JPH02699A - Removal of carbon dioxide and moisture from gas in town gas production process - Google Patents
Removal of carbon dioxide and moisture from gas in town gas production processInfo
- Publication number
- JPH02699A JPH02699A JP63195258A JP19525888A JPH02699A JP H02699 A JPH02699 A JP H02699A JP 63195258 A JP63195258 A JP 63195258A JP 19525888 A JP19525888 A JP 19525888A JP H02699 A JPH02699 A JP H02699A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- adsorption
- pressure
- tower
- purified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 46
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 23
- 239000001569 carbon dioxide Substances 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims abstract description 63
- 238000001179 sorption measurement Methods 0.000 claims abstract description 62
- 229910001868 water Inorganic materials 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000004064 recycling Methods 0.000 claims abstract description 14
- 238000003795 desorption Methods 0.000 claims description 20
- 239000003463 adsorbent Substances 0.000 claims description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000002808 molecular sieve Substances 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 3
- 238000002203 pretreatment Methods 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 167
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000000746 purification Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000006114 decarboxylation reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は都市ガス製造プロセスに於ける発生ガスの精製
、特に発生ガスから不燃成分である炭酸ガス、導管等の
腐食等に有害な水分を除去する方法に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention is used to purify generated gas in the city gas production process, particularly to remove carbon dioxide, which is a non-combustible component, from the generated gas, and moisture that is harmful to corrosion of pipes, etc. Regarding how to remove.
(発明の背景及び従来の技術)
代替天然ガス(SNG )等の高カロリー都市ガスを製
造する場合、その製造手段として一般的にガス発生装置
で、H2、C1(4,CO,CO2゜N2 、H20等
の混合ガスを発生させ、この混合ガス中のCO2、H2
0を分離除去し、増熱を行って所定の熱hi及び燃焼性
に調整している。(Background of the Invention and Prior Art) When producing high-calorie city gas such as alternative natural gas (SNG), a gas generator is generally used as a production method to produce H2, C1 (4, CO, CO2°N2, Generate a mixed gas such as H20, and remove CO2 and H2 in this mixed gas.
0 is separated and removed, and the heat is increased to adjust the heat hi and combustibility to a predetermined value.
このCO2,H20分離除去は従来、炭酸カリ等の吸収
液に吸収さけ、除去する湿式の脱炭酸装置と、ガスを冷
却し、凝縮水を分離する脱水装置の2つのプロセスで行
っている。この場合、起動及び負荷変動を行うのに複雑
な操作を必要とするばかりでなくプロセスが安定する迄
長時間を要し、操作性、経済性が悪く、その解決が望ま
れていた。This separation and removal of CO2 and H20 has conventionally been carried out using two processes: a wet decarboxylation device that absorbs and removes the gas in an absorption liquid such as potassium carbonate, and a dehydration device that cools the gas and separates condensed water. In this case, not only complicated operations are required to start up and change the load, but also a long time is required until the process stabilizes, resulting in poor operability and economic efficiency, and a solution to this problem has been desired.
CO2、H20の分1F5製のみであれば、ブレフシ1
フースイング法により行えば、脱炭酸と脱水の別々の装
置が1つになり装置及び運転操作も簡単になる。しかし
、従来の方法では都市ガス製造プロセスに組込む場合、
前流にガス発生装置、後流に熱量調整装置があり、連続
的な流れに対応しなければならず、プレッシャースイン
グ法の難点である流h(、圧力、熱漬の変動がプロセス
に追従出来ない。又、多聞の可燃成分を含lυだ排出ガ
ス(レス1−ガス)が発生し、その処理が困難であるだ
けでなく都市ガスの有効成分の損失になる等の問題があ
り、実用装置として採用されなかった。CO2, H20: 1 If only made of F5, 1 Brefushi
If the double-swing method is used, separate devices for decarboxylation and dehydration are combined into one, and the device and operation become simpler. However, when incorporating it into the city gas production process using conventional methods,
There is a gas generator in the upstream and a heat adjustment device in the downstream, which must be compatible with continuous flow, and the difficulty of the pressure swing method is that fluctuations in flow (h), pressure, and heat soaking cannot follow the process. In addition, exhaust gas (res.1-gas) containing a large amount of combustible components is generated, which is not only difficult to dispose of, but also causes the loss of the effective components of city gas, making it difficult to use in practical equipment. was not adopted as
(発明が解決しようとする問題点)
本発明が解決しようとする問題点は、プレッシャースイ
ング法で発生する排出ガス(レストガス)中の都市ガス
有効成分(可燃性ガス)を可能な限り回収し、分I11
損失を減少させると共に流量、圧力、熱h1の変動が1
14後のプロセスに影青しない様にすることである。(Problems to be Solved by the Invention) The problems to be solved by the present invention are to recover as much as possible of city gas active components (combustible gas) in the exhaust gas (rest gas) generated by the pressure swing method, minute I11
Reduces losses and reduces fluctuations in flow rate, pressure, and heat h1 by 1
14 This is to ensure that it does not affect the subsequent process.
(問題点を解決するための手段)
上記問題点を解決するために本発明が講する技術的手段
は、都市ガス製造プロセスに於ける発生ガス中の炭酸ガ
ス及び水分を4塔以上の吸着塔をサイクル使用するプレ
ッシャースイング法により吸着させて精製し、脱着ガス
の一部を均一化装置を有する有水式ガスホルダーで定圧
・定熱量にした後萌工程で吸着に使用した吸着塔を通し
て再吸着させ発生ガスにリサイクルする一方、精製ガス
の一部を定流訂制御弁を介して吸着塔の昇圧用加任ガス
及び配管等の置換用すずぎガスに使用して、連続的にガ
スを精製するものである。(Means for Solving the Problems) The technical means taken by the present invention to solve the above problems is to remove carbon dioxide and moisture from the generated gas in the city gas production process using four or more adsorption towers. The desorbed gas is adsorbed and purified using a pressure swing method that uses cycles, and a part of the desorbed gas is brought to a constant pressure and constant calorific value in a water-filled gas holder equipped with a homogenizer, and then re-adsorbed through the adsorption tower used for adsorption in the moe process. While recycling the purified gas into generated gas, a part of the purified gas is used as boosting gas for pressurization of the adsorption tower and tin gas for replacing piping etc. through a constant flow control valve to continuously purify gas. It is something to do.
