JPH0261910A - Superconducting material wire and its manufacture - Google Patents
Superconducting material wire and its manufactureInfo
- Publication number
- JPH0261910A JPH0261910A JP63213260A JP21326088A JPH0261910A JP H0261910 A JPH0261910 A JP H0261910A JP 63213260 A JP63213260 A JP 63213260A JP 21326088 A JP21326088 A JP 21326088A JP H0261910 A JPH0261910 A JP H0261910A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- oxide
- substrate
- superconducting
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims description 21
- 238000005096 rolling process Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 5
- -1 another oxide Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 10
- 238000004544 sputter deposition Methods 0.000 abstract description 9
- 239000002887 superconductor Substances 0.000 abstract description 7
- 229910052709 silver Inorganic materials 0.000 abstract description 5
- 239000004332 silver Substances 0.000 abstract description 5
- 230000007704 transition Effects 0.000 abstract description 5
- 239000003795 chemical substances by application Substances 0.000 abstract description 4
- 229910052769 Ytterbium Inorganic materials 0.000 abstract description 2
- 229910052796 boron Inorganic materials 0.000 abstract description 2
- 239000010409 thin film Substances 0.000 abstract description 2
- 229910052727 yttrium Inorganic materials 0.000 abstract description 2
- 229910052771 Terbium Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000010408 film Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、酸化物超電導物質を素材とする大型電磁石
用のコイル、送電線等の超電導線材、およびその製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a superconducting wire such as a coil for a large electromagnet and a power transmission line made of an oxide superconducting material, and a method for manufacturing the same.
(従来の技術)
RX B ycux*y+J Ozなる組成の酸化物超
電導物質(例えば、YBazCusOt−y)は、高い
超電導遷移温度(Tc)をもつことが知られており、こ
れを線材にする試みがなされている。しかし、この物質
の粉末を銅あるいは銀のパイプに詰めて線引きする従来
の方法で得られる線材は、臨界電流密度(Jc)がたか
だか1000 A/c+*”程度と低く、エネルギー分
野への実用化には程遠い。また、磁気的および熱的な安
定性の改善には直径数μ情程度の細線化が必要であるが
、酸化物特有の難加工性のために細線化には限界がある
。(Prior art) Oxide superconducting materials (for example, YBazCusOt-y) with the composition RX B ycux * y + J Oz are known to have a high superconducting transition temperature (Tc), and attempts have been made to make them into wires. being done. However, the wire obtained by the conventional method of packing powder of this substance into a copper or silver pipe and drawing it has a low critical current density (Jc) of only 1000 A/c++'', making it difficult to put it to practical use in the energy field. In addition, to improve magnetic and thermal stability, it is necessary to make the wire thinner to a diameter of several micrometers, but there is a limit to how thin the wire can be made due to the difficult processability characteristic of oxides.
酸化物の超電導物質には電子の流れに異方性があること
が知られており、ペロプスカイト型酸化物超電導物質で
は結晶のC軸方向に電流が流れにくく、C軸に垂直な方
向には電流が流れやすい。It is known that oxide superconducting materials have anisotropy in the flow of electrons, and in perovskite oxide superconducting materials, it is difficult for current to flow in the C-axis direction of the crystal, and in the direction perpendicular to the C-axis. Current flows easily.
このことは、YBazCusO+、yの単結晶を用いた
実験によって確かめられている( Japanese
Journalof Applied Physics
、νo1.26 (1987)、L726 )。This has been confirmed by experiments using a single crystal of YBazCusO+,y (Japanese
Journal of Applied Physics
, νo1.26 (1987), L726).
従って、もしペロブスカイト型酸化物超電導物質のC軸
が線材の長手方向と直角の方向にそろった線材ができれ
ば、その臨界電流密度は大きくなる筈である。しかし、
銅などの鞘(パイプ)に酸化物の焼結粒子を詰めて、こ
れを線引きする方法では、超電導物質の結晶方位はラン
ダムになり、上記のように結晶方位のそろった線材は得
られない。Therefore, if a wire can be created in which the C axis of the perovskite oxide superconductor is aligned perpendicular to the longitudinal direction of the wire, its critical current density should increase. but,
In the method of filling a sheath (pipe) of copper or the like with sintered oxide particles and drawing it, the crystal orientation of the superconducting material becomes random, and it is not possible to obtain a wire with uniform crystal orientation as described above.
