Nothing Special   »   [go: up one dir, main page]

JPH0283339A - Production of diene oligomer - Google Patents

Production of diene oligomer

Info

Publication number
JPH0283339A
JPH0283339A JP23740188A JP23740188A JPH0283339A JP H0283339 A JPH0283339 A JP H0283339A JP 23740188 A JP23740188 A JP 23740188A JP 23740188 A JP23740188 A JP 23740188A JP H0283339 A JPH0283339 A JP H0283339A
Authority
JP
Japan
Prior art keywords
reaction
diene
temperature
diene monomer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23740188A
Other languages
Japanese (ja)
Inventor
Yoshihisa Yamazaki
嘉久 山崎
Takeshi Endo
遠藤 武司
Shoji Kitatsume
北爪 昭治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP23740188A priority Critical patent/JPH0283339A/en
Publication of JPH0283339A publication Critical patent/JPH0283339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain an oligomer from a diene monomer in liquid phase in the presence of a complex catalyst in high yield while preventing the highly polymerizing reaction by evaporating the diene monomer during the reaction, thereby controlling the reaction temperature by the latent heat of evaporation. CONSTITUTION:A diene compound such as butadiene and isoprene is made to react in a liquid phase in the presence of a complex catalyst (preferably a Ti-based catalyst) to obtain an oligomer (e.g., octatriene, cyclooctadiene or methyloctatriene). The reaction temperature is controlled with the latent heat of evaporation absorbed by evaporating the diene compound during the reaction. The evaporated reaction mixture composed mainly of the diene monomer is condensed by cooling with air or water and returned to the reaction chamber. Since the cooling capability is increased by increasing the molar fraction of the diene monomer in the reaction system, it is preferable to perform the reaction by using the reaction solvent as little as possible or without using the solvent.

Description

【発明の詳細な説明】 〔発明の背景〕 産業上の利用分野 本発明は、ブタジェン、イソプレン等のジエン類を錯体
触媒の存在下にオリゴマー化して、ジエン類の二、三量
体等を製造する方法に関する。
[Detailed Description of the Invention] [Background of the Invention] Industrial Field of Application The present invention is directed to the oligomerization of dienes such as butadiene and isoprene in the presence of a complex catalyst to produce di- and trimers of dienes. Regarding how to.

従来の技術 従来、共役ジエン類のオリゴマー化は、例えば、特公昭
60−59216号公報記載の方法の様に、オートクレ
ーブに錯体触媒、溶媒、モノマーとしてのジエン類を入
れて反応させ、反応に伴って発生する熱は単にオートク
レーブ本体のジャケットに外部から通水することで除去
して来た。
BACKGROUND OF THE INVENTION Conventionally, oligomerization of conjugated dienes has been carried out by placing a complex catalyst, a solvent, and dienes as monomers in an autoclave, and reacting them as described in, for example, Japanese Patent Publication No. 60-59216. The heat generated during autoclaving has been removed simply by passing water through the jacket of the autoclave body from the outside.

しかしながらこの様な方法では、触媒量を増加して反応
速度を早めて製造時間を短縮しようとしたり、また溶媒
量を減らしてその分モノマーとしてのジエン類を増加さ
せて1バッチ当りの生産量を増加させようとすると、し
ばしば反応熱が大き過ぎて冷却能力が追いつかず、反応
温度および圧力が急上昇して危険であった。また、反応
温度の上昇は、ジエン類および生成物の高重合を招き、
その結果、本来の目的化合物であるジエンオリゴマーの
極端な収率低下だけでなく、反応槽が高粘性重合物によ
り汚染され、次の生産の際の触媒被毒を起したり、壁面
への高重合物の付着により熱伝導度が悪化して熱除去に
支障をきたしたりした。
However, in these methods, attempts are made to increase the amount of catalyst to accelerate the reaction rate and shorten the production time, or to reduce the amount of solvent and increase the amount of dienes as monomers to increase the production amount per batch. If an attempt was made to increase the reaction heat, the reaction heat was often so large that the cooling capacity could not keep up, resulting in a dangerous rise in the reaction temperature and pressure. In addition, an increase in reaction temperature leads to high polymerization of dienes and products,
As a result, not only is the yield of the diene oligomer, which is the original target compound, extremely reduced, but the reaction tank is also contaminated with highly viscous polymers, which may cause catalyst poisoning in the next production and cause high-density build-up on the walls. Due to the adhesion of polymers, the thermal conductivity deteriorates, causing problems in heat removal.

[発明の概要] 本発明は、これ等の点に解決を与えることを目的とし、
容易にその反応温度の制御か可能で、かつ、高収率のジ
エンオリゴマーの製造法を提供するものである。
[Summary of the invention] The present invention aims to solve these problems,
The present invention provides a method for producing diene oligomers in which the reaction temperature can be easily controlled and at a high yield.

要旨 すなわち本発明は、液相でジエンモノマーからそのオリ
ゴマーを錯体触媒の存在下で製造する方法において、主
として、重合反応中にジエンモノマーを気化させ、その
蒸発潜熱によって、反応温度制御を行うことを特徴とす
るもの、である。
Summary: The present invention is a method for producing oligomers from diene monomers in the presence of a complex catalyst in a liquid phase, mainly by vaporizing diene monomers during the polymerization reaction and controlling the reaction temperature using the latent heat of vaporization. It is a characteristic feature.

