Nothing Special   »   [go: up one dir, main page]

JPH0275841A - Multi-room type air-conditioning machine - Google Patents

Multi-room type air-conditioning machine

Info

Publication number
JPH0275841A
JPH0275841A JP22723588A JP22723588A JPH0275841A JP H0275841 A JPH0275841 A JP H0275841A JP 22723588 A JP22723588 A JP 22723588A JP 22723588 A JP22723588 A JP 22723588A JP H0275841 A JPH0275841 A JP H0275841A
Authority
JP
Japan
Prior art keywords
expansion valve
electronic expansion
indoor unit
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22723588A
Other languages
Japanese (ja)
Other versions
JPH0814438B2 (en
Inventor
Mutsunori Nakamura
中村 睦典
Yasuo Shibuya
渋谷 康雄
Hajime Kitauchi
北内 肇
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63227235A priority Critical patent/JPH0814438B2/en
Publication of JPH0275841A publication Critical patent/JPH0275841A/en
Publication of JPH0814438B2 publication Critical patent/JPH0814438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To recover the condition of continued operation to a normal condition in an early period even when another indoor unit is started or stopped additionally during the operation of an indoor unit by controlling the opening degree of an electronic expansion valve based on the inlet port side pressure and/or the outlet port side temperature or pressure of the electronic expansion valve. CONSTITUTION:In a plurality of indoor units 2, the inlet port pressure of an electronic expansion valve 9 is detected by a pressure sensor 8 while a temperature at the intermediate position between the electronic expansion valve 9 and an indoor heat exchanger 11 or the outlet port temperature of the electronic expansion valve 9 is detected by a temperature sensor 10. In this case, the flow of refrigerant in respective indoor units 2 is in stationary condition and the present opening degree V1 of the electronic expansion valve 9 of themselves is stored in respective control units 15. When another indoor unit 2 is started or an arbitrary indoor unit 2 is stopped additionally, the indoor unit 15 of the indoor unit 2, whose operation is to be continued, receives a signal, showing that there is additional starting or stopping, from an outdoor unit 1. The control amount DELTAV of the opening degree of the electronic expansion valve 9 is obtained in accordance with the signal and a driving circuit controls the electronis expansion valve 9 in accordance with the control amount DELTAV.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、1台の室外ユニットに複数台の室内ユニッ
トを接続して成る多室形空気調和装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multi-room air conditioner comprising a plurality of indoor units connected to one outdoor unit.

〔従来の技術〕[Conventional technology]

第4図は従来の多室形空気調和装置を示すブロック図で
あり、図において、1は室外ユニット、2は室外ユニッ
ト1に並列に接続された複数台の室内ユニットである。
FIG. 4 is a block diagram showing a conventional multi-room air conditioner. In the figure, 1 is an outdoor unit, and 2 is a plurality of indoor units connected in parallel to the outdoor unit 1.

室外ユニット1において、3は低圧の冷媒ガスを高圧に
圧縮するコンプレッサ、4はコンプレッサ3からの高圧
冷媒ガスを高圧の冷媒液に変換する室外熱交換器、5は
高圧冷媒液を室内ユニット2に送出すると共に、室内ユ
ニット2かもの低圧冷媒ガスをコンプレッサ3に供給す
るアキー−ムレータである。6は高圧冷媒液を送出する
液側主配管、7は液側主配管6から室内ユニット2に分
岐されろ分岐配管である。室内ユニット2において、9
は分岐配管7を通じて送られて来る高圧冷媒液を低温、
低圧に断熱膨張させろ電子膨張弁、10は電子膨張弁9
から出力される冷媒液の温度を検出する温度センサ、1
1は電子膨張弁9から供給される冷媒液を熱交換して低
圧冷媒ガスに変換する室内熱交換器、12は室内熱交換
器11かも出力される低圧冷媒ガスの温度を検出する温
度センサ、13は温度センサ1G。
In the outdoor unit 1, 3 is a compressor that compresses low-pressure refrigerant gas to high pressure, 4 is an outdoor heat exchanger that converts the high-pressure refrigerant gas from the compressor 3 into high-pressure refrigerant liquid, and 5 is a high-pressure refrigerant liquid that is transferred to the indoor unit 2. It is an achievator that supplies the low-pressure refrigerant gas from the indoor unit 2 to the compressor 3. Reference numeral 6 indicates a liquid-side main pipe for delivering high-pressure refrigerant liquid, and 7 indicates a branch pipe that branches from the liquid-side main pipe 6 to the indoor unit 2. In indoor unit 2, 9
The high-pressure refrigerant liquid sent through the branch pipe 7 is heated to a low temperature.
Electronic expansion valve for adiabatic expansion to low pressure, 10 is electronic expansion valve 9
a temperature sensor that detects the temperature of the refrigerant liquid output from the
1 is an indoor heat exchanger that heat-exchanges the refrigerant liquid supplied from the electronic expansion valve 9 and converts it into low-pressure refrigerant gas; 12 is a temperature sensor that detects the temperature of the low-pressure refrigerant gas output from the indoor heat exchanger 11; 13 is a temperature sensor 1G.