一方、スパッタリング蒸着法によって酸化物系超電導物
質の結晶膜をセラミック基板上にC軸が基板面に垂直方
向に優先配向するように成長させることが知られている
( Japanese Journal ofAppl
ied Physics、Vol、26(1987)、
L1221 ) 、また、本出願人は、この蒸着法に
よる超電導勧賞被覆材の改良された製造方法および線材
の製造方法について先に特許出願をした。(特願昭62
−327949号、特願昭63−6169号)
(発明が解決しようとする課題)
本発明は、臨界電流密度が高く線径の小さな超電導線材
を提供すること、およびスパッタリング法などの超電導
物質被覆材の製法と、圧延その他の線材の製造方法とを
結合t7た上記線材の新しい製造方法を提供すること、
を目的とする。On the other hand, it is known that a crystalline film of an oxide-based superconducting material can be grown on a ceramic substrate by sputtering vapor deposition so that the C-axis is preferentially oriented perpendicular to the substrate surface (Japanese Journal of Appl.
ied Physics, Vol. 26 (1987),
L1221), the applicant has previously filed a patent application for an improved method for manufacturing a superconducting coating material and a method for manufacturing a wire using this vapor deposition method. (Special application 1986
-327949, Japanese Patent Application No. 63-6169) (Problems to be Solved by the Invention) The present invention provides a superconducting wire material with a high critical current density and a small wire diameter, and a superconducting material coating material using a sputtering method etc. To provide a new method for manufacturing the above-mentioned wire rod, which combines the manufacturing method of t7 with rolling and other wire rod manufacturing methods;
With the goal.
(課題を解決するための手段)
本発明は、下記の超電導物質線材およびその製造方法を
要旨とする。(Means for Solving the Problems) The gist of the present invention is the following superconducting material wire and method for manufacturing the same.
■ 酸化物系超電導物質と金属、または酸化物系超電導
物質と他の酸化物と金属とから成る線材であって、前記
金属が線材の軸方向に平行な複数の溝を有することを特
徴とする超電導物質線材。■ A wire consisting of an oxide-based superconducting substance and a metal, or an oxide-based superconducting substance, another oxide, and a metal, characterized in that the metal has a plurality of grooves parallel to the axial direction of the wire. Superconducting material wire.
■ 金属基板、または酸化物系超電導物質以外の酸化物
で被覆された金属基板の表面に、後に線材に加工された
ときにその軸方向に平行になる複数の溝を形成し、この
金属基板または酸化物で被覆された金属基板の上に酸化
物系超電導物質層を形成し、得られた板状の素材を線状
に巻くことを特徴とする超電導物質線材の製造方法。■ A plurality of grooves are formed on the surface of a metal substrate or a metal substrate coated with an oxide other than an oxide-based superconducting material, so that when it is later processed into a wire, it becomes parallel to the axial direction of the metal substrate. A method for manufacturing a superconducting material wire, which comprises forming an oxide-based superconducting material layer on a metal substrate coated with an oxide, and winding the obtained plate-like material into a wire.
■ 線状に巻いた後、更に圧延若しくは引き抜き、また
はその両方の加工を施す上記■の超電導物質線材の製造
方法。(2) The method for manufacturing a superconducting material wire according to (2) above, which comprises winding it into a wire and then further rolling or drawing or both.
第1図および第2図は、本発明の超電導線材の製造工程
を模式的に示したものである。この図にそって本発明方
法を工程順に説明する。FIG. 1 and FIG. 2 schematically show the manufacturing process of the superconducting wire of the present invention. The method of the present invention will be explained step by step with reference to this figure.
■ 金属基板に溝を形成する工程(第1図)金属基板に
複数本の溝を形成する手段としては、切削のような機械
加工や溝付ロールでの圧延など色々な方法が採用できる
。第1図に示すのは、溝形成法の一例である。(2) Step of forming grooves on a metal substrate (Fig. 1) Various methods can be used to form a plurality of grooves on a metal substrate, such as machining such as cutting or rolling with a grooved roll. What is shown in FIG. 1 is an example of a groove forming method.