効果 本発明によれば、容易にその反応温度の制御が可能で、
かつ、高収率でジエンオリゴマーを製造できる。さらに
、本発明は、反応溶媒を必要としないジエンオリゴマー
の無溶媒低重合法をも提供し得るものである。
Effects According to the present invention, the reaction temperature can be easily controlled,
Moreover, diene oligomers can be produced in high yield. Furthermore, the present invention can also provide a method for solvent-free low polymerization of diene oligomers that does not require a reaction solvent.

[発明の詳細な説明コ ジエンモノマーおよびそのオリゴマ 本発明の製造法が適用可能なジエンモノマーとは、炭素
数4〜12のジエンをいうものとし、具体例としては、
ブタジェン、イソプレ、ピペリレン、1,3−へキサジ
エン、1,3−オクタジエン、1,3−ドデカジエン、
5−メチル−1,3−ヘキサジエン、6−エチル−1,
3−オクタジエン等が挙げられる。本発明の製造法に特
に好ましいのは、炭素数が4〜5のジエン、例えば、ブ
タジェン、イソプレン、ピペリレンである。
[Detailed description of the invention Codiene monomer and its oligomer The diene monomer to which the production method of the present invention can be applied refers to a diene having 4 to 12 carbon atoms, and specific examples include:
butadiene, isopre, piperylene, 1,3-hexadiene, 1,3-octadiene, 1,3-dodecadiene,
5-methyl-1,3-hexadiene, 6-ethyl-1,
Examples include 3-octadiene. Particularly preferred for the production method of the invention are dienes having 4 to 5 carbon atoms, such as butadiene, isoprene, piperylene.

本発明が適用可能なジエンは、共役ジエンに限られず、
ジエン重合が可能なものであればよい。
The dienes to which the present invention is applicable are not limited to conjugated dienes,
Any material capable of diene polymerization may be used.

従って、例えばブタジェンとは、1,3−ブタジェンの
みならず、1,2−ブタジェンをも包含するものである
Therefore, for example, butadiene includes not only 1,3-butadiene but also 1,2-butadiene.

また、本発明の方法で製造可能なジエンオリコマ−とは
、前記したジエン類の2〜数量体、好ましくは2〜3全
体、である。
Furthermore, the diene oligomer that can be produced by the method of the present invention is a dimer or mer of the above-mentioned dienes, preferably a whole of 2 or 3.

本発明によって製造可能なジエンオリゴマーの具体例と
しては、次のようなものが挙げられる。
Specific examples of diene oligomers that can be produced by the present invention include the following.

ブタジェンより誘導されるオクタトリエン、ドデカテト
ラエン、ヘキサデカペンタエン類、シクロオクタジエン
(COD) 、シクロドデカトリエン(CDT)等、イ
ソプレンから誘導されるジメチルオクタトリエン、トリ
メチルドデカテトラエン、ジメチルンクロオクタジエン
(DMCOD)、トリメチルンクロドデカトリエン(T
MCDT)類等、ピペリレンから誘導されるオクタトリ
エン、DMCODSTMCDT類等である。
Octatriene, dodecatetraene, hexadecapentenes, cyclooctadiene (COD), cyclododecatriene (CDT) etc. derived from butadiene, dimethyloctatriene, trimethyldodecatetraene, dimethyloctatriene derived from isoprene, etc. diene (DMCOD), trimethylchlordodecatriene (T
MCDT), octatriene derived from piperylene, DMCODSTMCDT, etc.

また、本発明によって製造可能なジエンオリゴマーは、
複数のジエンモノマーの共重合によって得られるもので
あってもよく、例えば、ブタジェンとイソプレンとより
得られるメチルオクタトリエン、ジメチルドデカテトラ
エン、メチルシクロオクタジエン、メチルンクロドデカ
トリエン、ジメチルシクロドデカトリエン等の共二・三
量体等を挙げることができる。
Furthermore, the diene oligomer that can be produced by the present invention is
It may be obtained by copolymerizing multiple diene monomers, such as methyloctatriene, dimethyldodecatetraene, methylcyclooctadiene, methylcyclododecatriene, dimethylcyclododecatriene, etc. obtained from butadiene and isoprene. Examples include co-dimers and trimers of .