12で検出された温度に基づいて電子膨張弁9の開度を
制御する制御装置、14は低圧冷媒ガスをアキー−ムレ
ータ5に送出するガス側配管である。
A control device 12 controls the opening degree of the electronic expansion valve 9 based on the detected temperature;

第5図は制御装置13の構成を示すブロック図であり、
図において、20はCPU、21はcpU20のプログ
ラムメモリ、22はCPU20に対してデータの授受を
行うデータメモリ、23は温度センサ10,12からの
温度検出信号が供給されるアナログ入力変換回路、25
は電子膨張弁9を駆動する駆動回路、27はCPU20
と各回路とを接続する内部バスである。
FIG. 5 is a block diagram showing the configuration of the control device 13,
In the figure, 20 is a CPU, 21 is a program memory of the CPU 20, 22 is a data memory that sends and receives data to and from the CPU 20, 23 is an analog input conversion circuit to which temperature detection signals from the temperature sensors 10 and 12 are supplied, and 25
27 is a drive circuit that drives the electronic expansion valve 9, and 27 is a CPU 20.
This is an internal bus that connects each circuit.

次に動作について説明する。Next, the operation will be explained.

室外ユニット1に、おいては、室外熱交換器4から出力
される高圧冷媒液をアキニームレータ5、液側主配管6
及び分岐配管Tを通じて各室内ユニット2に供給する。
In the outdoor unit 1, the high-pressure refrigerant liquid output from the outdoor heat exchanger 4 is transferred to an akinimulator 5 and a liquid side main pipe 6.
and is supplied to each indoor unit 2 through branch piping T.

室内ユニット2においては、供給された高圧冷媒液は電
子膨張弁9を通じて室内熱交換器11に送られ、ここで
熱交換作用が行われることにより室内が冷却される。室
内熱交換器11で変換された低圧冷媒ガスは、ガス側配
管14を通じて室外ユニット1に戻され、アキニームレ
ータ5を介してコンプレッサ3により高圧冷媒ガスに変
換された後、室外熱交換器4に送られて、再び高圧冷媒
液に変換される。
In the indoor unit 2, the supplied high-pressure refrigerant liquid is sent to the indoor heat exchanger 11 through the electronic expansion valve 9, where a heat exchange action is performed to cool the room. The low-pressure refrigerant gas converted by the indoor heat exchanger 11 is returned to the outdoor unit 1 through the gas side piping 14, and is converted to high-pressure refrigerant gas by the compressor 3 via the akinimulator 5, and then transferred to the outdoor heat exchanger 4. The refrigerant is then converted back into high-pressure refrigerant liquid.

各室内ユニット2は運転中、個別に一定時間間隔で室内
熱交換器110入口温度を温度センサ10で検出すると
共に、出口温度を温度センサ12で検出し、その温度検
出信号を制御装置13に送る。
During operation, each indoor unit 2 individually detects the inlet temperature of the indoor heat exchanger 110 at fixed time intervals with the temperature sensor 10, detects the outlet temperature with the temperature sensor 12, and sends the temperature detection signal to the control device 13. .