先ず、例えば厚さ200〜500μ−の銀の薄板1′の
上に同じく銀の線材2(幅、厚さとも約100μm)を
剥離剤3を介して所定間隔で並べる。この状態でロール
4によって圧延すれば、線材2が基板に押し込まれた状
態の板1″′ができる。その後、線材2を剥ぎ採れば、
多数の溝の形成された基板1が得られる。この方法によ
れば、切削加工などでの溝付けが困難な薄い基板の製造
も容易である。First, on a thin silver plate 1' having a thickness of, for example, 200 to 500 .mu.m, silver wire rods 2 (width and thickness of about 100 .mu.m) are arranged at predetermined intervals via a release agent 3. If this state is rolled by the roll 4, a plate 1″' with the wire rod 2 pushed into the substrate will be produced.After that, if the wire rod 2 is peeled off,
A substrate 1 in which a large number of grooves are formed is obtained. According to this method, it is easy to manufacture thin substrates that are difficult to groove by cutting or the like.
なお、上記の例で銀線を用いたのは、基板と変形抵抗が
同じの線を用いれば、最初の圧延でできた溝の深さの基
板板厚に対する比が、板厚を薄くしていっても維持され
るからである。しかし、必ずしも基板と同じ材質の線を
用いる必要はない。Note that the silver wire used in the above example is because if a wire with the same deformation resistance as the substrate is used, the ratio of the depth of the groove created in the first rolling to the substrate thickness will reduce the thickness of the substrate. This is because it will be maintained no matter what. However, it is not always necessary to use wires made of the same material as the substrate.
こうして得られた溝付の基板は、後の工程で溝にそって
屈曲させた時に、溝のある薄い部分で優先的に曲がり、
厚い部分は曲がり難いから、厚い部分に形成された酸化
物系超電導物質の層の剥離が起こりにくい。When the grooved substrate thus obtained is bent along the groove in a later process, it bends preferentially at the thin grooved part.
Since the thick portion is difficult to bend, the layer of oxide-based superconducting material formed in the thick portion is less likely to peel off.
■ 薄膜状の超電導被覆層を作る工程(第2図)工程■
によって得られた金属基板1の上に下記のような条件で
スパッタリングによって、例えばRxBvCuw+y*
SOzの結晶6(厚み2〜10um程度)をつける。な
お、この組成式において、RはY、、Eu、 Gd、
Tb、 DV、、Er、 Ybのいずれかを示し、Bは
SrまたはBaを示す。■ Process of creating a thin film-like superconducting coating layer (Figure 2) ■
For example, RxBvCuw+y* is deposited on the metal substrate 1 obtained by sputtering under the following conditions.
Attach SOz crystal 6 (about 2 to 10 um thick). In addition, in this composition formula, R is Y, Eu, Gd,
It represents either Tb, DV, Er, or Yb, and B represents Sr or Ba.
基板としては、第2図の(Ao)のように金属薄板の上
にMgO或いは5rTiOsのような酸化物層5をもつ
ものとしてもよい。このような酸化物層を設ければ、基
板の金属として酸化物系超電導物質と反応を起こしやす
い金属、例えばYBaxCusOt−1と反応しやすい
銅、を使用しても、酸化物層5がその反応を抑制するか
ら、基板材料選定の自由度が増す、この場合、酸化物I
I5はさきに溝を形成した金属基板の上に、スパッタリ
ング法、真空薫着法等によって形成するのがよい。The substrate may be a thin metal plate with an oxide layer 5 such as MgO or 5rTiOs as shown in FIG. 2 (Ao). If such an oxide layer is provided, even if a metal that easily reacts with oxide-based superconducting materials is used as the metal of the substrate, such as copper that easily reacts with YBaxCusOt-1, the oxide layer 5 will prevent the reaction. In this case, the oxide I
I5 is preferably formed by sputtering, vacuum deposition, or the like on the metal substrate on which the grooves have been previously formed.
上記のような基板上に酸化物超電導物質の層を形成させ
るスパッタリングの条件を例示すれば下記のとおりであ
る。Examples of sputtering conditions for forming a layer of oxide superconducting material on the substrate as described above are as follows.