触媒および溶媒 本発明の方法に使用可能な錯体触媒としては、ジエン重
合によるジエンオリゴマーの製造に用いられる公知の触
媒が使用可能である。この錯体触媒の具体例としては、
Ti系触媒(特公昭487628号公報、特公昭48−
19304号公報、特公昭49−4456号公報、特公
昭49−4215号公報、特公昭49−33957号公
報、特公昭50−37186号公報、特公昭60592
16号公報等参照)、Nl系触媒(特公昭38−168
82号公報、特公昭43−22975号公報、特公昭4
9−56950号公報、特公昭49−56951号公報
、特公昭50−31138号公報、特開昭50−939
41号公報、特開昭51−68504号公報、特開昭5
1−98242号公報等参照)、Fe系触媒(Bull
、 Chem、 Soc、 Jpn、、 391357
(1966)等参照)、Zr系触vX、(Bull、 
Chem、 Soc、 Jpn、、 422303(1
909)、特公昭48−30603号公報、特開昭51
−29403号公報、特公昭53−5642号公報、米
国特許第4,071,575号明細書等参照)、Pd系
触媒(Bull、 Chem、 Soc、 Jpn、。
Catalyst and Solvent As the complex catalyst that can be used in the method of the present invention, known catalysts used in the production of diene oligomers by diene polymerization can be used. Specific examples of this complex catalyst include:
Ti-based catalyst (Japanese Patent Publication No. 487628, Japanese Patent Publication No. 48-
19304, Japanese Patent Publication No. 49-4456, Japanese Patent Publication No. 49-4215, Japanese Patent Publication No. 33957-1982, Japanese Patent Publication No. 37186-1986, Japanese Patent Publication No. 60592.
16), Nl-based catalyst (Japanese Patent Publication No. 38-168)
82 Publication, Special Publication No. 43-22975, Special Publication No. 4
9-56950, JP 49-56951, JP 50-31138, JP 50-939
No. 41, JP-A-51-68504, JP-A-Sho 5
1-98242 etc.), Fe-based catalyst (Bull
, Chem, Soc, Jpn, 391357
(1966), etc.), Zr-based contact vX, (Bull,
Chem, Soc, Jpn, 422303 (1
909), Japanese Patent Publication No. 48-30603, Japanese Patent Application Publication No. 1973
-29403, Japanese Patent Publication No. 53-5642, US Pat. No. 4,071,575, etc.), Pd-based catalysts (Bull, Chem, Soc, Jpn, etc.).

461300(1973)、日化誌 88130B(1
967) 、特開昭52−23006号公報、特開昭5
3−98907号公報等参照)等が挙げられる。これら
の中でも、初期活性が極めて高く、従って初期に発熱の
激しいTi系触媒に、本発明は特に有効である。
461300 (1973), diary 88130B (1
967), JP-A No. 52-23006, JP-A-Sho 5
3-98907, etc.). Among these, the present invention is particularly effective for Ti-based catalysts which have extremely high initial activity and therefore generate intense heat in the initial stage.

本発明のジエンのオリゴマー化の反応は、適当な反応溶
媒中で実施することができる。用いられる溶媒は、ジエ
ンモノマーおよび使用する触媒の種類に応じて適当な溶
媒系の中から適宜選択できる。溶媒量は、ジエンモノマ
ーに対して20重量%以下、好ましくは10重量%以下
、で実施できる。
The diene oligomerization reaction of the present invention can be carried out in a suitable reaction solvent. The solvent used can be appropriately selected from among suitable solvent systems depending on the diene monomer and the type of catalyst used. The amount of solvent can be 20% by weight or less, preferably 10% by weight or less based on the diene monomer.

但し、本発明においては、後述するように、溶媒を使用
しないで重合反応を行うことも可能であり、本発明にお
いて溶媒の使用は必ずしも必須ではない。
However, in the present invention, as described later, it is also possible to carry out the polymerization reaction without using a solvent, and the use of a solvent is not necessarily essential in the present invention.

本発明に使用可能な溶媒の具体例としては、ベンゼン、
トルエン、キシレン等の芳香族溶媒、ヘキサン、ヘプタ
ン等のパラフィン系溶媒等が挙げられる。また、生成し
たジエンオリゴマーも実質上溶媒として機能する。
Specific examples of solvents that can be used in the present invention include benzene,
Examples include aromatic solvents such as toluene and xylene, and paraffinic solvents such as hexane and heptane. Furthermore, the generated diene oligomer also substantially functions as a solvent.

反応および反応装置 本発明のジエン重合反応は、以下に述べる改変を加える
点を除き、またこれに伴う反応装置の改変を除けば、公
知のジエン類の低重合反応と変わるところはない。公知
のジエン類のオリゴマー化については、底置ないし総説
、例えば有機合成化学協会誌、41 (2) 154(
1983)等を参照すればよい。
Reaction and Reaction Apparatus The diene polymerization reaction of the present invention is the same as the known low polymerization reaction of dienes, except for the modifications described below and the accompanying modifications to the reaction apparatus. Regarding the oligomerization of known dienes, please refer to the basics and reviews, for example, Journal of the Society of Organic Synthetic Chemistry, 41 (2) 154 (
1983) etc. may be referred to.

本発明のジエン類のジエン重合反応は、反応槽中に、モ
ノマーとしてのジエン類、反応触媒、必要に応じて溶媒
等を入れて実施される。一般に、ジエン重合反応は発熱
反応であることから、反応を定常的に進行させるには、
この発生した熱を除去して反応温度の上昇を防ぎ、かつ
、この反応温度を所望の値に安定に保つことが必要であ
る。
The diene polymerization reaction of dienes of the present invention is carried out by placing the dienes as monomers, a reaction catalyst, and if necessary a solvent in a reaction tank. Generally, the diene polymerization reaction is an exothermic reaction, so in order to make the reaction proceed steadily,
It is necessary to remove the generated heat to prevent the reaction temperature from rising and to stably maintain the reaction temperature at a desired value.