そして、吸着剤としては平均細孔径約3人のカーボンモ
レキュラーシーブを用いるものである。As the adsorbent, a carbon molecular sieve having an average pore diameter of about 3 pores is used.
またプレッシャースイング法の減圧工程ではその量所期
において吸着塔の上下両方向より減圧してその減圧ガス
を1次加工ガスとして加圧工程サイクルにある吸着塔の
上下両方向より供給するものである。In the depressurization step of the pressure swing method, the pressure is reduced from both the top and bottom of the adsorption tower at the desired amount, and the reduced pressure gas is supplied as a primary process gas from both the top and bottom of the adsorption tower in the pressurization process cycle.
また、リサイクルする脱着ガスは加圧工程サイクルにあ
る吸着j?Sに1次加圧ガスとして供給されるものを除
く 500rorr迄の減圧ガスとする。In addition, the desorption gas to be recycled is adsorbed in the pressurization process cycle. Except for what is supplied to S as the primary pressurized gas, the depressurization gas is up to 500 rorr.
また、リリイクルガスはリサイクル工程末期に至るまで
は吸着温度まで冷fJl l、て吸着塔に供給し、上記
■稈末期に脱着温度に調整するものである。Furthermore, the recycle gas is supplied to the adsorption tower at a cool temperature up to the adsorption temperature until the final stage of the recycling process, and is adjusted to the desorption temperature at the final stage of the culm.
尚、この発明において発生ガスとは原料のナフ号、LP
G、メタノールを水蒸気と反応させて1すられる処のC
H4、H2を可燃主成分とし、CO2を含む混合湿性ガ
スを云う。In this invention, the generated gas refers to the raw material Naf No., LP
G, C where methanol is reacted with water vapor and 1 is removed.
A wet gas mixture whose main combustible components are H4 and H2 and which also contains CO2.
(発明の概要)
以下の説明において都市ガス製造ブ[]レスにおける発
生ガス(以下、処理筒発生ガスと云う)は、例えばメタ
ノールを原料として都市ガスを製造する製造プロセスに
J3いて発生するCH4,ト−1zを可燃主成分とし、
CO2を含む混合湿性ガスで、ガス発生装置より連続定
圧、定量で送られて来る。(Summary of the Invention) In the following explanation, the gas generated in the city gas production press (hereinafter referred to as the gas generated from the processing cylinder) is CH4, which is generated in the production process of producing city gas using methanol as a raw material, for example. To-1z is the main combustible component,
It is a mixed wet gas containing CO2, which is continuously sent at a constant pressure and fixed amount from a gas generator.
上記処理筒発生ガスの圧力は、ガス発生装置の反応圧力
により決まり、以下の説明においては9kg/ゴGとし
て説明する。The pressure of the gas generated in the processing cylinder is determined by the reaction pressure of the gas generator, and will be explained as 9 kg/G in the following explanation.
上記処理筒発生ガスをプレッシャースイング装置(以下
PSA装置と云う)の吸着塔に導入し、吸着塔に充填し
た吸着剤にCO2及びH2Oを吸着させ、処理後の精製
ガスとして取り出す。The gas generated from the processing cylinder is introduced into an adsorption tower of a pressure swing apparatus (hereinafter referred to as PSA apparatus), and CO2 and H2O are adsorbed onto an adsorbent filled in the adsorption tower, and the gas is taken out as purified gas after treatment.
吸着剤には平均細孔径約3人のカーボンモレキュラーシ
ーブを用いる。A carbon molecular sieve with an average pore size of about 300 ml is used as the adsorbent.
断る吸着剤を用いることにより、本発明方法においては
水分除去のための前処理工程が不要となり、水分除去処
理装置を設(プる必要がないので、装置の小型化及びコ
ストの低減が可能になる。By using the adsorbent, the method of the present invention does not require a pretreatment step for moisture removal, and there is no need to install a moisture removal treatment device, making it possible to downsize the device and reduce costs. Become.
本発明において、上記PSΔ装置は、4個の吸着塔(A
、B、C,D>と吸引ポンプ・右水式ガスホルダー・コ
ンプレッサーにより、吸着・再吸着・減圧・加圧の4サ
イクル10工程を繰り返す4塔式で、第2図のフローシ
ート及び第4図の工程ブロック図で示すようにA塔が吸
着工程の時、B塔は再吸着工程、D塔は均圧・自圧減圧
・吸引減圧・吸引刊出工程、D塔は1次加圧(均圧)・
2次加圧工程を行い、表1に示すガスの流れで5つのス
テップで動作させる。In the present invention, the PSΔ device has four adsorption towers (A
, B, C, D> and a suction pump, right water type gas holder, and compressor, it is a 4-column type that repeats 10 steps of 4 cycles of adsorption, re-adsorption, depressurization, and pressurization. As shown in the process block diagram in the figure, when the A tower is in the adsorption process, the B tower is in the re-adsorption process, the D tower is in the pressure equalization/autostatic pressure reduction/suction pressure reduction/suction release process, and the D tower is in the primary pressurization ( Equal pressure)・
A secondary pressurization step is performed, and the gas flow shown in Table 1 is operated in five steps.
