Nothing Special   »   [go: up one dir, main page]

JPH0286941A - Nitrogen oxide abating method and device for internal combustion engine - Google Patents

Nitrogen oxide abating method and device for internal combustion engine

Info

Publication number
JPH0286941A
JPH0286941A JP63238035A JP23803588A JPH0286941A JP H0286941 A JPH0286941 A JP H0286941A JP 63238035 A JP63238035 A JP 63238035A JP 23803588 A JP23803588 A JP 23803588A JP H0286941 A JPH0286941 A JP H0286941A
Authority
JP
Japan
Prior art keywords
injection
fuel
flame
fuel supply
nitrogen oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63238035A
Other languages
Japanese (ja)
Other versions
JP3280015B2 (en
Inventor
Taro Aoyama
太郎 青山
Junichi Mizuta
準一 水田
Seiichi Sunami
清一 須浪
Yujiro Oshima
大島 雄次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP23803588A priority Critical patent/JP3280015B2/en
Publication of JPH0286941A publication Critical patent/JPH0286941A/en
Application granted granted Critical
Publication of JP3280015B2 publication Critical patent/JP3280015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enhance an abating effect of nitrogen oxide by cooling heat of a flame produced by main injection with the fuel spray of sub injection, suppressing its generation in the midway where the nitrogen oxide(NO) is generated by combustion, and abating the extent of exhaust of the nitrogen oxide. CONSTITUTION:At time of driving a diesel engine E1, main injection is performed in the turning downflow direction of intake air by feeding oil to an injection nozzle 8 from a main injection pump at about 15 deg.-0 deg. before a top dead center at the last period of compression strokes. The, firing of fuel subjected to the main injection is produced at a tip or both sides of spray, expanding it on an air vortex. At this time, there is a high temperature area in and around a flame tip, whereby a gas temperature is high and nitrogen oxide(NO) is produced in bulk. Next, sub injection is performed at the flame tip at about 5-20 deg. after the top dead center, and with this spray, fuel spray is fed to the high temperature area in and around the flame tip instantaneously at a high injection rate, and flame temperature is lowered by dint of heat of vaporization of the fuel spray. With this constitution, generation of the nitrogen oxide(NO) is effectively controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関に係り、特にディーゼル機関やガソリ
ン機関において燃焼室内で酸化窒素(以下NOと称す)
を機関の熱効率を減じることなく低減する方法とこれを
実現できる具体的な装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to internal combustion engines, and in particular, to nitrogen oxides (hereinafter referred to as NO) in the combustion chamber of diesel engines and gasoline engines.
This invention relates to a method for reducing engine thermal efficiency without decreasing it, and a specific device that can achieve this.

〔従来技術〕[Prior art]

内燃機関、主としてピストン機関のNo低減法としては
■三元触媒に代表される部外の後処理、■EGR(排気
再循環)、点火遅角又は噴射遅角で代表される筒内処理
に分けられる。
Methods for reducing NO in internal combustion engines, mainly piston engines, are divided into external after-treatment represented by three-way catalysts, and in-cylinder treatment represented by EGR (exhaust gas recirculation), ignition retardation, or injection retardation. It will be done.

■は機関の排気マニホールド付近に三元触媒を置きNO
を還元するもので理論混合気付近で運転する予混合火花
点火機関に適用されている。N。
■ Places a three-way catalyst near the engine's exhaust manifold and NO
It is applied to premixed spark ignition engines that operate near the stoichiometric mixture. N.

低減率は非常に太きく70%以上に達するが、理論混合
気(空燃比14.5付近(ガソリン))付近以外ではほ
とんど効果がなく、かつ有鉛の燃料は触媒の鉛被前のた
め使用できない。また、煤の発生を伴うディーゼル機関
にも触媒部の目詰まりゃ劣化がひどく適用できない。
The reduction rate is very large, reaching over 70%, but it is hardly effective except around the stoichiometric mixture (air-fuel ratio around 14.5 (gasoline)), and leaded fuel is used because the catalyst is covered with lead. Can not. Furthermore, it cannot be applied to diesel engines that generate soot, as the catalyst will deteriorate if it becomes clogged.

■EGRは燃焼温度を引き下げるため排気をシリンダ内
に混入させるものであるが、排気中の煤によって部品が
汚れ易く、潤滑油の劣化を来したり、運動部分の摩耗を
促進したりする。
■EGR mixes exhaust gas into the cylinder to lower the combustion temperature, but the soot in the exhaust tends to stain parts, causing deterioration of lubricating oil and accelerating wear on moving parts.

■の方法はゼルドビッチ(Zeldovich )機構
によってNo低減の説明がなされている。
In the method (2), the reduction of No. is explained by the Zeldovich mechanism.

N+NO辷−p N2 + O(1) N十〇、  辷:=; N O十〇    (2)N+
OH辷萼N O+ H(3) 上記(1)、(2)、(3)の各式に示すように空気中
の窒素と酸素によって燃焼による高温部でNOが生成さ
れる。かかる(1)、(2)、(3)各式とも温度が高
くなるとNo生成側に進み、温度が2000〜2200
に以上で著しくなる。したがって、温度をなるべく高く
しないような燃焼が効果的であって、EGRや点火遅角
、噴射遅角を行って燃焼温度を低く抑えるようにしてい
る。
N+NO 〇-p N2 + O (1) N〇, 〇〇, N〇〇 (2) N+
OH calyx N O+ H (3) As shown in the above equations (1), (2), and (3), NO is generated in the high temperature part due to combustion by nitrogen and oxygen in the air. In each of these equations (1), (2), and (3), as the temperature increases, the process proceeds to the No generation side, and when the temperature increases from 2000 to 2200
It becomes more noticeable. Therefore, combustion is effective in keeping the temperature as low as possible, and EGR, ignition retardation, and injection retardation are performed to keep the combustion temperature low.

しかし、温度を低くすると内燃機関では熱効率が悪くな
るので、現状では三元触媒によるNO還元以外にはエン
ジン性能を低下させることなくNo低減することは難し
い。特にディーゼル機関にあっては排気中に煤が含まれ
ることから触媒の利用は不可能で、有効にNOXを大幅
に低下させ、かつエンジン性能、耐久性、等を損なわな
い方法及び装置はいまだ見出されていない。
However, if the temperature is lowered, the thermal efficiency of the internal combustion engine deteriorates, so at present it is difficult to reduce NO without reducing engine performance other than NO reduction using a three-way catalyst. Particularly in diesel engines, it is impossible to use catalysts because the exhaust contains soot, and no method or device has yet been found that can effectively significantly reduce NOx levels without impairing engine performance, durability, etc. Not served.

また特願昭62−82080に開示されたものは、燃料
噴射を二回以上に分けて先の噴射によって発生した火炎
が消滅する頃に、後の噴射を行い生成したNOをCH3
ラジカルによって1000〜2000にの雰囲気中で作
用させ還元することによってNOを低減しようとするも
のであり本発明とは技術的思想が異なるものである。
Furthermore, in the method disclosed in Japanese Patent Application No. 62-82080, the fuel injection is divided into two or more times, and when the flame generated by the previous injection is extinguished, the subsequent injection is performed and the generated NO is transferred to CH3.
This method attempts to reduce NO by reducing NO by acting in an atmosphere of 1,000 to 2,000 with radicals, and its technical idea is different from that of the present invention.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のゼルドビッチ(Zeldovich)機構で説明
されるように、No生成は温度依存性が強く、温度上昇
につれてNo生成が急増する性質を持つ。そこで発明者
らはエンジン内の燃焼では、温度が特に高いのは上死点
付近の短時間であり、特にその火炎内の高温となる部分
がNOの主な発生源となることを予想し、前記高温火炎
部の温度を低下させることがNo低減に効果的であると
考えた。
As explained by the above-mentioned Zeldovich mechanism, No production has a strong temperature dependence, and No production increases rapidly as the temperature rises. Therefore, the inventors predicted that during combustion in an engine, the temperature is particularly high for a short time near top dead center, and that the high temperature part of the flame will be the main source of NO. It was considered that lowering the temperature of the high temperature flame section would be effective in reducing No.