本発明では、この重合反応熱の除去を、反応混合物、主
としてモノマーとしてのジエン、の気化潜熱を利用して
行なおうとするものである。すなわち、反応槽中には未
反応のジエンモノマー、生成したジエンオリゴマーおよ
び場合により溶媒等からなる反応混合物が存在するが、
本発明では重合反応熱によってこの反応混合物を気化さ
せ、その際にこの反応混合物の気化潜熱相当の熱量が反
応混合物中から除かれる点を利用して、反応熱を除去し
、反応温度を制御しようするものである。
In the present invention, the heat of the polymerization reaction is removed by utilizing the latent heat of vaporization of the reaction mixture, mainly diene as a monomer. That is, a reaction mixture consisting of unreacted diene monomer, generated diene oligomer, and optionally a solvent is present in the reaction tank.
In the present invention, the reaction mixture is vaporized by the heat of polymerization reaction, and at that time, the amount of heat equivalent to the latent heat of vaporization of the reaction mixture is removed from the reaction mixture. This is used to remove the reaction heat and control the reaction temperature. It is something to do.

特に、反応混合物中のジエンモノマーの沸点は他の反応
混合物のそれと比較して比較的低いことから、発生した
重合反応熱によって気化するするのは主としてこのジエ
ンモノマーであり、気化の際、このジエンモノマーの気
化潜熱相当の熱量を、反応混合物から除くことができる
In particular, since the boiling point of the diene monomer in the reaction mixture is relatively low compared to that of other reaction mixtures, it is mainly this diene monomer that is vaporized by the generated polymerization reaction heat, and during vaporization, this diene monomer is An amount of heat equivalent to the latent heat of vaporization of the monomer can be removed from the reaction mixture.

気化した主としてジエンモノマーからなる反応混合物は
、続いて、冷却されて凝縮され、再び反応槽に戻されて
反応に与かるようにするのが一般的であろう。本発明に
おける冷却手段は、気化したジエンモノマーを少なくと
も凝縮可能な熱交換器であれば特に限定されないが、空
冷もしくは水冷の凝縮器が好ましく用いられる。
The vaporized reaction mixture, consisting primarily of diene monomer, will then typically be cooled, condensed, and returned to the reactor to participate in the reaction. The cooling means in the present invention is not particularly limited as long as it is a heat exchanger that can at least condense the vaporized diene monomer, but an air-cooled or water-cooled condenser is preferably used.

反応温度の制御は、反応の進行に伴い自動的に行われる
。すなわち、反応かさほど激しくないときには発熱はそ
れ程大きくなく、その結果、反応混合物の気化もその発
熱に対応した量となり、他方、反応か激しく進行した場
合にはそれに伴い発熱が大きくなるが、その結果、反応
混合物の気化が活発となり、発熱量に対応した熱量除去
が行われる。以上のように、本発明の製造法においては
、反応の状態に応じた反応熱の除去が自動的に行われる
こととなる。
The reaction temperature is automatically controlled as the reaction progresses. In other words, when the reaction is not very violent, the heat generation is not that large, and as a result, the amount of vaporization of the reaction mixture is corresponding to the heat generation.On the other hand, when the reaction proceeds violently, the heat generation increases, but as a result, , the reaction mixture becomes actively vaporized, and the amount of heat corresponding to the amount of heat generated is removed. As described above, in the production method of the present invention, reaction heat is automatically removed depending on the reaction state.

さらに、反応温度の制御の補助的手段として、この反応
混合物の冷却手段への供給量および/または反応槽へ戻
す冷却凝縮物の量を制御することが有効となろう。この
制御手段は、通常は、バルブ等によって行われるのが好
ましい。また、冷却手段の冷却効率を、例えば水冷凝縮
器の場合通す水量を調整することで、調整して、反応温
度の制御を行なうことも可能である。
Furthermore, as an aid to controlling the reaction temperature, it may be useful to control the amount of this reaction mixture fed to the cooling means and/or the amount of cooled condensate returned to the reaction vessel. This control means is usually preferably implemented by a valve or the like. It is also possible to control the reaction temperature by adjusting the cooling efficiency of the cooling means, for example, by adjusting the amount of water passed through a water-cooled condenser.

さらに、反応系内を減圧または加圧してモノマーとして
のジエン類の沸点を所望の温度となるようにして、反応
を所望の温度で実施することもできる。例えば、TMC
DTを製造する場合は50℃以下が望ましく、水沫によ
れば45℃以下に制御することが可能である。
Furthermore, the reaction can be carried out at a desired temperature by reducing or increasing the pressure in the reaction system so that the boiling point of the diene as a monomer becomes a desired temperature. For example, TMC
When producing DT, the temperature is desirably 50°C or lower, and according to Mizuyoshi, it is possible to control the temperature to 45°C or lower.