即ら、/15から取り出される処理後の精製ガスの一部
を連続的にD塔の2次加圧ガスとリサイクル回路のすす
ぎガスに圧力と流山が変動しない様に連続的に使用づる
。That is, a part of the treated purified gas taken out from /15 is continuously used as the secondary pressurized gas of the D tower and the rinsing gas of the recycle circuit so that the pressure and flow rate do not fluctuate.
C’7)の均圧工程の初期には塔上部に前リイクルて゛
の再吸着によりリサイクルガスからCO2を除去した純
度の高い可燃成分があり、そのため、C11とD塔とは
塔の上部と上部及び下部と下部を接続して、D塔の減圧
を塔の上下部より行い、その減圧ガスをD塔の1次加圧
ガスとして該塔の上下部Δミリ流入さける。At the beginning of the pressure equalization process of C'7), there is a highly pure combustible component in the upper part of the column, which is the result of CO2 removed from the recycled gas by re-adsorption in the previous recycling process. By connecting the lower and lower parts, the pressure in the D column is reduced from the upper and lower parts of the column, and the reduced pressure gas is allowed to flow Δmm into the upper and lower parts of the column as the primary pressurized gas of the D column.
上記、ガスの両方向からの移動は、D塔から塔上部の純
度の高い可燃成分及び塔下部の処理前リサイクルガスの
可燃成分を共にD塔に排出移動して残さないので、脱着
時の脱着成分純度を高める効果がある。またD塔の塔上
部に純度の高い可燃成分及び3置下部に処理前りIナイ
クルガスを送入するので、D塔は次す−イクルの精製(
吸着)体制に近いガス成分分布となり、処理後精製ガス
の成分純度を高くする効果がある。In the above-mentioned movement of gas from both directions, the highly pure combustible components in the upper part of the tower and the combustible components of the pre-processed recycled gas in the lower part of the tower are both discharged from the D tower to the D tower and are not left behind. It has the effect of increasing purity. In addition, highly pure combustible components are fed into the upper part of the D column and unprocessed I-cycle gas is fed into the lower part of the D column.
This results in a gas component distribution close to that of the adsorption regime, which has the effect of increasing the component purity of the purified gas after treatment.
従って精製ガス純度及び排出ガスの純度が高められる。Therefore, the purified gas purity and the exhaust gas purity are increased.
次にD塔の自圧減圧ガスを均一化8置を有する有水式ガ
スホルダーに送入し、D塔が有水式ガスホルダーとほぼ
均圧になったら脱着ガス吸引ポンプに切替えて500T
orr程度迄吸引し、同じく有水式ガスホルダーに送入
する。Next, the self-pressure reduced gas of the D tower is sent to a water-type gas holder with 8 equalization positions, and when the pressure of the D tower is almost equal to that of the water-type gas holder, it is switched to the desorption gas suction pump and the pressure is increased to 500T.
The gas is sucked up to about 100 ml of water and sent to the same water-type gas holder.
以上の様に可燃成分が残っている自圧減圧ガス及び吸引
減圧ガス、すなわちリサイクルガスを均一化装置を有す
る有水式ガスホルダーに溜めるのは、送入時期で変動し
ている脱着ガスの熱mをほぼ均一にすると共に次に説明
するリサイクルガスコンプレッサーの吸引圧力と吐出圧
力を一定にする効果がある。As mentioned above, the self-pressure reduced pressure gas and the suction reduced pressure gas that still contain combustible components, that is, the recycled gas, are stored in a water-filled gas holder equipped with an equalization device because the heat of the desorption gas fluctuates depending on the timing of supply. This has the effect of making m substantially uniform and also making constant the suction pressure and discharge pressure of the recycle gas compressor, which will be described next.
圧力及び熱量がほぼ均一なリサイクルガスは、リサイク
ルガスコンプレッサーに依り、吸着能力の残っているB
塔に通し、再び残った炭酸ガスを再吸着させ、分離した
後、処理面発生ガスに戻す。The recycled gas, which has almost uniform pressure and calorific value, is processed by the recycled gas compressor to absorb B, which has remaining adsorption capacity.
The remaining carbon dioxide gas is adsorbed again through the column, separated, and returned to the gas generated from the treated surface.
又、このリサイクル回路を使ってリサイクル工程末期に
処理後のガスを有水式ガスホルダー及びリサイクルAi
:管に送入置換161すぎ工程を組入れ、次]ノイクル
に於ける精製ガス中の可燃性ガスの潤度を高くしている
。この方法は、PSA装置前流に影響を与えず、可燃成
分を回収して排出ガス中の可燃成分を極力少なくし、後
流精製ガスの熱量変動と圧力変動を微少にする効果があ
る。In addition, using this recycling circuit, the treated gas at the end of the recycling process is transferred to a water-type gas holder and a recycling AI.
: Incorporating a feed-replacement 161 rinsing process into the pipe, and increasing the moisture content of the combustible gas in the purified gas in the [Next] Noicle. This method has the effect of minimizing the amount of combustible components in the exhaust gas by recovering combustible components without affecting the upstream stream of the PSA device, and minimizing the calorific value fluctuation and pressure fluctuation of the downstream purified gas.