そこで本発明者らは燃焼室内の温度分布及びその温度分
布の時間経過に伴う変化を詳細に測定し解析した。その
結果、燃焼室へ燃料を噴射供給すると、圧縮着火機関で
は噴霧先端部付近、また火花点火機関では点火栓近傍で
若干の時間遅れの後に着火燃焼し、その後火炎は急速に
発達する。時期的に上死点近くでありピストン速度が遅
く燃焼室容積の変化が小さいことも手伝って圧力上昇が
大きいため、最初に発生した火炎は断熱圧縮され更に温
度が上昇し、火炎の中でも最も高温な部分となることが
分かった。
Therefore, the present inventors measured and analyzed in detail the temperature distribution within the combustion chamber and the changes in the temperature distribution over time. As a result, when fuel is injected into the combustion chamber, it ignites and burns after a slight delay near the tip of the spray in a compression ignition engine or near the spark plug in a spark ignition engine, and then the flame develops rapidly. The pressure rise is large due to the fact that it is close to top dead center and the piston speed is slow and the change in combustion chamber volume is small, so the initially generated flame is adiabatically compressed and its temperature rises further, making it the highest temperature of all flames. It turned out to be a big part.

以上の解析結果より本発明者らは、前記の高温な火炎部
分を効果的かつ、局所的に冷却しNo生成を抑制するこ
とによって、他の火炎部分においては不必要な温度低下
をきたすことなく熱効率の低下を避けながらNOの排出
を低減できることに想到したのである。
Based on the above analysis results, the present inventors have determined that by effectively and locally cooling the high-temperature flame portion and suppressing No generation, the temperature of other flame portions will not be lowered unnecessarily. They came up with the idea of reducing NO emissions while avoiding a decrease in thermal efficiency.

本発明は前記の高温な火炎部分を冷却することに着眼し
たものであり、従来技術とは着眼点が異なり、燃焼によ
ってNOが生成されている途中で火炎の高温部分を冷却
しNo生成を抑制し、NO放出量を減少し得る内燃機関
の酸化窒素低減方法及び装置を提供しようとするもので
ある。
The present invention focuses on cooling the above-mentioned high-temperature flame portion, and differs from the conventional technology in that it cools the high-temperature portion of the flame while NO is being generated by combustion to suppress No generation. However, it is an object of the present invention to provide a method and apparatus for reducing nitrogen oxide in an internal combustion engine, which can reduce the amount of NO released.

〔発明の説明〕[Description of the invention]

(構成) 本発明の請求項(1)記載の内燃機関の酸化窒素低減方
法は、ピストン、シリンダヘッド及びシリンダブロック
により形成する往復動内燃機関の燃焼室内に、燃料供給
源に連通し、燃料噴射弁からなる燃料供給装置により内
燃機関の所定工程中に所定量の燃料を噴射供給する主た
る噴射(以下主噴射という)を行い、着火燃焼せしめる
と共に一旦噴射率を減少し、その後、前記噴射に引き続
いて再び噴射率を増大し前記燃料供給装置より所定量の
燃料を所定の時期に噴射供給する副次的な噴射(以下副
噴射という)を行い、前記主噴射によって発生した火炎
を前記副噴射の燃料噴霧によって冷却し、燃焼により酸
化窒素が生成されている途中で生成を抑制せしめて酸化
窒素の排出を低減するようにした構成である。
(Structure) The method for reducing nitrogen oxide in an internal combustion engine according to claim (1) of the present invention provides a combustion chamber of a reciprocating internal combustion engine formed by a piston, a cylinder head, and a cylinder block, which communicates with a fuel supply source, and injects fuel into the combustion chamber of the internal combustion engine. A fuel supply device consisting of a valve performs main injection (hereinafter referred to as main injection) to supply a predetermined amount of fuel during a predetermined process of the internal combustion engine, ignites combustion, and temporarily reduces the injection rate, and then, following the above injection, Then, the injection rate is increased again to perform a secondary injection (hereinafter referred to as a sub-injection) in which a predetermined amount of fuel is injected at a predetermined time from the fuel supply device, and the flame generated by the main injection is transferred to the sub-injection. This configuration reduces the emission of nitrogen oxide by cooling with fuel spray and suppressing the generation of nitrogen oxide during combustion.

(作用) 以上のような構成となっているため本発明の内燃機関の
酸化窒素低減方法は、次のような作用を有する。
(Function) Since the structure is as described above, the method for reducing nitrogen oxide in an internal combustion engine of the present invention has the following function.

圧縮行程末期においてピストンが上昇し上死点近くにな
ると、圧縮により圧力・温度が上昇すると共に燃焼室内
に空気の旋回流が形成される。その時期に燃焼室に臨む
燃料噴射弁から主噴射が行われ燃料が噴射供給される。
At the end of the compression stroke, when the piston rises and approaches top dead center, pressure and temperature rise due to compression, and a swirling flow of air is formed in the combustion chamber. At that time, main injection is performed from the fuel injection valve facing the combustion chamber, and fuel is injected and supplied.

その後、噴霧は前記旋回流によって流され、旋回しなが
ら着火燃焼し、火炎が発達する。火炎発達によって圧力
が上昇するため、着火直後に発生した火炎は断熱圧縮に
よって更に高温となり、火炎の中でも最も高温な部分と
なるため、NOの生成が活発である。旋回流によって前
記の高温な火炎部分が再び燃料噴射弁噴口の位置まで旋
回する頃、噴射率を一旦低下させ前記噴口付近の火炎の
発生を減少しこの部分の温度を下げる。その後、前記の
高温な火炎部分を狙って副噴射を行い、高い噴射率で瞬
間的に多くの燃料噴霧を供給し、前記の高温な火炎部分
を冷却し、この部分の温度を急激に低下させる。
Thereafter, the spray is flowed by the swirling flow, ignites and burns while swirling, and a flame develops. Since the pressure increases as the flame develops, the flame generated immediately after ignition becomes even hotter due to adiabatic compression, and as this becomes the hottest part of the flame, NO is actively produced. When the high-temperature flame part swirls again to the position of the fuel injection valve nozzle due to the swirling flow, the injection rate is temporarily lowered to reduce the generation of flame near the nozzle and lower the temperature of this part. After that, sub-injection is performed targeting the high-temperature flame area, instantaneously supplying a large amount of fuel spray at a high injection rate, cooling the high-temperature flame area, and rapidly lowering the temperature of this area. .

(効果) 本発明の内燃機関の酸化窒素低減方法は、前記のような
作用を有するため、以下に示すような効果を持つ。つま
り主噴射によって発生した高温な火炎部分を、副噴射で
供給した燃料噴霧により急激に冷却し温度を低下させ、
前記の高温な火炎部分から生成されるNOを抑制するこ
とができる。
(Effects) The method for reducing nitrogen oxide in an internal combustion engine according to the present invention has the effects described above, and therefore has the following effects. In other words, the high-temperature flame generated by the main injection is rapidly cooled by the fuel spray supplied by the sub-injection, lowering its temperature.
NO generated from the high temperature flame portion can be suppressed.