上記温度検出信号は、第5図のアナログ入力変換回路2
3及び内部バス27を介してCPU20に送られる。C
PU20は室内熱交換器11を通過する冷媒流量を調整
するために、電子膨張弁9の弁の開度を次の演算に基い
て算出する。
The above temperature detection signal is transmitted to the analog input conversion circuit 2 in Fig. 5.
3 and the internal bus 27 to the CPU 20. C
In order to adjust the flow rate of refrigerant passing through the indoor heat exchanger 11, the PU 20 calculates the opening degree of the electronic expansion valve 9 based on the following calculation.

△T≧T1  ならば電子膨張弁9を一定開度開くうT
2≦△TくT1 ならば電子膨張弁9の開度は固定する
If △T≧T1, open the electronic expansion valve 9 to a certain opening T
If 2≦ΔT×T1, the opening degree of the electronic expansion valve 9 is fixed.

△T≦T2  ならば電子膨張弁9を一定開度閉じる。If ΔT≦T2, the electronic expansion valve 9 is closed by a certain opening.

ここで △T:室内熱交換器11の出入口温度差△T=
To−TI To:室内熱交換器11の出ロ温度 T!二室内熱交換器110入口温度 Tl + T2 :設定値 上記演算結果に応じて駆動回路25は電子膨張弁90開
度を制御する。
Here, △T: Temperature difference between the entrance and exit of the indoor heat exchanger 11 △T=
To-TI To: Output temperature T of the indoor heat exchanger 11! Two-room heat exchanger 110 inlet temperature Tl + T2: Set value The drive circuit 25 controls the opening degree of the electronic expansion valve 90 according to the above calculation result.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多室形空気調和装置は以上のように構成されてい
るので、複数台の室内ユニット2が運転されている時、
他の室内ユニット2が追加起動した場合又はある室内ユ
ニット2が停止した場合は、継続運転され、室内ユニッ
ト2を通過する冷媒流量が変化し、このため冷媒分配が
乱されて適正とならず、運転を早期に安定させることが
困難であるなどの課題があった。
Since the conventional multi-room air conditioner is configured as described above, when multiple indoor units 2 are operated,
When another indoor unit 2 is additionally started or when a certain indoor unit 2 stops, it continues to operate and the flow rate of refrigerant passing through the indoor unit 2 changes, which disturbs the refrigerant distribution and makes it inappropriate. There were issues such as difficulty in stabilizing operation quickly.

この発明は、上記のような課題を解消するためになされ
たもので、1台又は複数台の室内ユニットが運転されて
いる状態で、他の室内ユニットが追加起動された場合、
及び複数台の室内ユニットが運転されている状態で任意
の室内ユニットが停止された場合において、その後も継
続して運転される室内ユニットの運転状態を、上記追加
起動又は停止がなされる前の運転状態に早期に回復でき
るように、室内熱交換器への冷媒流量を制御するように
した多室形空気調和装置を得ろことを目的とする。
This invention was made to solve the above-mentioned problems, and when one or more indoor units are being operated and another indoor unit is additionally started,
And if any indoor unit is stopped while multiple indoor units are in operation, the operating state of the indoor unit that continues to be operated after that is the operation state before the above additional startup or stop. It is an object of the present invention to provide a multi-room air conditioner in which the flow rate of refrigerant to an indoor heat exchanger is controlled so that the condition can be quickly recovered.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る多室形空気調和装置は、室内ユニットに
おける電子膨張弁の入口側圧力を検出する圧力センサと
、電子膨張弁の出口側温度又は圧力を検出する温度セン
サ又は圧力センサとを設け、これらのセンサの検出信号
に基いて電子膨張弁の開度を制御するようにしたもので
ある。
The multi-room air conditioner according to the present invention is provided with a pressure sensor that detects the pressure on the inlet side of the electronic expansion valve in the indoor unit, and a temperature sensor or a pressure sensor that detects the temperature or pressure on the outlet side of the electronic expansion valve, The opening degree of the electronic expansion valve is controlled based on detection signals from these sensors.