(発明の詳細な説明)
以下、第1図、第2図のフローシートに基づいて本発明
を更に詳細に説明する。(Detailed Description of the Invention) The present invention will be described in more detail below based on the flow sheets shown in FIGS. 1 and 2.
本発明の方法は第1図に示す装置により実施される。The method of the invention is carried out by the apparatus shown in FIG.
即ち、4個の吸着塔A、B、C,D及び有水式ガスホル
ダー12、IIQ着ガス吸引ポンプ13、リサイクルガ
スコンブレツナ−14及びその他数種の必要装置が配管
を介して相互に連絡しており、配管の必要箇所に設【ノ
た弁、1A〜ID、 2A〜2D、 3A〜30゜4A
〜4D、5^〜5D、6^〜6D、 7. 8. 9
.10.11の開閉により、ガスの流れを切換え制御し
、4個の吸着塔A、B、C,Dに前述の5ステツプ、4
サイクル10工程を連続的に繰り返えし行わせる。That is, the four adsorption towers A, B, C, and D, the water-based gas holder 12, the IIQ gas suction pump 13, the recycle gas combiner 14, and several other necessary devices communicate with each other via piping. Valve 1A~ID, 2A~2D, 3A~30°4A
~4D, 5^~5D, 6^~6D, 7. 8. 9
.. 10. By opening and closing 11, the gas flow is switched and controlled, and the 5 steps described above
Cycle 10 steps are repeated continuously.
上記吸着塔A、B、C,Dの操作展開は表2の通りであ
り、そのためには弁の開閉を表3に示すように開閉する
。The operation development of the adsorption towers A, B, C, and D is shown in Table 2, and for this purpose, the valves are opened and closed as shown in Table 3.
(人3)
各ステップのブを開閉
○印 間
X rl 閉
次に吸着塔、△塔が精製工程期間中のステップ内容につ
いて第2図・第4図により説明する。(Person 3) Open and close the buttons of each step between X rl and close Next, the content of steps during the purification process of the adsorption tower and the Δ tower will be explained with reference to FIGS. 2 and 4.
Δ塔が精製工程のとき、第2図・第4図に示ずJ、うに
B塔は再吸着(リサイクル)工程、C塔は均圧・自圧減
圧・吸引減圧・吸引排出工程からなる減圧工程、DJh
は1次加圧(均圧)・2次加圧工程からなる加圧工程を
夫々用どる。When the Δ tower is in the purification process, the J and B towers (not shown in Figures 2 and 4) are in the re-adsorption (recycling) process, and the C tower is in the depressurization process, which consists of equalization, autogenous pressure reduction, suction depressurization, and suction discharge processes. Process, DJh
uses a pressurization process consisting of a primary pressurization (pressure equalization) and a secondary pressurization process.
ステップ1では弁1A、2八、 3B、 4A、 5C
,50,6C96Dが閉弁し、A塔に導入される処理性
発生ガス■は吸着剤にCO2、Hz Oを吸着させて、
精製ガス■となり、精製ガス冷却器15.精製ガスサー
ジタンク16を経由して、都市ガス製造ブ0セスのブタ
ン添加による増熱工程へと流れる。有水式ガスホルダー
12に溜められたりナイクルガス■がリサイクルガスコ
ンプレッサー14により、リサイクルガス冷部器17.
リサイクルガス水分離器18を経てB塔に導入され、再
吸着された侵、処理性発生ガス■にリサイクルされ続け
る。In step 1, valves 1A, 28, 3B, 4A, 5C
, 50, 6C96D is closed, and the treated generated gas (■) introduced into the A column causes the adsorbent to adsorb CO2 and Hz O.
Purified gas ■ becomes purified gas cooler 15. The purified gas flows through the purified gas surge tank 16 to a heating step by adding butane to the city gas production process. The Nycle gas stored in the water-type gas holder 12 is transferred to the recycled gas cooler 17 by the recycled gas compressor 14.
The recycled gas is introduced into the B tower via the water separator 18 and continues to be recycled into re-adsorbed and treatable generated gas (2).
上記吸着、リサイクルはステップ1からステップ5を通
じて継続して行われる。The above adsorption and recycling are continuously performed from step 1 to step 5.
このリサイクルガス■は昇任に依り温度が上昇するため
、リサイクルガス冷却器11で吸着温度迄冷却するがリ
サイクル工程末期にはB塔の次サイクルでの脱着に備え
リサイクルガス冷却器11をバイパスさせるか又は冷却
水を減少させて脱着温度に調節する。従って吸着温度を
低く脱着温度を高くすることが出来るので吸着及び脱着
の条件が非常に有利になる。Since the temperature of this recycled gas (■) increases due to promotion, it is cooled down to the adsorption temperature in the recycled gas cooler 11, but at the end of the recycling process, the recycled gas cooler 11 is bypassed in preparation for desorption in the next cycle of tower B. Or reduce the amount of cooling water to adjust to the desorption temperature. Therefore, since the adsorption temperature can be lowered and the desorption temperature raised higher, the conditions for adsorption and desorption become very advantageous.
一方、C塔は脱着を行うが、前工程ではリサイクルに使
用されていたため9ka/cdGの圧力を有しており、
ステップ1では前リイクルにおいて脱着に使用され圧力
の残っていないD塔の上下部にC塔の上下部より1次加
圧ガス■を両方向より送り込みD塔とC塔を均圧にする
。このことによりC塔及びD塔の圧力はほぼ4.5kc
l/a+fGとなる。On the other hand, the C tower performs desorption, but because it was used for recycling in the previous process, it has a pressure of 9 ka/cdG.