以上述べたように、本発明においては、反応状況に応じ
た反応熱の除去ができることから、従来に比較して容易
かつ安定な反応の制御が可能となる。さらに本発明は、
従来の冷却法では対応しきれなかったような、触媒量を
多くして反応速度を早めたり、溶媒量を減らしてモノマ
ーとしてのジエン類の量を増やしてバッチ当りの生産量
を上げようとするような改変にも、有効に対応しうるち
のである。触媒量は、共役ジエン1モル当り、lXl0
’〜lXl0−1モル遷移金属触媒、好ましくは1×1
02モル遷移金属触媒、である。
As described above, in the present invention, the reaction heat can be removed depending on the reaction situation, so that the reaction can be controlled more easily and stably than in the past. Furthermore, the present invention
Attempts to increase production per batch by increasing the amount of catalyst to speed up the reaction rate, or reducing the amount of solvent and increasing the amount of dienes as monomers, which cannot be achieved using conventional cooling methods. It can effectively cope with such modifications. The amount of catalyst is lXl0 per mole of conjugated diene.
'~lXl0-1 mol transition metal catalyst, preferably 1x1
02 molar transition metal catalyst.

本発明の製造法の利用が特に有効となるのは、チタン系
の触媒のように、常温付近の様な比較的低温に於いて極
めて反応活性か高く、かつ、触媒寿命か短いことからモ
ノマーを一括フイードして、短時間で反応を終了させな
ければならない場合である。この様な比較的低温(例え
ば、約40°C程度)で反応を進行させなければならな
い場合においては、従来のように反応槽のオートクレー
ブのジャケットに通水したり、また反応槽中にインナー
コイルを入れて除熱しようとしていたのでは、反応系と
冷却水の温度差が小さく、温度制御が難しい。一方、本
発明によれば、この様な場合においても、所望の温度に
おいて、反応を安定に進行させることが可能である。
The use of the production method of the present invention is particularly effective because monomers such as titanium-based catalysts have extremely high reaction activity at relatively low temperatures, such as around room temperature, and have a short catalyst life. This is the case when the reaction must be completed in a short time by feeding all at once. When the reaction must proceed at such a relatively low temperature (for example, about 40°C), it is necessary to pass water through the autoclave jacket of the reaction tank as in the past, or to install an inner coil in the reaction tank. If the temperature difference between the reaction system and the cooling water was small, temperature control would be difficult. On the other hand, according to the present invention, even in such a case, it is possible to allow the reaction to proceed stably at a desired temperature.

さらに本発明の製造法においては、その反応温度を所望
の値に安定に制御可能となることから、ジエンの高重合
のような副反応を有効に防止することができる。従って
、従来見られたような、高粘性重合物による反応槽の汚
染や触媒被毒等の問題をも解決することができる。
Furthermore, in the production method of the present invention, since the reaction temperature can be stably controlled to a desired value, side reactions such as high diene polymerization can be effectively prevented. Therefore, it is possible to solve the conventional problems such as contamination of the reaction tank and poisoning of the catalyst due to highly viscous polymers.

また、本発明の製造法における除熱能力は、反応系内の
ジエンモノマー0モル分率が大きいほど大きいので、本
発明の製造法においては、出来るだけ少ない反応溶媒で
、さらには反応溶媒を用いないで、重合反応を行った方
が、重合反応熱除去という観点からは好ましいといえる
。さらに、バッチあたりのモノマー量が増加することか
ら、バッチあたりの生産効率の向上も図ることができる
点でも有利となろう。
In addition, the heat removal ability in the production method of the present invention increases as the zero mole fraction of diene monomer in the reaction system increases. It can be said that it is preferable from the viewpoint of removing the heat of the polymerization reaction to carry out the polymerization reaction without the reaction. Furthermore, since the amount of monomer per batch increases, it is also advantageous in that production efficiency per batch can be improved.

また、従来のジエン重合法においては、反応の暴走時に
おいても安全を確保するため高圧反応器が必須であった
が、本発明の製造法においては、低圧(5kg/ cd
G以下)反応器を用いることができる。
In addition, in the conventional diene polymerization method, a high-pressure reactor was essential to ensure safety even in the event of a runaway reaction, but in the production method of the present invention, a low-pressure reactor (5 kg/cd
(G and below) reactors can be used.

したがって、本発明の製造法に用いられる反応装置の具
体例は、第1図に示されるようなものである。第1図に
おいて、1は触媒調製槽を、2は反応槽を、3は凝縮器
(オーバーヘッドコンデンサー)を、それぞれ示す。
Therefore, a specific example of the reaction apparatus used in the production method of the present invention is as shown in FIG. In FIG. 1, 1 is a catalyst preparation tank, 2 is a reaction tank, and 3 is a condenser (overhead condenser).

本発明の重合反応を第1図を用いて説明すれば、丁記の
通りである。まず触媒調製槽1に触媒および必要に応じ
て溶媒を入れ、撹拌調整し、それを反応槽2に入れる。
The polymerization reaction of the present invention can be explained using FIG. 1 as described above. First, a catalyst and, if necessary, a solvent are put into a catalyst preparation tank 1, stirred and adjusted, and then put into a reaction tank 2.