この部分は高温でありNOの発生が最も活発であるため
、NOの低減効果は著しい。
Since this part is at a high temperature and NO is most actively generated, the NO reduction effect is remarkable.

また、前記の火炎の冷却は局所的に行われ、その他の火
炎部分は温度が低下しないため熱効率の低下はない。さ
らに副噴射によって高い噴射率で燃料が供給され、噴射
エネルギーが大きく、噴霧への空気導入が活発となるた
め、燃料と空気との混合が充分となり、煤の発生が抑制
される。その後の燃焼も栄、速となり、燃費の悪化も無
く、未燃燃料の排出も少ない。
Further, the flame is cooled locally, and the temperature of other flame parts does not decrease, so there is no decrease in thermal efficiency. Furthermore, fuel is supplied at a high injection rate by the sub-injection, the injection energy is large, and air is actively introduced into the spray, so the mixing of fuel and air is sufficient and the generation of soot is suppressed. Subsequent combustion is also more efficient and fast, with no deterioration in fuel efficiency and less unburned fuel being emitted.

〔他の発明の説明〕[Description of other inventions]

(構成) また、請求項(2)記載の本発明の内燃機関の酸化窒素
低減装置は、ピストン、シリンダヘッド及びシリツタブ
ロックにより形成する往復動内燃機関の燃焼室を有し、
該燃焼室内に燃料供給源に連通し、主たる噴射を行う第
1の燃料供給手段と、副次的な噴射を行う第2の燃料供
給手段と、前記第1及び第2の燃料供給手段の位相差を
制御する位相制御手段と燃料噴射弁からなる燃料供給装
置を設け、前記の第1の燃料供給手段に基づき主たる噴
射によって発生した火炎を前記の第2の燃料供給手段に
基づき副次的な噴射の燃料噴霧によって冷却し、燃焼に
より酸化窒素が生成されている途中で生成を抑制せしめ
て該酸化窒素の排出を低減するようにした構成である。
(Structure) Furthermore, the nitrogen oxide reduction device for an internal combustion engine according to the present invention according to claim (2) has a combustion chamber for a reciprocating internal combustion engine formed by a piston, a cylinder head, and a cylinder block,
A first fuel supply means that communicates with a fuel supply source in the combustion chamber and performs a main injection, a second fuel supply means that performs a secondary injection, and a position of the first and second fuel supply means. A fuel supply device consisting of a phase control means for controlling a phase difference and a fuel injection valve is provided, and the flame generated by the main injection based on the first fuel supply means is transferred to a secondary fuel injection based on the second fuel supply means. This is a configuration in which the fuel is cooled by the fuel spray of the injection, and the generation of nitrogen oxides is suppressed while they are being generated by combustion, thereby reducing the emission of nitrogen oxides.

また前記燃料供給装置は、燃料噴射弁と、燃料を圧送す
るプランジャを駆動する2つのカムと、両カムの位相を
変える位相制御装置とから構成されるか、または電機的
に駆動される燃料噴射弁と、該燃料噴射弁を駆動し主噴
射用の駆動信号と、この主噴射用駆動信号に対し位相関
係を制御された副噴射用の駆動信号を発生する駆動回路
から構成される。
The fuel supply device may include a fuel injection valve, two cams that drive a plunger that pumps fuel, and a phase control device that changes the phase of both cams, or may include an electrically driven fuel injection valve. It is composed of a valve, a drive circuit that drives the fuel injection valve and generates a drive signal for main injection, and a drive signal for sub-injection whose phase relationship is controlled with respect to the drive signal for main injection.

(作用) 本発明の内燃機関の酸化窒素低減装置は、第1の燃料供
給手段により所定量の燃料を噴射供給する主たる噴射を
行い、着火燃焼させると共に、旦噴射率を減少し、その
後、前記の主たる噴射に引き続いて再び噴射率を増大し
、第2の燃料供給手段より所定量の燃料を噴射供給する
副次的な噴射を行う。また前記第1と第2の燃料供給手
段の位相差を位相制御手段によって制御することによっ
て、前記の主たる噴射によって発生した火炎を前記の副
次的な噴射の燃料噴霧によって冷却するという作用を有
する。
(Function) The nitrogen oxide reduction device for an internal combustion engine of the present invention performs main injection to inject and supply a predetermined amount of fuel by the first fuel supply means, ignites combustion, and first reduces the injection rate. Following the main injection, the injection rate is increased again, and a secondary injection is performed in which a predetermined amount of fuel is injected and supplied from the second fuel supply means. Furthermore, by controlling the phase difference between the first and second fuel supply means by a phase control means, the flame generated by the main injection is cooled by the fuel spray of the secondary injection. .

(効果) 本発明の内燃機関の酸化窒素低減方法は、前記第1の燃
料供給手段により発生した火炎を、前記第1の燃料供給
手段との位相差を制御された前記第2の燃料供給手段に
より供給した燃料噴霧により、前記火炎の高温部分を選
択的にかつ急激に冷却することができるため、NOの生
成を効果的に抑制することができると共に、前記高温な
火炎部分が局所的に冷却され、その他の火炎部分は温度
低下しないため、熱効率の低下は無い。また、前記第2
の燃料供給手段に基づく副噴射は高い噴射率で燃料が供
給され噴射エネルギーが大きく、噴霧への空気導入が活
発となるため、燃料と空気との混合が充分となり、煤の
発生が抑制され、燃費の悪化は無く未燃燃料の排出も少
ないという優れた効果を奏する。
(Effects) The nitrogen oxide reduction method for an internal combustion engine of the present invention is characterized in that the flame generated by the first fuel supply means is transferred to the second fuel supply means whose phase difference with respect to the first fuel supply means is controlled. The fuel spray supplied by the above can selectively and rapidly cool the high-temperature portion of the flame, thereby effectively suppressing the generation of NO and locally cooling the high-temperature flame portion. Since the temperature of the other flame parts does not decrease, there is no decrease in thermal efficiency. In addition, the second
In the sub-injection based on the fuel supply means, fuel is supplied at a high injection rate, the injection energy is large, and air is actively introduced into the spray, so the mixing of fuel and air is sufficient and soot generation is suppressed. This has excellent effects in that there is no deterioration in fuel efficiency and less unburned fuel is emitted.

〔実施例〕〔Example〕

本発明の方法及び装置をディーゼル機関及びガソリン機
関に適用した実施例に基づき説明する。
The method and apparatus of the present invention will be explained based on an example in which it is applied to a diesel engine and a gasoline engine.

第1実施例は、第3図々示のようにシリンダヘッド1に
燃焼室を渦流室2として持つIDIディーゼル機関E、
である。このディーゼル機関Eはピストン3に凹所4が
あり、これとシリンダヘッド1とシリンダブロック7に
より主燃焼室5を形成する。シリンダヘッド1にはツリ
ガネ状の渦流室2を有し、前記主燃焼室5と連絡孔6で
連通している。
The first embodiment is an IDI diesel engine E having a combustion chamber as a swirl chamber 2 in a cylinder head 1 as shown in FIG.
It is. This diesel engine E has a recess 4 in the piston 3, and a main combustion chamber 5 is formed by the recess 4, the cylinder head 1, and the cylinder block 7. The cylinder head 1 has a torpedo-shaped swirl chamber 2, which communicates with the main combustion chamber 5 through a communication hole 6.

かかるディーゼル機関E、は、圧縮工程中ピストン3の
上昇に伴い、主燃焼室5内の空気は連絡孔6を通って渦
流室2に流入し、図中矢印方向の旋回流を発生させる。
In such a diesel engine E, as the piston 3 rises during the compression process, air in the main combustion chamber 5 flows into the swirl chamber 2 through the communication hole 6, generating a swirling flow in the direction of the arrow in the figure.