In step 1, primary pressurized gas (2) is fed from both directions from the upper and lower parts of the C tower to the upper and lower parts of the D tower, which was used for desorption in the previous recycle and has no remaining pressure, to equalize the pressure in the D and C towers. As a result, the pressure in tower C and tower D is approximately 4.5kc.
It becomes l/a+fG.
このD塔上部に送り込まれる1次加圧ガスには純度の高
い可燃成分が移動している。Highly pure combustible components are transferred to the primary pressurized gas sent to the upper part of the D tower.
また処理後精製ガス■は、その一部を、次サイクルの吸
着に備えてD塔の圧力を昇圧するために2次加圧ガス■
としてD塔に供給される。In addition, a part of the purified gas (■) after treatment is used as a secondary pressurized gas (■) to increase the pressure of the D tower in preparation for the next cycle of adsorption.
It is supplied to the D tower as
この際、圧力と流61が変動しない様に精製ガス■から
の取出口配管には定流量制御弁20を設け、精製ガス■
の圧力が変動しないよう定流量で供給する。At this time, a constant flow control valve 20 is installed in the outlet piping from purified gas (2) so that the pressure and flow 61 do not fluctuate.
Supply at a constant flow rate so that the pressure does not fluctuate.
次にステップ2では、弁6Dを閉弁し、代わって弁8を
聞くことによりC塔を右水式ガスホルダー12のホルダ
ー圧(約200m1H20)迄自圧減圧さ往−その自圧
減圧ガス■が、脱着ガス冷W器19を経て右本式ガスホ
ルダー12に送り込まれる。Next, in step 2, by closing valve 6D and listening to valve 8 instead, the C tower is depressurized to the holder pressure of the right water type gas holder 12 (approximately 200 m1H20) - its self-pressure reduced gas is sent to the right-hand type gas holder 12 via the desorption gas cooler 19.
ステップ3では、弁8を閉弁し、代わって弁9゜10を
聞くと共に脱着ガス吸引ポンプ13を作動させて、C塔
を約500Torr迄吸引減圧し、その吸引減圧ガス■
を右水式ガスホルダー12に送る。In step 3, valve 8 is closed, valves 9 and 10 are turned on, and desorption gas suction pump 13 is operated to suction and depressurize the C tower to approximately 500 Torr, and the suction depressurized gas ■
is sent to the right water type gas holder 12.
またステップ4では、弁10を閉弁し、代わって弁11
を聞くと共に脱着ガス吸引ポンプ13で50Torrま
で減圧することにより、500Torr以下50Tor
r迄に脱着したCO2、H20を排出ガス■として排出
する。この脱着ガス吸引ポンプ13による吸着剤の再生
は、ポンプ13の排気特性から真空度が高くなるにつれ
て、排気づるガス闇が減少する。又、減圧ガス中の成分
も真空度が進むにつれてCO2が増大し、CH4/C0
,2の割合が小さくなる。Further, in step 4, the valve 10 is closed and the valve 11 is replaced.
By listening to this and reducing the pressure to 50 Torr with the desorption gas suction pump 13, the
The CO2 and H20 desorbed up to r are discharged as exhaust gas (■). In this regeneration of the adsorbent by the desorption gas suction pump 13, the exhaust gas density decreases as the degree of vacuum increases due to the exhaust characteristics of the pump 13. In addition, as the degree of vacuum increases, CO2 increases as a component in the reduced pressure gas, and CH4/C0
, 2 becomes smaller.
更にステップ5では、弁5Dを閉弁して代わりに弁7を
開き、定流量制御弁20を介して取り込む精製ガス■の
一部分をすづぎガス0として有水式ガスホルダー及びリ
サイクル配管に送入する。Furthermore, in step 5, the valve 5D is closed, the valve 7 is opened instead, and a portion of the purified gas ■ taken in via the constant flow control valve 20 is sent to the aqueous gas holder and recycling piping as 0 gas. Enter.
このリサイクル回路を精製ガスに置換することは次サイ
クルに於ける処理後精製ガスの可燃性ガス濃度を高くす
る効果がある。又ステップ5においてD塔は放置状態に
ある。Replacing this recycle circuit with purified gas has the effect of increasing the combustible gas concentration of the purified gas after treatment in the next cycle. Further, in step 5, the D tower is left in an idle state.
各ステップにおける吸着塔内の圧力変化を第3図に示す
。これから分かるように、ブ【コレスの本流ラインに接
続されている吸着塔、即ち吸着をしている吸着塔がサイ
クル切換時には前後の吸@塔と圧力がほぼ同じになる(
9kg/c++fG)ので切換時の圧力ショックは皆無
となる。Figure 3 shows the pressure change inside the adsorption tower at each step. As can be seen from this, when the adsorption tower connected to the main line of Cores, that is, the adsorption tower that is performing adsorption, changes the cycle, the pressure of the adsorption towers before and after is almost the same (
9kg/c++fG), so there is no pressure shock when switching.
また、斯る一連の工程における各部ガスの組成。Also, the composition of each part of the gas in this series of steps.
流量2発熱量を実論例で調べた結果は表4の通りであっ
た。Table 4 shows the results of examining the flow rate and calorific value using practical examples.