ついで反応槽2にジエン類をいれ、撹拌して反応を開始
する。反応の進行に伴って発生する反応熱によって、主
として未反応のジエンモノマーが気化する。気化したジ
エンモノマーは、バルブ6を介してオーバーヘッドコン
デンサー3に入り、ここで冷却され凝縮される。凝縮さ
れたジエンモノマーは、再びバルブ6を通り、反応槽2
に戻り反応に与かる。このジエンモノマーの一連の気化
、冷却、凝縮のサイクルによって、反応熱が反応槽中の
反応混合物から除かれ、反応温度の制御が可能となる。
Then, dienes are put into the reaction tank 2 and stirred to start the reaction. Unreacted diene monomer is mainly vaporized by reaction heat generated as the reaction progresses. The vaporized diene monomer enters the overhead condenser 3 via valve 6, where it is cooled and condensed. The condensed diene monomer passes through valve 6 again and enters reaction tank 2.
return to the reaction. This series of vaporization, cooling, and condensation cycles of the diene monomer removes the heat of reaction from the reaction mixture in the reactor, allowing control of the reaction temperature.

〔実施例〕〔Example〕

実施例1 第1図に示すような150gの反応装置において、まず
触媒調整槽1へ、窒素ガス下、脱水脱気したトルエン2
リツトル、四塩化チタン21g1エチルアルミニウムセ
スキクロリド181g、およびジメチルスルホオキシド
8.5gを入れ、撹拌翼9で撹拌混合した後、これを反
応槽2へ導入した。次いで脱水脱気したブタジェン76
kgを反応槽へ入れた。窒素加圧後、撹拌翼10て撹拌
しながら昇温し、オーバヘッドコンデンサーのバルブコ
ントロールにより反応槽内温度を40℃に保って3時間
反応させた。
Example 1 In a 150 g reactor as shown in FIG.
21 g of titanium tetrachloride, 181 g of ethylaluminum sesquichloride, and 8.5 g of dimethyl sulfoxide were added, and after stirring and mixing with a stirring blade 9, this was introduced into the reaction tank 2. Then dehydrated and degassed Butadiene 76
kg was put into the reaction tank. After pressurizing with nitrogen, the temperature was raised while stirring with a stirring blade 10, and the temperature inside the reaction tank was maintained at 40° C. by valve control of the overhead condenser, and the reaction was carried out for 3 hours.

冷却後、反応槽バルブ8から取り出した反応粗液をガス
クロマトグラフィーにより分析した結果、ブタジェンの
反応率は98.6%で、シクロドデカトリエン(CDT
)は68.7kg得られ、収率は90,4%であった。
After cooling, the reaction crude liquid taken out from the reaction tank valve 8 was analyzed by gas chromatography. As a result, the reaction rate of butadiene was 98.6%, and the reaction rate of butadiene was 98.6%.
) was obtained in an amount of 68.7 kg, with a yield of 90.4%.

比較例1 トルエンを20リツトルにし、ブタジェンを60kgに
変え、更にオーバーヘッドコンデンサーのバルブ6を閉
じて、冷却は通水ジャケット4に通水(約20℃)して
行った以外は実施例1と同様にして、反応を行った。
Comparative Example 1 Same as Example 1 except that toluene was changed to 20 liters, butadiene was changed to 60 kg, the valve 6 of the overhead condenser was closed, and cooling was performed by passing water through the water jacket 4 (approximately 20°C). and the reaction was carried out.

反応開始後、反応温度制御不能となり、反応温度は約1
80℃、圧力は12〜3 kg / caまで上昇した
After the reaction started, the reaction temperature became uncontrollable and the reaction temperature decreased to about 1
At 80 °C, the pressure rose to 12-3 kg/ca.

冷却後、反応粗液を分析した結果、ブタジェンの反応率
は99.4%で、CDTは17.2kg得られ収率は2
8.6%であった。また粗液の粘度も高く、高重合を起
していた。反応槽はこの高重合物によりtり染され、次
の反応を行う際は洗浄せざるを得なかった。
After cooling, the reaction crude liquid was analyzed, and the reaction rate of butadiene was 99.4%, and 17.2 kg of CDT was obtained, with a yield of 2.
It was 8.6%. Furthermore, the viscosity of the crude liquid was high, and high polymerization occurred. The reaction tank was dyed with this highly polymerized product, and had to be washed before the next reaction.

実施例2 第1図に示すような反応装置において、触媒調整槽1へ
、窒素ガス下、トルエン0,5リツトル、四塩化チタン
15mL 4.4’  −ジクロルベンゾフェノン34
g1およびジメチルスルホオキシド5.4gを入れ、混
合撹拌しながら150リットル反応槽2へ入れた。次に
反応槽2へ脱水脱気したイソプレン85kgを入れ、混
合撹拌しなからジエチルアルミニウムクロリド145g
を入れ、昇温を行った。40℃に達した後、オーバーヘ
ッドコンデンサー3のバルブ6を開いて、イソプレンの
蒸発の潜熱により反応温度制御を行って、3時間反応さ
せた。
Example 2 In a reaction apparatus as shown in FIG. 1, 0.5 liters of toluene, 15 mL of titanium tetrachloride, 4.4'-dichlorobenzophenone 34, were added to the catalyst adjustment tank 1 under nitrogen gas.
g1 and 5.4 g of dimethyl sulfoxide were added to the 150-liter reaction tank 2 while stirring. Next, put 85 kg of dehydrated and degassed isoprene into reaction tank 2, mix and stir, and then add 145 g of diethyl aluminum chloride.
was added and the temperature was raised. After the temperature reached 40° C., the valve 6 of the overhead condenser 3 was opened, the reaction temperature was controlled by the latent heat of vaporization of isoprene, and the reaction was carried out for 3 hours.