このディーゼル機関E1は、第3図及び第4図々示のよ
うに燃料供給装置の燃料噴射弁としての噴射ノズル8は
前記渦流室2に一本のみ配設してなる。
In this diesel engine E1, as shown in FIGS. 3 and 4, only one injection nozzle 8 serving as a fuel injection valve of a fuel supply device is disposed in the swirl chamber 2.

このディーゼル機関E、は、噴射ノズル8による主噴射
(正規の通常噴射)が終了する前に、前述のような副噴
射を行うため、第4図に示すような噴射系を持つ。すな
わち、噴射ポンプ9.10は2組のプランジャ(図示せ
ず)があり、1つのプランジャは主噴射用で、他のプラ
ンジャは副噴射用で、副噴射用プランジャをタイマによ
り送油始めの時期を変化させる。プランジャ出口高圧燃
料パイプ11は、−本に結合した上で前記噴射ノズル8
に高圧燃料を導くようになっている。そして、ディーゼ
ル機関E1は、これのクランク軸により2の速度で駆動
されるポンプ駆動軸12に2組のプランジャ式噴射ポン
プ9.10が、駆動可能に連結されている。各々の主ま
たは副噴射量の調整は通常のディーゼル機関と同様にラ
ックによって行う。各噴射ポンプ9.10には、それぞ
れタイマーが組み込まれており、主噴射用ポンプ9は吐
出始め(噴射始め)上死点前15°から0゜の範囲に運
転条件(負荷、回転数)によって調整されている。また
副噴射用ポンプ10のタイマは上死点過ぎ5°から20
°の範囲に同じく調整されている。さらに主噴射と副噴
射は燃料噴射期間が互いに重なる部分が一部あるため、
噴射ノズル8からの燃料噴射は連続的に行われる。
This diesel engine E has an injection system as shown in FIG. 4 in order to perform the above-mentioned sub-injection before the main injection (regular normal injection) by the injection nozzle 8 is completed. In other words, the injection pump 9.10 has two sets of plungers (not shown), one plunger is for main injection and the other plunger is for sub-injection, and the sub-injection plunger is set by a timer to determine when to start oil supply. change. The plunger outlet high pressure fuel pipe 11 is connected to the injection nozzle 8.
It is designed to guide high pressure fuel to. In the diesel engine E1, two sets of plunger-type injection pumps 9 and 10 are drivably connected to a pump drive shaft 12 that is driven at two speeds by its crankshaft. Adjustment of each main or auxiliary injection amount is performed by a rack, similar to a normal diesel engine. Each injection pump 9, 10 has a built-in timer, and the main injection pump 9 is operated in a range of 15° to 0° before the top dead center at the start of discharge (injection start) depending on the operating conditions (load, rotation speed). It has been adjusted. Also, the timer of the sub-injection pump 10 starts from 5 degrees past the top dead center to 20 degrees.
The same is adjusted to the range of °. Furthermore, since there are some parts where the fuel injection period of main injection and sub-injection overlaps with each other,
Fuel injection from the injection nozzle 8 is performed continuously.

上記構成からなる第1実施例は、ディーゼル機関E、が
、圧縮工程末期の上死点前15°〜0゜になると主噴射
用ポンプ9から噴射ノズル8に送油され、第5図々示の
ように吸入空気の旋回方向の順流方向に主噴射がなされ
る。
In the first embodiment having the above configuration, when the diesel engine E reaches 15° to 0° before top dead center at the end of the compression stroke, oil is sent from the main injection pump 9 to the injection nozzle 8, as shown in FIG. The main injection is performed in the forward direction of the swirling direction of the intake air.

主噴射された燃料の着火は、第6図々示のように噴霧の
先端または両側面で生じ、空気渦流に乗って拡がる。火
炎先端付近に温度の高い領域があり、ガス温度が高<N
Oを大量に発生させる。このNO発生機構は前述のゼル
ドビッチ(Zeldovich )の反応式(1)、(
2)、(3)で説明できる部分である。そして、時間経
過と共に第7図々示のように火炎は拡がり、かつ渦流に
流され、上死点を過ぎる頃になるとほぼ火炎は1周する
。主噴射に伴う燃焼圧力上昇の結果、ガスは連絡孔6よ
り主燃焼室5に噴出し始めているが、燃料噴射は継続さ
れているため火炎はさらに発達する。
Ignition of the main injected fuel occurs at the tip or both sides of the spray, as shown in Figure 6, and spreads along with the air vortex. There is a high temperature area near the flame tip, and the gas temperature is high <N
Generates a large amount of O. This NO generation mechanism is explained by the above-mentioned Zeldovich reaction equation (1), (
This can be explained in 2) and (3). Then, as time passes, the flame spreads as shown in Figure 7, and is carried away by the vortex, and when it passes the top dead center, the flame makes almost one revolution. As a result of the increase in combustion pressure accompanying the main injection, gas has begun to be ejected from the communication hole 6 into the main combustion chamber 5, but since fuel injection continues, the flame further develops.

次に、上死点過ぎ5〜20°の前記火炎先端部に副噴射
を行う。この噴射は前記の火炎先端付近の温度の高い領
域に瞬間的に高い噴射率で燃料噴霧を供給し、前記燃料
噴霧の気化熱によって火炎温度を下げることができる。
Next, sub-injection is performed at the flame tip 5 to 20 degrees past the top dead center. This injection momentarily supplies fuel spray at a high injection rate to the high-temperature region near the tip of the flame, and the flame temperature can be lowered by the heat of vaporization of the fuel spray.

つまりNO発生機構は前述のゼルドビッチの反応式で示
されるように火炎温度に強く依存するため、副噴射は火
炎の高温部の冷却によってNoの生成を効果的に抑制す
ることができるのである。
In other words, since the NO generation mechanism strongly depends on the flame temperature as shown by the above-mentioned Zeldovich reaction equation, the sub-injection can effectively suppress the generation of No by cooling the high temperature part of the flame.

副噴射の噴霧は瞬時に蒸発すると共に高温の酸素及び化
学的活性のある未燃ガスと混合すると共に副噴射の強い
混合エネルギーによって火炎への空気導入が促進される
ため主噴射の高温な火炎が消滅した直後に新たな火炎が
発生し、その火炎は象、速に燃焼する。この時、ピスト
ンは下降していてその速度も徐々に増大しているため、
体積膨張によって火炎の温度上昇が抑制され、象、速燃
焼しているにもかかわらず温度上昇は少なくNOの生成
も少ない。以上のように主噴射によって発生した火炎の
高温部を副噴射によって冷却し、その後は急速燃焼によ
って副噴射の燃料を効率よく燃焼させ吐煙を低減すると
共に、燃費及び未燃炭化水素排出の増加も無く、NOを
低減できるという優れた効果を奏する。
The spray from the sub-injection evaporates instantly and mixes with high-temperature oxygen and chemically active unburned gas, and the strong mixing energy of the sub-injection promotes the introduction of air into the flame, causing the high-temperature flame of the main injection to Immediately after the flame disappears, a new flame appears and burns quickly. At this time, the piston is descending and its speed is gradually increasing, so
The volumetric expansion suppresses the temperature rise of the flame, and even though it burns quickly, the temperature rise is small and NO is produced. As described above, the high-temperature part of the flame generated by the main injection is cooled by the sub-injection, and then the fuel in the sub-injection is efficiently combusted through rapid combustion, reducing smoke emissions and increasing fuel consumption and unburned hydrocarbon emissions. It has the excellent effect of reducing NO without any problems.