(表4)
f′lIXガス
%
%
k caf/N耀
上記表4から自明の如く、本発明方法によれば、ブレフ
シ1!−スイング法による排出ガス中の都市ガス有効成
分は極めて高い割合で回収され、排出ガス中には可燃成
分はほとんど含まれない。また、す1ノイクルガスは専
用の吸着塔で再吸着処理を行なっているが、リサイクル
ガスはCO2分圧が高く、CH4の分圧が低いので、吸
着剤はCO2の吸着能力がアップし、CH4の吸着能力
は低下づる。この現象は吸着剤に3人のカーボンモレキ
ュラーシーブを使用したため効果的に作用している。(Table 4) f'lIX Gas % % k caf/N As is obvious from the above Table 4, according to the method of the present invention, 1! - By the swing method, an extremely high percentage of the city gas active components in the exhaust gas are recovered, and the exhaust gas contains almost no combustible components. In addition, the re-adsorption process is carried out on the S1 Noicle gas in a dedicated adsorption tower, but since the recycled gas has a high partial pressure of CO2 and a low partial pressure of CH4, the adsorbent has an increased adsorption capacity for CO2 and a CH4 Adsorption capacity decreases. This phenomenon is effective because three carbon molecular sieves are used as adsorbents.
従って、再吸着が可能でリサイクルガス伍も極めて少な
くなっている。Therefore, re-adsorption is possible and the amount of recycled gas is extremely small.
(効 果) 本発明は上記の構成であるから以下の利点を有する。(effect) Since the present invention has the above configuration, it has the following advantages.
(1) 脱着ガスを、リサイクルし、そのリサイクル
ガス工程中で再吸着させるので、プレッシャースイング
法で発生する排出ガス中の都市ガス有効成分の回収を効
率よく行うことができ、分離損失を極めて小さくするこ
とができる。(1) Since the desorbed gas is recycled and re-adsorbed during the recycled gas process, the effective components of city gas in the exhaust gas generated by the pressure swing method can be efficiently recovered, and separation loss is extremely small. can do.
従って精製ガスのカロリーアップ率が高くなるのは勿論
、排出ガスは可燃成分の含有が極めて少なく、そのまま
大気中に放出しても同等問題がないので、排ガス処理の
ための費用も低減される。Therefore, not only does the calorie increase rate of the purified gas become high, but also the exhaust gas contains very few combustible components and there is no problem even if it is released into the atmosphere as it is, so the cost for exhaust gas treatment is also reduced.
またり→ノイクルガスは専用の吸着塔を通し再吸着させ
ているので、前述した理由によりリサイクル量が少なく
て済み、この設備容量及び費用も少なくなる。Since the neucle gas is re-adsorbed through a dedicated adsorption tower, the amount of recycling can be reduced for the reasons mentioned above, and the capacity and cost of this equipment can also be reduced.
(2リサイクルガスは一旦有水式ガスホルダーに溜め、
更に吸着塔を通した後に!2!X理前発生ガスにリサイ
クルし、また加圧用及びすすぎ用に精製ガスから一部取
出すガスは定流迅制御弁を介して精製ガスの圧力が変動
しないように取出すので、従来プレッシャースイング法
が連続プロ廿スにおいて問題とされる圧力、流量及び熱
量の変動を無くすることができ、PSA装置の前流、後
流、即らガス発生装置、熱量調整装置への影響をほとん
ど無くすことができ、製品ガスの熱h1変動を来たづ゛
恐れがない。(2 Recycled gas is temporarily stored in a water-filled gas holder,
After passing through the adsorption tower! 2! The gas generated before X-processing is recycled, and a portion of the gas is taken out from the purified gas for pressurization and rinsing through a constant flow control valve so that the pressure of the purified gas does not fluctuate, so the conventional pressure swing method is not continuous. Fluctuations in pressure, flow rate, and heat amount, which are problems in processing, can be eliminated, and the influence on the upstream and downstream of the PSA device, that is, the gas generator and the heat adjustment device, can be almost eliminated. There is no fear of heat h1 fluctuations in the product gas.
(3)均圧工程では減圧側と加圧側吸着塔の上部と上部
及び下部と下部を接続してガスを両方向より移動させて
いる。このことにより減圧側吸着塔【よ塔上部のlll
1!度の高い可燃成分及び塔下部の処理前リサイクルガ
スの可燃成分が共に加圧側吸着塔に排出移動し残らない
ので、脱着時の脱着成分純j良が高くなる。又、加圧側
吸着塔は塔上部に純度の高い可燃成分及び塔下部に処理
前リサイクルガス成分が送入されるので、次サイクルの
精製(吸着)体制と同様のガス成分分布になり結果的に
処理後精製ガスの成分純度を高くしている。従って精製
ガス純度及び排出ガスの純度を高めることができる。(3) In the pressure equalization step, the upper and lower parts of the adsorption tower on the depressurizing side and the pressurizing side are connected, and gas is moved from both directions. This allows the adsorption tower on the vacuum side to
1! Since both the highly combustible components and the combustible components of the unprocessed recycled gas at the lower part of the column are discharged to the pressure-side adsorption column and do not remain, the purity of the desorbed components during desorption is increased. In addition, in the pressure-side adsorption tower, highly pure combustible components are fed into the upper part of the tower and unprocessed recycled gas components are fed into the lower part of the tower, resulting in a gas component distribution similar to that of the purification (adsorption) system in the next cycle. The component purity of the purified gas after treatment is increased. Therefore, the purity of purified gas and the purity of exhaust gas can be increased.
(4)加圧工程サイクルにある吸着塔への1次加圧ガス
として供給するものを除く 500Torr迄の減圧ガ
ス、すなわちリサイクルガスは処理部発生ガスよりCO
2分圧が高く、CH4の分圧が低いこのガスを処理する
吸着剤は処理部発生ガスを処理するときよりもC○2吸
着能力が向上し、Cトh吸着能力が低下する。従って、
前サイクルで吸着を行なった吸着剤でのCO2の再吸着
が可能であり、吸着剤にCO2をより多く吸着さ往るこ
とが出来ると共にCO2の脱着が有利になる。(4) Excluding what is supplied as the primary pressurized gas to the adsorption tower in the pressurization process cycle, the reduced pressure gas up to 500 Torr, that is, the recycled gas, is CO from the gas generated in the processing section.