〔作 用〕 この発明における多室形空気調和装置は、電子膨張弁の
入口側圧力と出口側温度又は圧力とに基いて電子膨張弁
の開度を制御しているので、室内ユニットの運転中に追
加起動又は停止があった場合は、継続運転される室内ユ
ニットの運転状態が速やかに正常状態に復帰する。
[Function] The multi-room air conditioner according to the present invention controls the opening degree of the electronic expansion valve based on the inlet side pressure and the outlet side temperature or pressure of the electronic expansion valve, so that the opening degree of the electronic expansion valve is controlled based on the inlet side pressure and the outlet side temperature or pressure of the electronic expansion valve. If there is an additional start or stop, the operating state of the indoor unit that continues to be operated will promptly return to the normal state.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図及び第2図においては、第4図及び第5図と対応する
部分は同一符号を付して説明を省略する。第1図におい
て、8は分岐配管7を通じて電子膨張弁9に供給される
冷媒液の圧力を検出する圧力センサである。従って、電
子膨張弁9の入力側圧力が圧力センサ8で検出されると
共に、電子膨張弁9の出口側温度が温度センサ10で検
出されることになる。15は圧力センサ8で検出された
圧力と温度センサ10で検出された温度とに基いて電子
膨張弁9の開度を制御する制御装置である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In FIGS. 4 and 2, parts corresponding to those in FIGS. 4 and 5 are designated by the same reference numerals, and their explanations will be omitted. In FIG. 1, 8 is a pressure sensor that detects the pressure of the refrigerant liquid supplied to the electronic expansion valve 9 through the branch pipe 7. Therefore, the pressure on the input side of the electronic expansion valve 9 is detected by the pressure sensor 8, and the temperature on the outlet side of the electronic expansion valve 9 is detected by the temperature sensor 10. A control device 15 controls the opening degree of the electronic expansion valve 9 based on the pressure detected by the pressure sensor 8 and the temperature detected by the temperature sensor 10.

第2図において、26は他の室内ユニット2の起動、停
止を示す信号で、室外ユニット1より送られる。この制
御装置15の他の部分は第5図の制御装置13と同一構
成されている。
In FIG. 2, reference numeral 26 indicates a signal indicating the start or stop of another indoor unit 2, which is sent from the outdoor unit 1. The other parts of this control device 15 have the same structure as the control device 13 shown in FIG.

次に動作について説明する。Next, the operation will be explained.

室内ユニット2は室外ユニット1から液側主配管6及び
分岐配管7を通じて供給される冷媒液を電子膨張弁9を
介して室内熱交換器11で熱交換することにより、室内
を冷却することは前述した通りである。ここで電子膨張
弁9を通過する冷媒流量は、電子膨張弁9の入口と出口
との圧力差と弁の通過面積とにより決定される。
As mentioned above, the indoor unit 2 cools the room by exchanging heat with the indoor heat exchanger 11 via the electronic expansion valve 9 with the refrigerant liquid supplied from the outdoor unit 1 through the liquid side main pipe 6 and the branch pipe 7. That's exactly what I did. Here, the flow rate of refrigerant passing through the electronic expansion valve 9 is determined by the pressure difference between the inlet and outlet of the electronic expansion valve 9 and the passage area of the valve.