第2図は、渦流室式ディーゼル機関に適用し、効果を確
認した結果の一例である。機関はボア83mm、ストロ
ーク85匝で全負荷に於ける1ストローク当たりの噴射
量は約40岨3である。図示した状態は約%負荷の状態
を示している。通常噴射(主噴射)は上死点前6°に始
まり、TDCで終わり、その噴射量は10++++n”
 / s tである。副噴射の量は主噴射の2で5mm
’/stとし、全噴射量は15+nn+3/stの場合
である。この時副噴射の時期を変化させてNOの増減(
低減率)と機関性能の代表値として平均有効圧力(Pe
)と吐煙濃度(S)の変化を調べたものである。横軸の
副噴射の時期、縦軸N01SおよびPeの増減を示し、
1.0の線は主噴射のみの通常のディーゼル機関と同じ
運転をした場合に相当する。
FIG. 2 shows an example of the results obtained by applying the method to a swirl chamber type diesel engine and confirming its effectiveness. The engine has a bore of 83mm and a stroke of 85cm, and the injection amount per stroke at full load is approximately 40cm3. The illustrated state shows a state of approximately % load. Normal injection (main injection) starts 6 degrees before top dead center and ends at TDC, and the injection amount is 10++++n”
/ st. The amount of secondary injection is 5mm for 2 of the main injection.
'/st, and the total injection amount is 15+nn+3/st. At this time, the timing of the secondary injection is changed to increase or decrease NO (
Reduction rate) and mean effective pressure (Pe
) and changes in smoke concentration (S). The horizontal axis shows the timing of sub-injection, the vertical axis shows the increase and decrease of N01S and Pe,
The line 1.0 corresponds to the same operation as a normal diesel engine with only main injection.

副噴射時期が上死点過ぎ3〜5°でNoの低減が生じ、
10″〜15°でNO最小となる。これは先に述べた火
炎冷却が効果的に行われるためである。
A reduction in No occurs when the secondary injection timing is 3 to 5 degrees past top dead center,
NO is at a minimum between 10'' and 15°. This is because the flame cooling mentioned above is effectively performed.

副噴射の時期は上死点を過ぎているが、この時のガス温
度は主噴射始めのガス温度700〜800により高く、
2000〜2500Kになっているので、発火遅れは短
く、それに加えて反応性の高い燃焼生成物との混合が進
むため燃焼は急速に進行しPeの減少はほとんどない。
Although the timing of the secondary injection has passed the top dead center, the gas temperature at this time is higher than the gas temperature of 700 to 800 at the beginning of the main injection.
Since the temperature is 2000 to 2500K, the ignition delay is short, and in addition, mixing with highly reactive combustion products progresses, so combustion progresses rapidly and there is almost no decrease in Pe.

さらに、副噴射の時期を遅らせると火炎の高温部が的確
に冷却されないためNo低下傾向は悪くなる。Peも後
燃えのため減少する。また吐煙濃度Sも低下傾向が減少
する。
Furthermore, if the timing of the sub-injection is delayed, the high-temperature part of the flame will not be properly cooled, and the tendency for No. to decrease will worsen. Pe also decreases due to afterburning. Further, the decreasing tendency of the smoke concentration S also decreases.

機関の無負荷時は噴射される燃料は少なく、空気過剰率
λが大きく、燃焼温度が低いので、副噴射燃料の燃焼に
よるガス温度低下が必要以上に起こらないよう副噴射燃
料を少なくする。
When the engine is not loaded, the amount of fuel injected is small, the excess air ratio λ is large, and the combustion temperature is low, so the amount of sub-injected fuel is reduced so that the gas temperature does not drop more than necessary due to combustion of the sub-injected fuel.

一方、全負荷時においても副噴射の時期は、負荷の軽い
場合とほぼ同時期で良い。これは、主噴射の火炎の高温
部が噴射弁噴口位置に移動してくる時期が、負荷に関係
なくほぼ同じ時期となるためである。この場合、副噴射
量が多くなるが、その後の燃焼が急速であるため、吐煙
濃度Sは低減されPeの低下もあまり無い。
On the other hand, even when the load is full, the timing of the sub-injection may be approximately the same as when the load is light. This is because the high temperature portion of the main injection flame moves to the injection valve nozzle position at approximately the same time regardless of the load. In this case, although the sub-injection amount increases, the subsequent combustion is rapid, so the smoke concentration S is reduced and Pe does not decrease much.

無負荷時の副噴射量(噴射率の極小となる時期以降の燃
料噴射量とする)と副噴射時期(噴射率の極小となる時
期とする)は、 0.05<q、/q、、、<0.1 (q、副噴射量m
m’/st、qイ、全負荷時におけ全全荷時噴射量11
1111”/ s t ) t、、(副噴射時期)は上死点後3°〜10°の範囲が
有効である。
The sub-injection amount (the fuel injection amount after the time when the injection rate becomes minimum) and the sub-injection timing (the time when the injection rate becomes minimum) at no-load are as follows: 0.05<q, /q, , <0.1 (q, sub-injection amount m
m'/st, qi, full load injection amount at full load 11
1111''/s t ) t, (sub-injection timing) is valid in the range of 3° to 10° after top dead center.

全負荷の場合は の範囲が有効で最適値は0.08<qs/qい、X〈0
.2、tsは10″〜15゛にある。
For full load, the range is valid and the optimal value is 0.08<qs/q, X<0
.. 2. ts is between 10'' and 15''.

本発明の方法及び装置は、機関形式として燃焼室に噴射
ノズルを持つ機関であれば特に不都合はなく、IDIデ
ィーゼル、DIディーゼル、直接噴射火花点火機関に適
用できる。
The method and apparatus of the present invention are applicable to IDI diesel, DI diesel, and direct injection spark ignition engines, as long as the engine type has an injection nozzle in the combustion chamber.

副噴射の時期及び噴射量はこの火炎冷却の部位と冷却の
度合を調整する手段であり、最適調整範囲は前述の通り
である。
The timing and injection amount of the sub-injection are means for adjusting the location and degree of flame cooling, and the optimum adjustment range is as described above.

このような新しい燃焼を行わせる方法及び装置によって
Noの低減を行うことができ、低減率は30%以上に達
すると共に、副噴射による急速燃焼によって吐煙濃度も
同時に30%以上低減されるという顕著な作用効果を奏
する。
With this new method and device for combustion, it is possible to reduce NO, reaching a reduction rate of over 30%, and the smoke concentration is also reduced by over 30% at the same time, which is remarkable. It has great effects.

第1実施例は従来のEGRに伴う汚れ、発煙、摩耗を増
大することもなく、極めて効果的な方法及び装置である
。この他、本第1実施例のディーゼル機関EIの燃焼騒
音は、燃焼室内の燃料の発熱時間的経過のパターンと相
関があることがよく知られている。すなわち、発熱のピ
ークが低いほど低騒音である。本実施例では燃料噴射率
に2つの山(極大値)を作ることによって、発熱ピーク
が低下し、確実に低騒音になる。これは副噴射量の全噴
射量に対する割合が多い低速低負荷時はど著しい。第8
図は、主燃焼室5内の圧力測定結果から発熱経過dQ/
dθを算出したものである。
The first embodiment is an extremely effective method and device without increasing the fouling, smoke, and wear associated with conventional EGR. In addition, it is well known that the combustion noise of the diesel engine EI of the first embodiment is correlated with the pattern of heat generation over time of the fuel in the combustion chamber. In other words, the lower the peak of heat generation, the lower the noise. In this embodiment, by creating two peaks (maximum values) in the fuel injection rate, the heat generation peak is reduced and noise is reliably reduced. This is especially noticeable at low speeds and low loads, where the proportion of the sub-injection amount to the total injection amount is large. 8th
The figure shows the heat generation progress dQ/ based on the pressure measurement results in the main combustion chamber 5.
This is the calculated value of dθ.