An adsorbent that processes this gas, which has a high partial pressure of CH2 and a low partial pressure of CH4, has an improved C○2 adsorption capacity and a decreased Cth adsorption capacity, compared to when it processes the gas generated from the processing section. Therefore,
It is possible to re-adsorb CO2 with the adsorbent that adsorbed it in the previous cycle, allowing more CO2 to be adsorbed to the adsorbent and making CO2 desorption advantageous.
(5) リサイクルガスは昇圧により温度が上昇する
ため吸着温度迄冷rJ] l、てリサイクルするが工程
末期には肌着温度に調整するので、吸@温度を低く脱着
温度を高くすることができ吸着及び脱着の条件が非常に
有利になる。(5) Since the temperature of the recycled gas rises due to pressure increase, it is cooled down to the adsorption temperature. However, at the end of the process, the temperature is adjusted to the underwear temperature, so the adsorption temperature can be lowered and the desorption temperature raised higher. And the conditions for attachment and detachment become very advantageous.
(6)吸着剤として平均細孔径約3人のカーボンモレキ
ュラーシーブを用いたので、水分除去のための前処理が
不要である。従って、装置が小型になり、設備費用も少
なくなる。(6) Since a carbon molecular sieve with an average pore diameter of approximately 3 mm was used as the adsorbent, no pretreatment for removing moisture was required. Therefore, the device becomes smaller and the equipment cost is reduced.
第1図は本発明都市ガス製造プロセスに於けるガス中の
炭酸ガス及び水分を除去する方法を実施するための装置
の概略構成を示すフローシート、第2図は本発明方法の
原理を説明するフローシート、第3図は本発明方法の各
工程、各ステップにおける吸着塔内圧力変化を示すグラ
フ、第4図は工程ブロック図で()内はA塔粘製(吸着
)工程の場合を示すものである。Figure 1 is a flow sheet showing the schematic configuration of an apparatus for carrying out the method for removing carbon dioxide and moisture from gas in the city gas production process of the present invention, and Figure 2 explains the principle of the method of the present invention. Flow sheet, Figure 3 is a graph showing each step of the method of the present invention and the pressure change inside the adsorption tower at each step, Figure 4 is a process block diagram, and the figure in parentheses shows the case of the A column viscous production (adsorption) process. It is something.
Claims (1)
ス及び水分を4塔以上の吸着塔をサイクル使用するプレ
ッシャースイング法により吸着させて精製し、脱着ガス
の一部を有水式ガスホルダーで圧力及び熱量を均一にし
た後吸着塔を通して再吸着させ発生ガスにリサイクルす
る一方、精製ガスの一部を定流量制御弁を介して、次サ
イクルで吸着工程を行なう吸着塔の昇圧用加圧ガス及び
配管等の置換用すすぎガスに使用して、連続的にガスを
精製することを特徴とする都市ガス製造プロセスに於け
るガス中の炭酸ガス及び水分を除去する方法。 2)吸着剤として平均細孔径約3Åのカーボンモレキュ
ラーシーブを使用する請求項1)記載の方法。 3)プレッシャースイング法における減圧工程がその最
初期において吸着塔の上下両方向より減圧を行い、その
減圧ガスを加圧工程サイクルにある吸着塔に1次加圧ガ
スとして上下両方向より供給することを特徴とする請求
項1)記載の方法。 4)リサイクルする脱着ガスは加圧工程サイクルにある
吸着塔への1次加圧ガスとして供給されるものを除く5
00Torr迄の減圧ガスであることを特徴とする請求
項1)記載の方法。 5)リサイクルする脱着ガスはリサイクル工程末期迄は
吸着温度に冷却し、上記工程末期に脱着温度に調整する
ことを特徴とする請求項1)記載の方法。 6)処理前ガスが、原料のナフサ、LPG、メタノール
を水蒸気と反応させて得られる発生ガスで、CH_4、
H_2を可燃主成分とし、CO_2を含む混合湿性ガス
であることを特徴とする請求項1)記載の方法。[Claims] 1) Carbon dioxide and moisture in the gas generated in the city gas production process are adsorbed and purified by a pressure swing method that uses four or more adsorption towers in cycles, and a part of the desorbed gas is purified. After equalizing the pressure and heat in a water-containing gas holder, it is re-adsorbed through an adsorption tower and recycled into generated gas, while a portion of the purified gas is passed through a constant flow control valve to perform the adsorption process in the next cycle. A method for removing carbon dioxide and moisture from gas in a city gas production process, characterized by continuously purifying the gas by using it as a pressurized gas for pressurization and a rinsing gas for replacing pipes, etc. 2) The method according to claim 1), wherein a carbon molecular sieve having an average pore diameter of about 3 Å is used as the adsorbent. 3) The depressurization process in the pressure swing method is characterized in that the pressure is reduced from both the top and bottom of the adsorption tower at the initial stage, and the depressurized gas is supplied from both the top and bottom as the primary pressurized gas to the adsorption tower in the pressurization process cycle. The method according to claim 1). 4) The desorption gas to be recycled excludes that supplied as the primary pressurized gas to the adsorption tower in the pressurization process cycle.5
The method according to claim 1), characterized in that the gas is a reduced pressure gas of up to 000 Torr. 5) The method according to claim 1, wherein the desorption gas to be recycled is cooled to the adsorption temperature until the end of the recycling process, and adjusted to the desorption temperature at the end of the process. 6) The pre-treatment gas is a generated gas obtained by reacting the raw materials naphtha, LPG, and methanol with steam, and contains CH_4,
The method according to claim 1), characterized in that the mixed wet gas contains H_2 as a combustible main component and CO_2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63195258A JPH02699A (en) | 1987-10-24 | 1988-08-03 | Removal of carbon dioxide and moisture from gas in town gas production process |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-269916 | 1987-10-24 | ||
