was needed in this respect. (4) Normally, a current lower than the rated current value repeatedly flows through the fuse, but if the fuse material has stress corrosion cracking, repeated use over a long period of time may cause stress corrosion cracking and cause the fuse to break. There are things that can lead to this. In particular, stress corrosion cracking was accelerated by the atmospheric gas emitted by the resin, etc. that constitutes the fuse, resulting in malfunctions such as the fuse breaking even when there was no abnormality. (5) Conventional fuse materials also have different melting points, electrical conductivity, etc.
Because the emphasis has been placed on the inherent characteristics of fuses and not enough consideration has been given to their strength, an economical Cu method has been developed that allows the clamping female terminal and fuse element to be integrated into one piece.
There are no alloys available, and at present, when a female terminal is provided, the female terminal is manufactured from a separate material and then integrated into one piece using a connecting and fixing means such as spot welding or rivet caulking. In order to satisfy all of the above requirements, the inventors conducted extensive research and found that Fe0.5-3.5%, P0.01-0.15%,
They discovered a fuse material containing 0.01 to 1.0% Zn and the remainder Cu. The present invention was made based on the above findings.
Fe0.5~3.5%, P0.01~0.15%, Zn0.01~1.0%,
Cu is essentially the remainder of the Cu alloy, but B, Mg,
Even if one or more of Al, Si, Mn, Co, Ni, Ag, Zr, Sn, etc. are contained in an amount of 0.5% or less, the fuse material of the present invention will not have an essential adverse effect. The Cu alloy of the present invention can be easily manufactured into predetermined materials or parts by applying processing methods such as casting, forging, extrusion, hot rolling, cold rolling, drawing, wire drawing, and pressing, and can be easily manufactured into specified materials or parts. It has properties such as appropriate melting point, electrical conductivity, strength, and elongation. In particular, when cutting and pressing are performed after cutting and pressing the material into strips, the strips can be manufactured using common copper elongation equipment. Next, the reason why the component range of this invention is limited as described above will be explained. (a) Fe The Fe component improves the fusing property after red heat and increases the strength without causing stress corrosion cracking, but if it is less than 0.5%, it has no effect and if it exceeds 3.5%, it impairs the conductivity. The content was set at 0.5-3.5%. (b) P The P component is effective as a deoxidizing agent in the melting process when manufacturing materials and improving the cutting properties after red heat, but it has no effect at less than 0.01%, and 0.15%
If the content exceeds 0.01 to 0.15, the conductivity will decrease and the deoxidizing ability will be saturated.
%. (c) Zn Zn component is effective as a deoxidizing agent and degassing agent in the melting process when manufacturing materials, but it has no effect if it is less than 0.01%, and if it is contained more than 1.0%. The content was set at 0.01 to 1.0% because it impairs electrical conductivity and stress corrosion cracking resistance, and generates a large amount of metal vapor when the fuse material is fused. Next, one embodiment of the present invention will be described. After adjusting the chemical composition to the specified value using a low-frequency groove-type melting furnace, it is cast to a thickness of 150mm x width of 400mm using a semi-continuous casting method.
A cake of mm x length 1500 mm was obtained, and the thickness was obtained by hot rolling.
11mm and surface milling to remove scale to 0.5mm on one side.
Cold rolling, annealing, and pickling were repeated on both sides to obtain a strip with a thickness of 0.3 mm. Next, after punching and forming the desired parts shown in Fig. 1 using a press,
The fuse shown in Figure 2 was manufactured and used as a sample.
A commercially available comparison material was also used as a test material. The stamped and formed specimen shown in Fig. 1 constitutes a fuse element, and has a fusible part 1 and connecting clamp-type female terminals 2, 2' connected to both ends of the fusible part 1, which are integrally formed. It has no unstable connections and is highly reliable both electrically and in terms of strength. The sample shown in FIG. 2 is obtained by bonding a heat-absorbing ceramic 5 to the fuse element shown in FIG. 1, inserting them into a resin housing 6, and then attaching a transparent cover 4 to the top. It is a fuse type. On the bottom of the resin housing 6,
In the part opposite to the openings 3, 3' of the clamp-type female connection terminal, there are reception openings 7, 7' for the mating plate-type male terminal.
is provided, and the circuit is connected by passing the mating plate-shaped male terminal through the receiving openings 7, 7' of the resin housing 6 and inserting it into the openings 3, 3' of the pinch-shaped female terminals 2, 2'. This also enables protection in the event of an abnormal situation. Table 1 shows each sample material, its physical properties, fuse performance, etc. In addition, physical and mechanical properties and stress corrosion cracking were measured by taking test pieces from the strips. For stress corrosion cracking, the material was bent at right angles and then tested in accordance with the Japan Copper Brass Association's standard TBMA T0001-1975 "Ammonia test method for expanded materials of copper and copper alloys." The test results are shown in Table 1.
【表】
表1の結果から、本発明合金は、ヒユーズ用材
として全ての要求性能を満足するばかりでなく、
接続用挾持形メス端子としての性能も満足し、か
つ周辺部への熱的影響も少ないことが明らかであ
る。一方、市販のCu合金は部分的に要求特性を
満足するに過ぎない。
以上の結果から、本発明合金はヒユーズ用材と
して最適であり、保安上からも世に益する所が顕
著である。[Table] From the results in Table 1, the alloy of the present invention not only satisfies all required performances as a fuse material, but also
It is clear that the performance as a pinch-type female terminal for connection is satisfactory, and that there is little thermal influence on the surrounding area. On the other hand, commercially available Cu alloys only partially satisfy the required properties. From the above results, the alloy of the present invention is most suitable as a material for fuses, and has remarkable benefits to the world from the standpoint of safety.
【図面の簡単な説明】[Brief explanation of drawings]
第1図は、本発明材を使用してプレス成形した
ヒユーズエレメントの一実施例の斜視図、第2図
は本発明材を使用したヒユーズエレメントをハウ
ジングに挿入したヒユーズ体の縦断面図である。
1……可溶部、2……接続用挾持形メス端子、
3……開口部、4……透明カバー、5……セラミ
ツク、6……樹脂製ハウジング、7……受入口。
Fig. 1 is a perspective view of an embodiment of a fuse element press-molded using the material of the present invention, and Fig. 2 is a longitudinal sectional view of a fuse body in which the fuse element made of the material of the present invention is inserted into a housing. . 1... Fusible part, 2... Pincer type female terminal for connection,
3... Opening, 4... Transparent cover, 5... Ceramic, 6... Resin housing, 7... Receiving port.