即ち、電子膨張弁9を通過する冷媒流量GRは、cR=
 kl@A・Cr ・・・・・・・・・・・・・・・・
・・・・・(1)ここで、△p=pL−p2 に1:比例定数 A:弁の通過面積 Pl:電子膨張弁90入口圧力 P2:電子膨張弁9の出口圧力 なお、P2は冷媒が液体と気体の二相であるので、温度
センサ10で検出された飽和温度からの換算値が用いら
れる。また弁の通過面積Aと弁の開度Vとは、 V = l(2@A ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(
2)k2:比例定数 で表わされる。従って、上記fl) 、 +21式より
、冷媒流量GRは、 GR=に8五f1 ・・・・・・・・・・・・・・・・
・・・・・・・・(3)K=に1・に2 で表わされる。並列に接続された複数台の室内ユニット
2が運転している状態において、他の室内ユニット2が
追加起動された場合又は任意の室内ユニット2が停止さ
れた場合は、弁の開度Vが一定のままだと、△Pが変化
し、従ってGRが変化するため、継続運転される室内ユ
ニット2の運転状態が変化する。そこでこの運転状態の
変化の割合を小さくし且つ短時間で元の正常な運転状態
に回復させるためには、上記の追加起動又は停止のあっ
た前後の冷媒流量が等しくなるように、電子膨張弁9の
開度Vを調整すればよい。この弁の開度Vの調整量ΔV
は次式で求められる。
That is, the refrigerant flow rate GR passing through the electronic expansion valve 9 is cR=
kl@A・Cr・・・・・・・・・・・・・・・・・・
...(1) Here, △p=pL-p2 1: Proportionality constant A: Valve passage area Pl: Electronic expansion valve 90 inlet pressure P2: Electronic expansion valve 9 outlet pressure Note that P2 is the refrigerant Since it is a two-phase liquid and gas, a value converted from the saturation temperature detected by the temperature sensor 10 is used. Also, the passage area A of the valve and the opening degree V of the valve are V = l(2@A ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(
2) k2: Expressed as a proportionality constant. Therefore, from the above fl), +21 formula, the refrigerant flow rate GR is: GR=85 f1 ・・・・・・・・・・・・・・・・・・
・・・・・・・・・(3) K=is expressed as 1 and 2. When multiple indoor units 2 connected in parallel are operating, if another indoor unit 2 is additionally started or if any indoor unit 2 is stopped, the valve opening degree V remains constant. If this continues, ΔP will change, and therefore GR will change, so the operating state of the indoor unit 2 that continues to be operated will change. Therefore, in order to reduce the rate of change in the operating state and restore the original normal operating state in a short time, the electronic expansion valve should be installed so that the refrigerant flow rate before and after the above-mentioned additional start or stop is equal. What is necessary is to adjust the opening degree V of 9. Adjustment amount ΔV of the opening degree V of this valve
is calculated using the following formula.

GRI = K−vt争δ可 Ga2 = K−V2”4可 cat == Ga2であるから vle、/”2S可=v2・f]弓 △v=vl −vl △V=V1”(1−厘) ””””””□””(4)こ
こで Ga1:  変化前の冷媒流量GR2:  変化
後の冷媒流量 vl:  変化前の弁の開度 vl:  変化後の弁の開度 △P1;  変化前の電子膨張弁9の出入口圧力差 △P2:  変化後の電子膨張弁9の出入口圧力差 次に実際の制御動作について説明する。
GRI = K-vt conflict δ possible Ga2 = K-V2"4 possible cat == Ga2, so vle, /"2S possible = v2・f] bow △v=vl -vl △V=V1" (1- ) ””””””□”” (4) Here, Ga1: Refrigerant flow rate before change GR2: Refrigerant flow rate after change vl: Valve opening degree before change vl: Valve opening degree after change △P1; Difference in inlet and outlet pressures of the electronic expansion valve 9 before change ΔP2: Difference in inlet and outlet pressures of the electronic expansion valve 9 after change Next, the actual control operation will be explained.