JP26991687 | 1987-10-24 | ||
JP63195258A JPH02699A (en) | 1987-10-24 | 1988-08-03 | Removal of carbon dioxide and moisture from gas in town gas production process |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02699A true JPH02699A (en) | 1990-01-05 |
JPH0459358B2 JPH0459358B2 (en) | 1992-09-22 |
Family
ID=26509013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63195258A Granted JPH02699A (en) | 1987-10-24 | 1988-08-03 | Removal of carbon dioxide and moisture from gas in town gas production process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02699A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02281096A (en) * | 1989-04-24 | 1990-11-16 | Seibu Gas Kk | Carbon dioxide and moisture remover for methane-enriched mixed gas |
JPH0559379A (en) * | 1991-08-30 | 1993-03-09 | Seibu Gas Kk | Method for separating carbon dioxide gas and water content in gas in city gas purification process |
US6908507B2 (en) | 2001-04-13 | 2005-06-21 | Co2 Solution Inc. | Process and a plant for the production of Portland cement clinker |
JP2014077060A (en) * | 2012-10-10 | 2014-05-01 | Metawater Co Ltd | Methane fermentation gas purification process and purification system |
JP2014077065A (en) * | 2012-10-10 | 2014-05-01 | Metawater Co Ltd | City gas production process and production system |
US9732297B2 (en) | 2013-03-19 | 2017-08-15 | Osaka Gas Co., Ltd. | Gas purification method |
CN108970332A (en) * | 2018-07-25 | 2018-12-11 | 戴乐亭 | A kind of decarbonization method of converter and/or blast furnace gas |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58159830A (en) * | 1982-03-18 | 1983-09-22 | Seitetsu Kagaku Co Ltd | Method for removing carbon dioxide in natural gas |
-
1988
- 1988-08-03 JP JP63195258A patent/JPH02699A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58159830A (en) * | 1982-03-18 | 1983-09-22 | Seitetsu Kagaku Co Ltd | Method for removing carbon dioxide in natural gas |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02281096A (en) * | 1989-04-24 | 1990-11-16 | Seibu Gas Kk | Carbon dioxide and moisture remover for methane-enriched mixed gas |
JPH0559379A (en) * | 1991-08-30 | 1993-03-09 | Seibu Gas Kk | Method for separating carbon dioxide gas and water content in gas in city gas purification process |
US6908507B2 (en) | 2001-04-13 | 2005-06-21 | Co2 Solution Inc. | Process and a plant for the production of Portland cement clinker |
JP2014077060A (en) * | 2012-10-10 | 2014-05-01 | Metawater Co Ltd | Methane fermentation gas purification process and purification system |
JP2014077065A (en) * | 2012-10-10 | 2014-05-01 | Metawater Co Ltd | City gas production process and production system |
US9732297B2 (en) | 2013-03-19 | 2017-08-15 | Osaka Gas Co., Ltd. | Gas purification method |
CN108970332A (en) * | 2018-07-25 | 2018-12-11 | 戴乐亭 | A kind of decarbonization method of converter and/or blast furnace gas |
Also Published As
Publication number | Publication date |
---|---|
JPH0459358B2 (en) | 1992-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107789949B (en) | Gas separation method by negative pressure swing adsorption | |
KR930010571B1 (en) | Purifying combustible gases containing carbon monoxide | |
TWI521056B (en) | Methane recovery method and methane recovery unit | |
JP2004154761A (en) | Feed gas treatment method and device | |
WO2008142009A1 (en) | Process for purifying a gas by cpsa having two regeneration stages, and purification unit for implementing this process | |
WO1989006218A1 (en) | Process for separating and recovering carbonic acid gas from gas mixture by adsorption | |
JP5968252B2 (en) | Methane gas enrichment method | |
WO2020221629A1 (en) | A pressure swing adsorption process for producing hydrogen and carbon dioxide | |
JPS61176540A (en) | Collection of gaseous mixture of methane and carbon dioxide | |
CN112678773B (en) | Process for producing hydrogen and coproducing LNG (liquefied Natural gas) by using raw gas | |
JP6351721B2 (en) | Gas concentration method | |
JPH02699A (en) | Removal of carbon dioxide and moisture from gas in town gas production process | |
WO2020105242A1 (en) | Gas separation device and gas separation method | |
EP0314040B1 (en) | Method for removing carbon dioxide gas and moisture in a city gas production | |
JPH01176416A (en) | Purifying method for combustion exhaust gas | |
KR100849987B1 (en) | Enrichment of ethylene from fcc off-gas | |
KR100228239B1 (en) | Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product | |
JP2004299994A (en) | Hydrogen production apparatus | |
JP2000317245A (en) | Separation and purification of gas | |
JP4771668B2 (en) | Hydrogen production method and apparatus | |
CN220424946U (en) | Carbon dioxide purification device | |
JP3742304B2 (en) | Rare gas recovery method and apparatus | |
JPH03242313A (en) | Purification of carbon monoxide | |
JP2008296106A (en) | Refining method of mixed gas, and recycle system of mixed gas | |
JPH0367727B2 (en) |