通常の正規噴射の場合と副噴射を行う場合の主噴射士副
噴射は同量である。副噴射を行うとdQ/dθのピーク
は低くなり、後半のdQ/dθが大きくなり、結果とし
て第8図中の面積、すなわち発熱量はほとんど変化しな
い。
The amounts of main injector and sub-injection are the same in the case of normal regular injection and in the case of sub-injection. When sub-injection is performed, the peak of dQ/dθ becomes lower, and dQ/dθ becomes larger in the latter half, and as a result, the area in FIG. 8, that is, the amount of heat generated, hardly changes.

次に、一般にディーゼル機関はガソリン機関に比べ圧縮
比が高く、燃焼最高圧力が高く、dQ/dθ経過がシャ
ープなため、1サイクル中のトルク変動が大きい。これ
は機関本体やミッション等車両用機関の場合、駆動系の
振動発生の原因となる。
Next, diesel engines generally have higher compression ratios, higher maximum combustion pressures, and sharper dQ/dθ curves than gasoline engines, so torque fluctuations during one cycle are large. In the case of a vehicle engine such as an engine body or a transmission, this causes vibrations in the drive system.

第9図に1サイクル中のトルク変動状況を示す。FIG. 9 shows torque fluctuations during one cycle.

ガソリン機関に比べ、ディーゼル機関は同一平均トルク
(いわゆる軸トルク)において変動が太きい。副噴射を
行うと第8図により説明したように副噴射による発熱が
燃焼後半に付加され、かつピークが低くなることから、
トルク変動はガソリン機関の傾向に近づき、より低騒音
となって実用上価れた効果を奏する。
Compared to gasoline engines, diesel engines have larger fluctuations within the same average torque (so-called shaft torque). When sub-injection is performed, heat generated by the sub-injection is added to the latter half of combustion and the peak becomes low, as explained in Figure 8.
Torque fluctuations are closer to those of gasoline engines, resulting in lower noise, which has a practical effect.

なお、燃料供給装置としての噴射系は、第4図図示のよ
うに噴射ノズル8の内部に設けられ、かつ噴射孔の弁座
に弁バネによって着座する針弁を燃料圧によってリフト
させ、燃料噴射を実奏する機械式に限らず、この他第1
0図々示のように内燃機関の運転状態に対応して電磁ソ
レノイド13を作動させ、電磁力により針弁をリフトさ
せ、燃料噴射を実奏する蓄圧式電磁噴射弁の如き電気式
であっても前述と同様な作用効果を得ることができる。
The injection system as a fuel supply device is provided inside the injection nozzle 8 as shown in FIG. In addition to the mechanical type that demonstrates the
0 Even if it is an electric type, such as a pressure accumulating type electromagnetic injection valve, which activates the electromagnetic solenoid 13 in response to the operating state of the internal combustion engine and lifts the needle valve using electromagnetic force to inject fuel as shown in the figure. The same effects as described above can be obtained.

なお、第10図中14は燃料パイプで一端が電磁噴射弁
15の燃料通路に連通ずると共に、他端が蓄圧器16及
びチエツクバルブ17を介して油圧ポンプPに連通され
ている。
Note that 14 in FIG. 10 is a fuel pipe, one end of which communicates with the fuel passage of the electromagnetic injection valve 15, and the other end of which communicates with the hydraulic pump P via a pressure accumulator 16 and a check valve 17.

次に第2実施例は、第11図々示のように直接噴射式デ
ィーゼル機関E2に適用した例である。
Next, a second embodiment is an example in which the present invention is applied to a direct injection diesel engine E2 as shown in FIG.

このディーゼル機関E2は、ピストン18に所定容積の
凹所19を持った燃焼室20で、噴射ノズル21は多項
射孔を有するホール弁である。そして、噴射系は前記第
1実施例と同じ形式であるが、第1実施例が単孔のビン
トル弁またはスロットル弁であったのとは異なる。燃焼
室20内は図中矢印にて示すように吸入時のスワールが
残り旋回流がある。この場合、噴射ノズル21より噴射
された燃料噴霧は4〜5本放射状に凹所19内に主噴射
が行われ、続いて副噴射の後、各々1本毎に前述した第
1実施例と同様に高温な火炎の冷却が行われる。
This diesel engine E2 has a combustion chamber 20 having a recess 19 of a predetermined volume in the piston 18, and the injection nozzle 21 is a Hall valve having multiple injection holes. The injection system is of the same type as that of the first embodiment, but is different from the first embodiment, which is a single-hole bottle valve or throttle valve. Inside the combustion chamber 20, as shown by the arrow in the figure, a swirl remains during intake and there is a swirling flow. In this case, the main injection of four to five fuel sprays injected from the injection nozzle 21 is performed radially into the recess 19, and then, after the sub-injection, each one of the fuel sprays is injected radially into the recess 19, as in the first embodiment described above. The high temperature flame is cooled down.

つまり、4〜5本放射状に噴射された燃料噴霧は、着火
し燃焼しなから凹所19内に形成された旋回流によって
凹所の周方向へ流され、旋回流下流側の他の噴霧と干渉
する位置まで回転する。この位置まで回転した火炎は着
火直後の燃焼で発生した火炎であり、第1実施例で述べ
た様に、他の火炎に比べ高温でNOの生成が活発である
。そこで、この高温な火炎へ副噴射を行い、高い噴射率
で瞬間的にかつ、局部的に燃料を供給し、前記の高温な
火炎部分の温度を急激に低下させ、NOの生成を抑制す
る。また、副噴射による噴射エネルギーによって乱れを
発生させ、火炎への空気導入を促進することができるの
で、煤の生成も抑制できると共に、副噴射による燃焼の
遅延が無いため燃費の悪化は無い。このようにして、第
2実施例は直接噴射ディーゼル機関E2にも有効に実施
することができ、前記第1実施例とほぼ同様の作用効果
を奏する。
In other words, the four to five radially injected fuel sprays are ignited and burned, and then flowed in the circumferential direction of the recess by the swirling flow formed inside the recess 19, and are mixed with other sprays downstream of the swirling flow. Rotate to the position of interference. The flame that has rotated to this position is a flame generated by combustion immediately after ignition, and, as described in the first embodiment, has a higher temperature and more active generation of NO than other flames. Therefore, sub-injection is performed to this high-temperature flame to instantaneously and locally supply fuel at a high injection rate to rapidly lower the temperature of the high-temperature flame portion and suppress the generation of NO. In addition, since the injection energy of the sub-injection can generate turbulence and promote the introduction of air into the flame, it is possible to suppress the production of soot, and since there is no delay in combustion due to the sub-injection, there is no deterioration in fuel efficiency. In this way, the second embodiment can be effectively implemented in the direct injection diesel engine E2, and provides substantially the same effects as the first embodiment.

第1実施例及び第2実施例で示したディーゼル機関の場
合で考えると、理論的には火炎冷却の度合に応じて燃料
を噴射すればよいが、副噴射の噴射量があまり少ないと
霧化が悪く、あたかも後だれのように滴下状態となり、
煤発生の原因となる。
Considering the case of the diesel engine shown in the first and second embodiments, it is theoretically possible to inject fuel according to the degree of flame cooling, but if the injection amount of sub-injection is too small, atomization will occur. It is bad, and it is dripping as if it is dripping from behind.
Causes soot generation.