第1図及び第2図において、複数台の室内ユニット2に
おいては、運転中は所定の時間間隔で、電子膨張弁90
入口圧力を圧力センサ8で検出すると共に、電子膨張弁
9と室内熱交換器11との間の温度、即ち電子膨張弁9
の出口温度を温度センサ10で検出し、それらの検出信
号は制御装置15に入力される。このとき運転中の各室
内ユニット2の冷媒の流れは定常状態であり、各制御装
置15内には、自分自身の電子膨張弁9の現在の弁開度
v1が記憶されている。この状態において、他の室内ユ
ニット2が追加起動された場合又は任意の室内ユニット
2が停止された場合は、継続運転される室内ユニット2
は、室外ユニット1より、上記追加起動又は停止があっ
たことを示す信号26を制御装置15に入力される。こ
れに応じて制御装置15は圧力及び温度の検出信号の入
力を停止すると共に、信号26が入力される直前の圧力
及び温度を所定時間Tだけ保持する。時間Tの経過後は
再び圧力及び温度の検出信号を入力する。次に信号26
が入力される直前に保持された温度及び圧力と、時間T
の経過後、最初に入力される圧力及び温度とに基づいて
、前記(1)〜(4)式の演算を行うことにより、電子
膨張弁9の開度の制御量△Vを求め、この△Vに応じて
駆動回路25が電子膨張弁9を制御する。
1 and 2, in the plurality of indoor units 2, the electronic expansion valve 90 is opened at predetermined time intervals during operation.
The inlet pressure is detected by the pressure sensor 8, and the temperature between the electronic expansion valve 9 and the indoor heat exchanger 11, that is, the electronic expansion valve 9 is detected.
The temperature sensor 10 detects the outlet temperature of the sensor 10 , and the detection signals are inputted to the control device 15 . At this time, the flow of refrigerant in each indoor unit 2 in operation is in a steady state, and the current valve opening degree v1 of its own electronic expansion valve 9 is stored in each control device 15. In this state, if another indoor unit 2 is additionally started or if any indoor unit 2 is stopped, the indoor unit 2 that continues to operate
The outdoor unit 1 inputs a signal 26 to the control device 15 indicating that the additional start or stop has occurred. In response to this, the control device 15 stops inputting the pressure and temperature detection signals, and holds the pressure and temperature for a predetermined time T just before the signals 26 are input. After time T has elapsed, pressure and temperature detection signals are input again. Next, signal 26
The temperature and pressure held just before input, and the time T
After the elapse of , the control amount △V of the opening degree of the electronic expansion valve 9 is obtained by calculating the equations (1) to (4) above based on the first input pressure and temperature, and this △ The drive circuit 25 controls the electronic expansion valve 9 in accordance with V.

第3図は上述した制御動作を行うための制御装置15の
フローチャートである。図において、ステップ5T(1
)で自分自身の室内ユニット2に対して停止指令があっ
たか否かを判断し、停止指令があればステップ5TI2
1により室内ユニット2の運転を停止する。停止指令が
ない場合はステップ5T(3)に進んで、他の室内ユニ
ット2の追加起動又は任意の室内ユニット2の停止があ
ったか否か、即ち信号26の入力があったか否かが判断
される。
FIG. 3 is a flowchart of the control device 15 for performing the above-mentioned control operations. In the figure, step 5T (1
) to determine whether there is a stop command for its own indoor unit 2, and if there is a stop command, step 5TI2
1, the operation of the indoor unit 2 is stopped. If there is no stop command, the process proceeds to step 5T(3), where it is determined whether another indoor unit 2 has been additionally activated or any indoor unit 2 has been stopped, that is, whether the signal 26 has been input.

信号26が入力されないときはステップ5T(11に戻
り、信号26が入力されたときは、ステップ5T(4)
で時間Tの経過を待ち、この間信号26が入力される前
の圧力及び温度を保持する。時間Tが経過すればステッ
プ5T(51に進み、ここで再び圧力及び温度を入力し
、これと上記保持された圧力及び温度とに基いて所定の
演算を行い、制御量ΔVを求める。次にステップ5T(
61により、上記△Vに応じて電子膨張弁9の開度を制
御した後、ステップ5TIIIに戻る。
If signal 26 is not input, return to step 5T (11); if signal 26 is input, return to step 5T (4)
Wait for time T to elapse, and during this time the pressure and temperature before the signal 26 was input are maintained. When the time T has elapsed, the process proceeds to step 5T (51), where the pressure and temperature are input again, and a predetermined calculation is performed based on this and the pressure and temperature held above to find the controlled variable ΔV.Next, Step 5T (
61, the opening degree of the electronic expansion valve 9 is controlled according to the above-mentioned ΔV, and then the process returns to step 5TIII.