冷却後ミ反応粗液を分析した結果、イソプレン反応率は
98.3%で、トリメチルシクロドデカトリエン(TM
CDT)は56.1kg得られ収率は66.0%であっ
た。
After cooling, the crude reaction solution was analyzed, and the isoprene reaction rate was 98.3%, and trimethylcyclododecatriene (TM
CDT) was obtained in an amount of 56.1 kg, and the yield was 66.0%.

比較例2 オーバーヘッドコンデンサー3へのバルブ6を閉じ、反
応槽中にインナーコイルを設置し、トルエンを20リツ
トル、イソプレン70kgへ変更した以外は実施例2と
同様にして、40℃に昇温しで反応を行った。反応温度
の制御は、ジャケットおよびインナーコイルへの通水に
より行ったが、反応熱除去不能となり、反応温度は18
0℃、圧力は約10kg/c−まで上昇した。
Comparative Example 2 The temperature was raised to 40°C in the same manner as in Example 2, except that the valve 6 to the overhead condenser 3 was closed, an inner coil was installed in the reaction tank, and the amount of toluene was changed to 20 liters and 70 kg of isoprene. The reaction was carried out. The reaction temperature was controlled by passing water through the jacket and inner coil, but the reaction heat could not be removed and the reaction temperature was 18.
At 0°C, the pressure rose to about 10 kg/c-.

冷却後、反応粗液を抜き出し分析した結果、イソプレン
の反応率は99.7%てあり、TMCDTは17.7k
gに減少し、収率は25.396であった。また、反応
槽2にはイソプレンの高重合体が付着し、洗浄しなけれ
ば次の反応を行えなかった。
After cooling, the reaction crude liquid was extracted and analyzed, and the reaction rate of isoprene was 99.7%, and TMCDT was 17.7k.
The yield was 25.396 g. Further, a high polymer of isoprene adhered to the reaction tank 2, and the next reaction could not be carried out unless it was cleaned.

実施例3 実施例1と同様にして、トルエン1. 6kg、ニッケ
ルアセチルアセトネート252g、クレジルフォスファ
イト450g、l−リエチルアルミニウ228g、ブタ
ジェン76kgを反応槽1へ導入後、窒素加圧を行い、
95℃まで昇温しで反応させた。
Example 3 In the same manner as in Example 1, toluene 1. After introducing 6 kg of nickel acetylacetonate, 252 g of nickel acetylacetonate, 450 g of cresyl phosphite, 228 g of l-ethylaluminium, and 76 kg of butadiene into reaction tank 1, nitrogen was pressurized.
The reaction was carried out by raising the temperature to 95°C.

オーバーヘッドコンデンサー3へのバルブ6を開いて、
反応温度制御を行いながら、95℃で5時間反応させた
。反応終了後、冷却を行い、反応粗液を分析した結果、
ブタジェンの反応率は981%で、シクロオクタジエン
(COD)は69.4kg得られ、収率は91.396
であった。
Open valve 6 to overhead condenser 3;
The reaction was carried out at 95° C. for 5 hours while controlling the reaction temperature. After the reaction was completed, it was cooled and the crude reaction liquid was analyzed.
The reaction rate of butadiene was 981%, and 69.4 kg of cyclooctadiene (COD) was obtained, with a yield of 91.396.
Met.

実施例4 実施例1と同様にして、トルエン2リツトル、ニッケル
アセチルアセトネート328g、ペンタエリスリトール
フォスファイト107g、)リエチルアルミニウム29
6g、イソプレン85kgを反応槽1へ導入後、窒素加
圧を行い、95℃に昇温しで反応させた。オーバーヘッ
ドコンデンサー3により反応熱制御を行い、5時間反応
させた。
Example 4 In the same manner as in Example 1, 2 liters of toluene, 328 g of nickel acetylacetonate, 107 g of pentaerythritol phosphite, 29 g of ethylaluminum
After introducing 6 g of isoprene and 85 kg of isoprene into reaction tank 1, nitrogen pressure was applied, and the temperature was raised to 95° C. to cause a reaction. The reaction heat was controlled by an overhead condenser 3, and the reaction was carried out for 5 hours.