方式: 28iスパツタリング 電圧:1.5にν 雰囲気二Arガス分圧0.03〜0.05 Torr。Method: 28i sputtering Voltage: 1.5 to ν Atmosphere: Ar gas partial pressure 0.03 to 0.05 Torr.
+酸素ガス分圧0.03〜0.05 Torr。+ Oxygen gas partial pressure 0.03 to 0.05 Torr.
陰極(例えば、RJavCLlx+yesOz焼結体)
と陽極(基板)との間隔:5cm
基板温度: YBazCusOt−yを形成する場合
500 ”C以上
YSrtCus()+−yを形成する場合450°C以
上
上記のような条件によって、第2図AまたはAoに示す
超電導物質RXByCux+y−JOzの結晶6のC軸
を基板表面に対して垂直方向に優先成長させる。Cathode (e.g. RJavCLlx+yesOz sintered body)
Distance between and anode (substrate): 5 cm Substrate temperature: 500°C or higher when forming YBazCusOt-y, or 450°C or higher when forming YSrtCus()+-y. The C-axis of the crystal 6 of the superconducting material RXByCux+y-JOz shown by Ao is grown preferentially in the direction perpendicular to the substrate surface.
■線状に巻く工程
第2図(A)または(Ao)に示すような表面に超電導
酸化物膜が形成された板状の素材を、同図(B)に示す
ように、溝が軸方向になるように巻いて線にする。圧延
してテープ状の製品にする場合には、(B)から更に(
C)のように平板状に成形するか、または(A)、 (
A’)から直接(C)の形状にする。薄い銀のような金
属基板を用い、しかもこの基板には前記のように多数の
溝が形成されているので、酸化物層の剥離や結晶方位の
乱れもなく容易に線材にすることができる。なお、本発
明では、上記の平板状およびテープ状も含めて「線状」
と総称することにする。■ Linear winding process A plate-shaped material with a superconducting oxide film formed on the surface as shown in Figure 2 (A) or (Ao) is wound in the axial direction as shown in Figure 2 (B). Roll it to make a wire. When rolling into a tape-shaped product, from (B) to (
Form it into a flat plate as in C), or (A), (
Make the shape (C) directly from A'). Since a thin metal substrate such as silver is used and a large number of grooves are formed in this substrate as described above, it can be easily made into a wire without peeling off the oxide layer or disordering the crystal orientation. In addition, in the present invention, "linear" includes the above-mentioned flat plate shape and tape shape.
We will refer to them collectively as
■圧延、引き抜きの工程
第2図(B)、 (C)のままでも超電導線材として利
用できるが、通常はこれを更に圧延または/および引き
抜きして細線にする。超電導線材の実用化に当たっては
、電流のオン−オフ時の磁束移動による超電導状態の破
壊を避けるためには、数μ禦径の線材にしなければなら
ない、一般に酸化物系超電導材は、他のセラミックスと
同様に加工性が悪く、細線化はきわめて難しい。しかし
、本発明の方法によれば、比較的容易に数μ購径の細線
または数μm厚のテープが得られる。■Rolling and drawing process Figures 2 (B) and (C) can be used as superconducting wires as they are, but they are usually further rolled and/or drawn to make thin wires. In order to put superconducting wire into practical use, the wire must have a diameter of several micrometers in order to avoid destruction of the superconducting state due to magnetic flux movement when current is turned on and off.In general, oxide-based superconducting materials cannot be used with other ceramics. Similarly, it has poor processability and is extremely difficult to thin wire. However, according to the method of the present invention, a thin wire with a diameter of several μm or a tape with a thickness of several μm can be obtained relatively easily.
従来の方法では、金属の管に酸化物超電導体の粉末を詰
め、これを圧延または引き抜きするのであるが、この粉
末充填に手間がかかるだけでなく、管の径を小さくする
のにも限界がある。これに対して、本発明の方法では、
例えば10μ−というような極めて薄い金属板に前記の
ように酸化物超電導体を被着しているので、これを巻い
たり、圧延、引き抜きの加工を施すのも容易である。In the conventional method, metal tubes are filled with oxide superconductor powder and then rolled or drawn, but not only is it time-consuming to fill the powder, but there are limits to how small the tube diameter can be. be. In contrast, in the method of the present invention,
Since the oxide superconductor is coated on an extremely thin metal plate of, for example, 10 μm, it is easy to wind, roll, and draw the metal plate.