なお、上記実施例では電子膨張弁9の出口圧力を知るの
に、温度センサ10で検出された温度を換算しているが
、温度センサ10に代えて圧力センサを用いてもよいの
は勿論である。
In the above embodiment, the temperature detected by the temperature sensor 10 is converted to determine the outlet pressure of the electronic expansion valve 9, but it goes without saying that a pressure sensor may be used in place of the temperature sensor 10. be.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば電子膨張弁の入口側圧
力と出口側温度又は圧力とに基いて電子膨張弁の開度な
制御することにより、冷媒流量を調整するように構成し
たので、冷媒流量の変化に対する制御応答が従来より早
くなり、このため室内ユニットの運転中に他の室内ユニ
ットが追加起動されたり又は任意の室内ユニットが停止
されたりしても、継続運転される室内ユニットの運転状
態を早期に正常に回復させることができると共に、室外
ユニット及び室内ユニットを含む冷媒回路系全体の冷媒
の挙動を速やかに安定させることができる効果がある。
As described above, according to the present invention, the refrigerant flow rate is adjusted by controlling the opening of the electronic expansion valve based on the inlet side pressure and the outlet side temperature or pressure of the electronic expansion valve. The control response to changes in refrigerant flow rate is faster than before, so even if another indoor unit is additionally started or any indoor unit is stopped while the indoor unit is operating, the control response of the indoor unit that continues to operate is faster than before. This has the advantage that the operating state can be quickly restored to normal, and the behavior of the refrigerant in the entire refrigerant circuit system including the outdoor unit and the indoor unit can be quickly stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す多室形空気調和装置
を示すブロック図、第2図は同装置の制御装置を示すブ
ロック図、第3図は上記制御装置の動作を示すフローチ
ャート、第4図は従来の多室形空気調和装置を示すブロ
ック図、第5図は同装置の制御装置を示すブロック図で
ある。 1は室外ユニット、2は室内ユニット、8は圧力センサ
、9は電子膨張弁、10は温度センサ、15は制御装置
。 なお、図中、同一符号は同一、又は相当部分を示す。 @ 1 閾 IS  卿冒チ襞1 第2図 第3図 第4囚 @5図
FIG. 1 is a block diagram showing a multi-room air conditioner according to an embodiment of the present invention, FIG. 2 is a block diagram showing a control device of the same device, and FIG. 3 is a flow chart showing the operation of the control device. FIG. 4 is a block diagram showing a conventional multi-room air conditioner, and FIG. 5 is a block diagram showing a control device for the same device. 1 is an outdoor unit, 2 is an indoor unit, 8 is a pressure sensor, 9 is an electronic expansion valve, 10 is a temperature sensor, and 15 is a control device. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. @ 1 Threshold IS Lord Breach 1 Figure 2 Figure 3 Figure 4 Prisoner @ Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1台の室外ユニットに複数台の室内ユニットを接続して
成る多室形空気調和装置において、上記室内ユニットに
おける電子膨張弁の入力側の圧力を検出する圧力センサ
と、上記電子膨張弁の出力側の温度又は圧力を検出する
温度センサ又は圧力センサと、検出された上記入力側の
圧力と上記出力側の温度又は圧力とに基づいて上記電子
膨張弁の開度を制御する制御装置とを設けたことを特徴
とする多室形空気調和装置。
In a multi-room air conditioner comprising a plurality of indoor units connected to one outdoor unit, a pressure sensor detects pressure on the input side of an electronic expansion valve in the indoor unit, and an output side of the electronic expansion valve. and a control device that controls the opening degree of the electronic expansion valve based on the detected pressure on the input side and the temperature or pressure on the output side. A multi-room air conditioner characterized by:
JP63227235A 1988-09-09 1988-09-09 Multi-room air conditioner Expired - Lifetime JPH0814438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227235A JPH0814438B2 (en) 1988-09-09 1988-09-09 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227235A JPH0814438B2 (en) 1988-09-09 1988-09-09 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH0275841A true JPH0275841A (en) 1990-03-15
JPH0814438B2 JPH0814438B2 (en) 1996-02-14