冷却した後、反応粗液を分析した結果、イソプレンの反
応率は97.6%で、T M CD Tは46.6kg
得られ、収率は54.8%であった。
After cooling, the reaction crude liquid was analyzed, and the reaction rate of isoprene was 97.6%, and T M CD T was 46.6 kg.
The yield was 54.8%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造法を実施するのに適した反応装
置の説明図である。 1・・・触媒調整槽、2・・・反応槽、3・・・凝縮器
(オーバーヘッドコンデンサー)、4・・・通水ジャケ
ット、5・・・触媒調整槽バルブ、6・・・凝縮器バル
ブ、7・・・通水ジャケットバルブ、8・・・反応槽バ
ルブ、9・・・触媒調整槽撹拌翼、10・・・反応槽撹
拌翼。
FIG. 1 is an explanatory diagram of a reaction apparatus suitable for carrying out the production method of the present invention. DESCRIPTION OF SYMBOLS 1... Catalyst adjustment tank, 2... Reaction tank, 3... Condenser (overhead condenser), 4... Water passage jacket, 5... Catalyst adjustment tank valve, 6... Condenser valve , 7... Water passage jacket valve, 8... Reaction tank valve, 9... Catalyst adjustment tank stirring blade, 10... Reaction tank stirring blade.

Claims (1)

【特許請求の範囲】[Claims] 1、液相でジエンモノマーからそのオリゴマーを錯体触
媒の存在下で製造する方法において、主として、重合反
応中にジエンモノマーを気化させ、その蒸発潜熱によっ
て、反応温度制御を行うことを特徴とする、ジエンオリ
ゴマーの製造法。
1. A method for producing oligomers from diene monomers in the presence of a complex catalyst in a liquid phase, which is mainly characterized by vaporizing the diene monomer during the polymerization reaction and controlling the reaction temperature using the latent heat of vaporization. Method for producing diene oligomers.
JP23740188A 1988-09-21 1988-09-21 Production of diene oligomer Pending JPH0283339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23740188A JPH0283339A (en) 1988-09-21 1988-09-21 Production of diene oligomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23740188A JPH0283339A (en) 1988-09-21 1988-09-21 Production of diene oligomer

Publications (1)

Publication Number Publication Date
JPH0283339A true JPH0283339A (en) 1990-03-23

Family

ID=17014847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23740188A Pending JPH0283339A (en) 1988-09-21 1988-09-21 Production of diene oligomer

Country Status (1)

Country Link
JP (1) JPH0283339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233959A (en) * 1991-09-18 1993-08-10 Mitsubishi Denki Kabushiki Kaisha Device for controlling an ignition timing for an internal combustion engine
US5345908A (en) * 1991-07-04 1994-09-13 Mitsubishi Denki Kabushiki Kaisha Electronic control device for an internal combustion engine
CN111635474A (en) * 2020-06-23 2020-09-08 北京化工大学 Synthesis method and synthesis system of butyl rubber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345908A (en) * 1991-07-04 1994-09-13 Mitsubishi Denki Kabushiki Kaisha Electronic control device for an internal combustion engine
US5233959A (en) * 1991-09-18 1993-08-10 Mitsubishi Denki Kabushiki Kaisha Device for controlling an ignition timing for an internal combustion engine
CN111635474A (en) * 2020-06-23 2020-09-08 北京化工大学 Synthesis method and synthesis system of butyl rubber

Similar Documents

Publication Publication Date Title
CA1276621C (en) Process and catalyst for the preparation of syndiotactic 1,2-polybutadiene
US4547475A (en) Magnesium halide catalyst support and transition metal catalyst prepared thereon
US4163831A (en) High efficiency titanate catalyst for polymerizing olefins
JP3633690B2 (en) Process for producing diene rubbers polymerized with Nd catalyst and exhibiting reduced cold flow and low intrinsic odor
EP0787703B1 (en) Production of vinylidene olefins
KR101627876B1 (en) Method for bulk polymerization
US9499455B2 (en) Process for the selective dimerisation of ethylene to 1-butene
JP2559072B2 (en) Method for producing one component of Ziegler-Natta catalyst
JPH0283339A (en) Production of diene oligomer
US6350833B1 (en) Method for the suspension polymerization of conjugated dienes
US3066128A (en) Polymerization process
US3446785A (en) Polymerization of olefins
US5914378A (en) Anionic copolymerization of conjugated dienes and vinyl arenes in the presence of alkyl ethers of tetrahydropyranyl methanol
US4362654A (en) Chromium-containing catalysts for polymerizing olefins
JPS58109512A (en) Production of reinforced polybutadiene rubber
Hsu et al. Preparation and characterization of crystalline 3, 4-polyisoprene
WO2011086580A2 (en) High-cis polybutadiene rubber in benign solvents and process for preparation thereof
WO2000001742A1 (en) Tetracyclododecene compositions and process for producing the same
US3962200A (en) Bulk polymerization using an organosiloxane anti-foam compound
JP4003364B2 (en) Method for producing crystalline 1,2-polybutadiene
US4100338A (en) Process for preparing solid polymers of norbornadiene
EP0092271A1 (en) Process for polymerising conjugate diolefins, and means suitable for this purpose
CN115445667B (en) Catalyst for ethylene oligomerization and application thereof
US4096320A (en) Process for the preparation of butyl rubber
SU1399307A1 (en) Method of producing cis-butadiene rubber