こうして得られた本発明の線材では、第2図の(B)で
も分かるように、超電導物質の結晶のC軸が線材の長手
方向に対して垂直方向にそろっている。言い換えれば、
線材の長手方向が電流の流れやすい方向になっている。In the thus obtained wire of the present invention, as can be seen from FIG. 2(B), the C-axes of the crystals of the superconducting substance are aligned perpendicularly to the longitudinal direction of the wire. In other words,
The longitudinal direction of the wire is the direction in which current flows easily.
圧延または引き抜きの加工で、酸化物超電導体の結晶粒
が壊れて小さな結晶粒になるが、その場合でもC軸の優
先配向は保たれる。従って、この線材は、従来の超電導
物質の結晶方向がランダムな線材に較べて、著しく高い
臨界電流密度を示すのである。During rolling or drawing, the crystal grains of the oxide superconductor are broken into small crystal grains, but the preferential orientation of the C-axis is maintained even in this case. Therefore, this wire exhibits a significantly higher critical current density than conventional wires of superconducting materials in which the crystal orientation is random.
また、本発明の超電導線材は、その断面は金属薄板と超
電導物質薄膜の積層構造になっているから、一部で超電
導状態が破れて熱が発生しても、その熱は金属薄板を通
して容易に放出される。In addition, the cross section of the superconducting wire of the present invention has a laminated structure of a thin metal plate and a thin film of superconducting material, so even if the superconducting state is broken in a part and heat is generated, the heat can easily pass through the thin metal plate. released.
(実施例1)
厚さ500μ慣の銀の板の上に一辺が100μmの正方
形断面の銀線を、雲母とガラスを主成分とする剥離剤を
介して500μ−間隔で並べ、厚さ100μ閤まで冷間
圧延した。その後押し込まれた銀線を取り除き、深さ約
20μ+*、幅約100 p mの溝が500 p m
間隔で形成された基板を得た。この基板の上に、下記の
条件でDCスパッタリングにより厚み10μmのYBa
tCusOg−y膜を蒸着して板状素材を得た。(Example 1) Silver wires with a square cross section of 100 μm on each side were arranged at 500 μ-intervals on a 500 μ-thick silver plate with a stripping agent mainly composed of mica and glass. Cold rolled to After that, remove the pressed silver wire and create a groove with a depth of about 20μ+* and a width of about 100 pm and a width of 500 pm.
A substrate formed with intervals was obtained. On this substrate, YBa with a thickness of 10 μm was deposited by DC sputtering under the following conditions.
A plate-like material was obtained by depositing a tCusOg-y film.
スバ・ ゴング 雰囲気 :アルゴン分圧 0.05Torr。Suba gong Atmosphere: Argon partial pressure 0.05 Torr.
+酸素分圧0.05 Torr。+Oxygen partial pressure 0.05 Torr.
ターゲット (陰極) : YBazCLIsOt−
y焼結体またはYSrlCu30t−y焼結体
放電電圧: 1.5KV
陽極−陰極間隔:5cm
基板温度: 600″に
うして得た素材を第3図に示すように平板状に厚さ(t
) 1m+m、幅(w)5+wm、長さ(jり100m
−になるよう10層に巻き、冷間圧延によって厚さ0.
3++mのテープに成形してその超電導遷移温度(Te
)を調べた。その結果を第4図に示す。Target (cathode): YBazCLIsOt-
y sintered body or YSrlCu30t-y sintered body Discharge voltage: 1.5 KV Anode-cathode distance: 5 cm Substrate temperature: The material obtained by heating to 600'' was shaped into a flat plate with a thickness (t) as shown in Figure 3.
) 1m+m, width (w) 5+wm, length (jri 100m
- rolled into 10 layers and cold rolled to a thickness of 0.
3++ m tape and its superconducting transition temperature (Te
) was investigated. The results are shown in FIG.