−船釣には霧化を確保するためには1回の噴射で2mm
3以上を必要とする。また機関の低速時はど噴射ポンプ
の圧力が低く、霧化が悪いため、霧化確保のための最小
噴射量は多少増大する。
- For boat fishing, to ensure atomization, 2 mm per injection is required.
Requires 3 or more. Furthermore, when the engine speed is low, the pressure of the injection pump is low and atomization is poor, so the minimum injection amount to ensure atomization increases somewhat.

ディーゼル機関の場合、運転条件によって(負荷、回転
数)異なるが、燃料噴射は上死点前15゜〜5°で主噴
射を行い、引き続いてほぼ上死点で副噴射を開始する。
In the case of a diesel engine, main injection is performed at 15° to 5° before top dead center, and sub-injection is subsequently started approximately at top dead center, although this varies depending on operating conditions (load, rotation speed).

主噴射によって燃焼室内に供給された燃料の着火は噴射
開始より数度遅れて起こり、燃焼を始め、温度は150
0〜2500Kに達する。主噴射に引き続く副噴射によ
って火炎の高温部が冷却されると共にピストンの下降に
よる膨張に伴い温度は低下する。主噴射の火炎の高温部
へ副噴射の燃料を供給するためには副噴射の時期は約上
死点後5°ないし20°とするのが良いが、燃焼室内に
形成される旋回流の強さによって主噴射の火炎の高温部
の移動する速度が異なるため、それに合わせて副噴射の
時期は多少変える必要がある。
The ignition of the fuel supplied into the combustion chamber by the main injection occurs several degrees later than the start of injection, and combustion begins, with a temperature of 150°C.
Reaches 0-2500K. The secondary injection that follows the main injection cools the high-temperature part of the flame, and the temperature decreases as the piston expands as it descends. In order to supply the fuel of the sub-injection to the high-temperature part of the flame of the main injection, the timing of the sub-injection should be approximately 5° to 20° after top dead center. Since the speed at which the high-temperature part of the main injection flame moves differs depending on the fuel injection, the timing of the sub-injection must be changed somewhat accordingly.

次にさらに別の実施例としては、第12図及び第13図
示のように燃焼室23の凹所24内に燃料噴射弁28に
より直接計量されたガソリンを主噴射及び副噴射する筒
内燃料噴射式内燃機関E3であり、前述した実施例との
相違点を中心に述べ、同一部分は同一符号を付し説明を
省略する。
Next, as another embodiment, as shown in FIGS. 12 and 13, an in-cylinder fuel injection system in which gasoline directly metered by a fuel injection valve 28 is injected into a recess 24 of a combustion chamber 23 as a main injection and a sub-injection is provided. This is a type internal combustion engine E3, and the differences from the above-mentioned embodiment will be mainly described, and the same parts will be given the same reference numerals and the explanation will be omitted.

本実施例のピストン式ガソリン機関E3の燃料供給装置
26は、シリンダヘッド1を貫通し、燃焼室23内に噴
射孔27が露出し、かつ前述の第10図に示す噴射系を
具備したいわゆる衝突型噴射弁28と、吸気通路29′
内の吸入空気量を検出する空気流量計と、エンジンの回
転数を検出する回転計と前記吸入空気量及びエンジン回
転数の信号をもとにして、エンジン冷却水温度を考慮し
て、機関の運転条件に応じたガソリンの噴射量を制御す
る信号を出力するコントロールユニットと該コントロー
ル信号に応じた量の加圧ガソリンを噴射弁に供給する燃
料供給装置とからなる。
The fuel supply device 26 of the piston type gasoline engine E3 of this embodiment has a so-called impingement injection system that penetrates through the cylinder head 1, has an injection hole 27 exposed in the combustion chamber 23, and is equipped with the injection system shown in FIG. type injection valve 28 and intake passage 29'
Based on the air flow meter that detects the intake air amount in the engine, the tachometer that detects the engine rotation speed, and the signals of the intake air amount and engine rotation speed, the engine cooling water temperature is taken into consideration. It consists of a control unit that outputs a signal to control the amount of gasoline to be injected according to operating conditions, and a fuel supply device that supplies an amount of pressurized gasoline to the injection valve according to the control signal.

衝突型噴射弁28は、弁本体VB内に介挿された部材I
Mに棒部材BMを介して固着された衝突部CPに向けて
噴射孔27よりガソリンを噴射衝突させ、該衝突部CP
より向きを変えて広い噴射角薄膜状のガソリンを噴射す
るものである。
The impingement type injection valve 28 includes a member I inserted into the valve body VB.
Gasoline is injected from the injection hole 27 toward the collision part CP fixed to M via the rod member BM, and collides with the collision part CP.
It injects a thin film of gasoline with a wide injection angle by changing the direction.

吸気機構としての吸気弁29には吸入空気に旋回流を形
成するためシュラウド30が形成されている。
A shroud 30 is formed on the intake valve 29 as an intake mechanism to form a swirling flow in the intake air.

ところで、本実施例のピストン式ガソリン機関E3は、
第13図々示のようにピストン31の上部20に横断面
よりして真円状の凹所32を形成すると共にシリンダヘ
ッドlに主噴射される燃料噴霧を着火燃焼する点火装置
25を装備する。
By the way, the piston type gasoline engine E3 of this embodiment is as follows.
As shown in FIG. 13, a perfectly circular recess 32 is formed in the upper part 20 of the piston 31 in cross section, and an ignition device 25 is provided to ignite and burn the fuel spray mainly injected into the cylinder head l. .

上記構成からなる本実施例のピストン式ガソリン機関E
3は燃料が前述のディーゼル機関E1、E2に見られる
噴射時期より速めに主噴射や副噴射し、比較的広い拡が
り角と霧化のよい衝突型噴射弁を使っており、燃料噴霧
は凹所32のほぼ全体に広がる。そして、吸気弁29の
シュラウド30により生成した吸入スワールのため主噴
射に係る燃料噴霧は旋回しなからTDC近くになると気
化混合しながら強い混合気のスワールがピストン上部の
凹所32の中に収束される。
Piston type gasoline engine E of this embodiment having the above configuration
In No. 3, fuel is injected in main and sub-injections earlier than the injection timing seen in the above-mentioned diesel engines E1 and E2, and an impingement-type injection valve with a relatively wide spread angle and good atomization is used, and the fuel is sprayed in a concave area. It spreads over almost the entirety of 32. Because of the intake swirl generated by the shroud 30 of the intake valve 29, the fuel spray associated with the main injection does not swirl, so when near TDC, a strong swirl of the mixture converges into the recess 32 at the top of the piston while vaporizing and mixing. be done.

TDC近くでも点火装置25によって点火し、火炎は凹
所32内の旋回流によって流されながら次第に広がる。
The flame is ignited by the ignition device 25 near TDC, and the flame gradually spreads while being carried by the swirling flow within the recess 32.