Family

ID=16857631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227235A Expired - Lifetime JPH0814438B2 (en) 1988-09-09 1988-09-09 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JPH0814438B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142877A (en) * 1990-03-30 1992-09-01 Kabushiki Kaisha Toshiba Multiple type air conditioning system which distributes appropriate amount of refrigerant to a plurality of air conditioning units
JP2002318014A (en) * 2001-04-17 2002-10-31 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling expansion valve in freezer
JP2006153406A (en) * 2004-12-01 2006-06-15 Fuji Electric Retail Systems Co Ltd Cooling system, and showcase cooling device
CN112944743A (en) * 2019-12-09 2021-06-11 杭州三花研究院有限公司 Control method and control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040208A1 (en) * 2002-10-30 2004-05-13 Mitsubishi Denki Kabushiki Kaisha Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115057A (en) * 1984-07-02 1986-01-23 株式会社日立製作所 Refrigerant cycle refrigerant flow measuring device
JPS62178856A (en) * 1986-02-03 1987-08-05 株式会社日立製作所 Multi-chamber air conditioner
JPS6373059A (en) * 1986-09-13 1988-04-02 ダイキン工業株式会社 Refrigeration equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115057A (en) * 1984-07-02 1986-01-23 株式会社日立製作所 Refrigerant cycle refrigerant flow measuring device
JPS62178856A (en) * 1986-02-03 1987-08-05 株式会社日立製作所 Multi-chamber air conditioner
JPS6373059A (en) * 1986-09-13 1988-04-02 ダイキン工業株式会社 Refrigeration equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142877A (en) * 1990-03-30 1992-09-01 Kabushiki Kaisha Toshiba Multiple type air conditioning system which distributes appropriate amount of refrigerant to a plurality of air conditioning units
JP2002318014A (en) * 2001-04-17 2002-10-31 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling expansion valve in freezer
JP2006153406A (en) * 2004-12-01 2006-06-15 Fuji Electric Retail Systems Co Ltd Cooling system, and showcase cooling device
CN112944743A (en) * 2019-12-09 2021-06-11 杭州三花研究院有限公司 Control method and control system

Also Published As

Publication number Publication date
JPH0814438B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
JP2937406B2 (en) Cooling system
US8701424B2 (en) Turbo chiller, heat source system, and method for controlling the same
JPS586349A (en) Defrosting controller with override
JPH0120333B2 (en)
JP3306612B2 (en) How to control the number of operating heat source units
JPH0275841A (en) Multi-room type air-conditioning machine
CN110469926B (en) Water circulation system for air conditioning system and control method thereof
US11397035B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP5486425B2 (en) Water heat source heat pump unit piping system
JP2011144951A (en) Air conditioner
CN106352507A (en) Water circulation system and water flow switch cutoff value adjusting method and device thereof
JP2577668B2 (en) Water temperature control device for heat source water for air conditioning
JP3320631B2 (en) Cooling and heating equipment
JPH07332817A (en) Heat pump refrigerator
JPS6284241A (en) Control device of heat pump system
JPH04190054A (en) Multi-chamber type air conditioner
JPH04309755A (en) Multiple chamber air conditioner
JPH0282045A (en) Control device for air conditioner
JPS594614B2 (en) How to control the number of hot and cold water machines
JPS59164837A (en) How to control an air conditioning system
JP7500143B2 (en) Control device, control method and program for heat source device in air conditioning system
JPH03217744A (en) Temperature control device operation control method
JPH0755232A (en) Method for controlling operation of air conditioner
JP3326629B2 (en) Micro temperature control device and method
JPS5919257B2 (en) How to control the flow rate of a water cooler/heater pump