この場合も、他の実施例と同様に燃焼初期の火炎が最も
高温となりNOの生成が活発である。副噴射は、この高
温な火炎部分が噴射弁28の噴口付近に旋回してきた時
に行い、この高温な火炎を高噴射率の燃料噴霧で瞬間的
にかつ、局部的に冷却する。これによってNOの生成を
抑制し、NOの排出量を低減する。
In this case as well, the flame at the initial stage of combustion has the highest temperature and NO is actively produced. The sub-injection is performed when this high-temperature flame part swirls near the nozzle of the injection valve 28, and this high-temperature flame is instantaneously and locally cooled with fuel spray at a high injection rate. This suppresses the generation of NO and reduces the amount of NO discharged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明と従来技術の内燃機関に係る高温火炎の
発達の経過を1900°C以上の火炎割合で比較した線
図、第2図は本発明の一実施例である渦流室式ディーゼ
ルのNO1吐煙、平均有効圧の排出を示す線図、第3図
ないし第7図は本発明の第1実施例渦流室付ディーゼル
機関をそれぞれ示す概要図、第8図及び第9図は第1実
施例における発熱経過及びトルク変動状況をそれぞれ示
す線図、第10図は燃料供給装置の別の噴射系を示す概
要図、第11図及び第12図、第13図は本発明の第2
実施例及びその他の実施例をそれぞれ示す断面図である
。 図中 8.15.21.28・・・噴射ノズル、1・・
・シリンダヘッド、2・・・渦流室、3・・・ピストン
、6・・・連絡孔、7・・・ シリンダブロック、9・
・・主噴射用噴射ポンプ、10・・・副噴射用噴射ポン
プ、11・・・燃料パイプ
Figure 1 is a diagram comparing the progress of high-temperature flame development in the internal combustion engines of the present invention and the prior art, in terms of the flame rate of 1900°C or higher, and Figure 2 is a swirl chamber type diesel engine that is an embodiment of the present invention. Figures 3 to 7 are schematic diagrams showing a diesel engine with a swirl chamber according to the first embodiment of the present invention, and Figures 8 and 9 are diagrams showing emissions of NO1 smoke and mean effective pressure. 10 is a schematic diagram showing another injection system of the fuel supply device, and FIGS.
FIG. 3 is a cross-sectional view showing an example and other examples, respectively. In the figure 8.15.21.28... Injection nozzle, 1...
・Cylinder head, 2... Vortex chamber, 3... Piston, 6... Communication hole, 7... Cylinder block, 9...
...Injection pump for main injection, 10...Injection pump for sub-injection, 11...Fuel pipe

Claims (2)

【特許請求の範囲】[Claims] (1)ピストン、シリンダヘッド及びシリンダブロック
により形成する往復動内燃機関の燃焼室内に、燃料供給
源に連通し、燃料噴射弁からなる燃料供給装置により内
燃機関の所定工程中に所定量の燃料を噴射供給する主た
る噴射を行い着火燃焼させると共に一旦噴射率を減少し
、その後、前記の主たる噴射に引き続いて再び噴射率を
増大し、前記燃料供給装置より所定量の燃料を所定の時
期に噴射供給する副次的な噴射を行い、前記の主たる噴
射によって発生した火炎を前記の副次的な噴射の燃料噴
霧によって冷却し、燃焼により酸化窒素が生成されてい
る途中で生成を抑制せしめて該酸化窒素の排出を低減す
るようにしたことを特徴とする内燃機関の酸化窒素低減
方法。
(1) A predetermined amount of fuel is supplied into the combustion chamber of a reciprocating internal combustion engine formed by a piston, a cylinder head, and a cylinder block during a predetermined process of the internal combustion engine by a fuel supply device that communicates with a fuel supply source and consists of a fuel injection valve. A main injection is carried out to cause ignition and combustion, and the injection rate is once reduced, and then, following the main injection, the injection rate is increased again, and a predetermined amount of fuel is injected and supplied from the fuel supply device at a predetermined time. The flame generated by the main injection is cooled by the fuel spray of the secondary injection, and the production of nitrogen oxide is suppressed while it is being generated by combustion, thereby reducing the oxidation. A method for reducing nitrogen oxide in an internal combustion engine, characterized by reducing nitrogen emissions.
(2)ピストン、シリンダヘッド及びシリンダブロック
により形成する往復動内燃機関の燃焼室を有し、該燃焼
室内に燃料供給源に連通し、主たる噴射を行う第1の燃
料供給手段と、副次的な噴射を行う第2の燃料供給手段
と、前記第1及び第2の燃料供給手段の位相差を制御す
る位相制御手段と燃料噴射弁からなる燃料供給装置を設
け、前記の第1の燃料供給手段に基づき主たる噴射によ
って発生した火炎を前記の第2の燃料供給手段に基づき
副次的な噴射の燃料噴霧によって冷却し、燃焼により酸
化窒素が生成されている途中で生成を抑制せしめて該酸
化窒素の排出を低減するようにしたことを特徴とする内
燃機関の酸化窒素低減装置。
(2) A reciprocating internal combustion engine has a combustion chamber formed by a piston, a cylinder head, and a cylinder block, and has a first fuel supply means communicating with a fuel supply source in the combustion chamber and performing main injection, and a secondary fuel supply means. a fuel supply device consisting of a second fuel supply means for performing an injection, a phase control means for controlling a phase difference between the first and second fuel supply means, and a fuel injection valve; The flame generated by the main injection based on the second fuel supply means is cooled by the fuel spray of the secondary injection based on the second fuel supply means, and the production of nitrogen oxide is suppressed while it is being generated by combustion, thereby reducing the oxidation. A nitrogen oxide reduction device for an internal combustion engine, characterized in that it reduces nitrogen emissions.
JP23803588A 1988-09-22 1988-09-22 Method and apparatus for reducing nitric oxide in an internal combustion engine Expired - Lifetime JP3280015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23803588A JP3280015B2 (en) 1988-09-22 1988-09-22 Method and apparatus for reducing nitric oxide in an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23803588A JP3280015B2 (en) 1988-09-22 1988-09-22 Method and apparatus for reducing nitric oxide in an internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0286941A true JPH0286941A (en) 1990-03-27
JP3280015B2 JP3280015B2 (en) 2002-04-30

Family

ID=17024204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23803588A Expired - Lifetime JP3280015B2 (en) 1988-09-22 1988-09-22 Method and apparatus for reducing nitric oxide in an internal combustion engine

Country Status (1)

Country Link
JP (1) JP3280015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834983B2 (en) 2019-07-15 2023-12-05 The Research Foundation For The State University Of New York Method for control of advanced combustion through split direct injection of high heat of vaporization fuel or water fuel mixtures

Also Published As

Publication number Publication date
JP3280015B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US6401688B2 (en) Auto-ignition combustion management in internal combustion engine
EP0767303B1 (en) Diesel engine
JP4472932B2 (en) Engine combustion control device
EP1918554B1 (en) Cylinder Direct Injection Type Internal Combustion Engine
CN1985084B (en) Combustion chamber for internal combustion engine
EP1424481A2 (en) Diesel engine
JP5494545B2 (en) Spark ignition gasoline engine
JP2002206446A5 (en)
JP2003097317A (en) Method for controlling ignition timing of premixed compression-ignition engine
KR20010024363A (en) Catalyst light-off method and device for direct injection engine
US11118528B2 (en) Fuel injection control device for engine
US11313311B2 (en) Fuel injection control device for engine
US11162448B2 (en) Fuel injection control device for engine
US11149675B2 (en) Fuel injection control device for engine
US10309325B2 (en) Control device for internal combustion engine
JP5126421B2 (en) Combustion control device for internal combustion engine
EP0958450B1 (en) Direct injection spark ignition engine
JP3953346B2 (en) Sub-chamber lean combustion gas engine
JPH0286941A (en) Nitrogen oxide abating method and device for internal combustion engine
WO2011118029A1 (en) Combustion controller for internal combustion engine
JP6292249B2 (en) Premixed compression ignition engine
EP0958451B1 (en) Direct injection spark ignition engine
JP2007077996A (en) Internal combustion engine and its fuel injection control device
JPS63248910A (en) Nitrogen oxide reducing method and device therefor in internal combustion engine
JP2006169976A (en) Fuel injector of internal combustion engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7