(実施例2)
厚さ500 g 11の銅板の上に一辺が100μ讃の
正方形断面の銅線を前記の剥離剤を介して500 p
m間隔で並べ、厚さ100μmまで冷間圧延した。その
後、押し込まれた銅線を取り除き、深さ約20μ鋼、幅
約100μ網の溝が500μ−間隔で形成された基板を
得た。この基板上にスパッタリング法により10μ■の
MgO皮膜形成させた0次いで、実施例1と同様にYB
atCu+0y−yまたはYSrzCu30 t−yを
10層mの厚さに蒸着し、実施例1と同じ条件で板状素
材から厚さ0.31のテープを得た。その超電導遷移温
度(Tc)の測定結果を第5図に示す。(Example 2) A copper wire with a square cross section of 100 μm on each side was coated with 500 μm of copper wire on a 500 g thick copper plate using the above-mentioned stripping agent.
They were arranged at m intervals and cold rolled to a thickness of 100 μm. Thereafter, the pressed copper wire was removed to obtain a substrate in which grooves having a depth of approximately 20 μm and a width of approximately 100 μm were formed at intervals of 500 μm. A 10 μι MgO film was formed on this substrate by sputtering, and then a YB film was formed as in Example 1.
atCu+0y-y or YSrzCu30ty was vapor-deposited to a thickness of 10 m, and a tape with a thickness of 0.31 was obtained from the plate-shaped material under the same conditions as in Example 1. The measurement results of the superconducting transition temperature (Tc) are shown in FIG.
(比較例)
従来の製造方法と同様に、外径6■のYBazCII+
0、−7とYSrtCusOq−1の焼結体をそれぞれ
外径10mm、内径6■の銀バイブに詰め、冷間で伸線
を行い、外径31111の線材を作製した。(Comparative example) Similar to the conventional manufacturing method, YBazCII+ with an outer diameter of 6 cm
The sintered bodies of 0, -7 and YSrtCusOq-1 were each packed into a silver vibrator with an outer diameter of 10 mm and an inner diameter of 6 cm, and cold wire drawing was performed to produce a wire rod with an outer diameter of 31111 mm.
こうして得られた線材と、前記実施例1.2で得た線材
について、77 Kでの臨界電流密度を測定した。その
結果を第1表に示す。The critical current density at 77 K was measured for the wire thus obtained and the wire obtained in Example 1.2. The results are shown in Table 1.
第1表
(発明の効果)
実施例の結果から明らかなとおり、本発明の超電導物質
線材は、RX B vcux+y*so Z本来のTc
を維持しながら、臨界電流密度は従来の製法によるもの
よりもはるかに高い。Table 1 (Effects of the Invention) As is clear from the results of the examples, the superconducting material wire of the present invention has RX B vcux+y*so Z original Tc
The critical current density is much higher than that by traditional manufacturing methods.
本発明はRx B yCu□4.δ0□系以外の酸化物
超電導物質の線材にも適用できることはいうまでもなく
、あらゆる種類の酸化物系超電導物質の実用化を促進す
るものである。The present invention is Rx B yCu□4. Needless to say, the present invention can be applied to wires made of oxide superconducting materials other than the δ0□-based material, and promotes the practical use of all kinds of oxide superconducting materials.
第1図および第2図は、本発明の超電導物質線材の製造
工程を模式的に示す図、
第3図は、本発明の実施例で製造した線材の概略斜視図
、
第4図および第5図は、本発明の実施例で得た線材の超
電導遷移温度の測定結果を示す図、である。1 and 2 are diagrams schematically showing the manufacturing process of a superconducting material wire of the present invention, FIG. 3 is a schematic perspective view of a wire manufactured in an example of the present invention, and FIGS. 4 and 5 The figure is a diagram showing measurement results of superconducting transition temperatures of wires obtained in Examples of the present invention.
Claims (3)
導物質と他の酸化物と金属とから成る線材であって、前
記金属が線材の軸方向に平行な複数の溝を有することを
特徴とする超電導物質線材。(1) A wire consisting of an oxide-based superconducting substance and a metal, or an oxide-based superconducting substance, another oxide, and a metal, characterized in that the metal has a plurality of grooves parallel to the axial direction of the wire. superconducting material wire.
物で被覆された金属基板の表面に、後に線材に加工され
たときにその軸方向に平行になる複数の溝を形成し、こ
の金属基板または酸化物で被覆された金属基板の上に酸
化物系超電導物質層を形成し、得られた板状の素材を線
状に巻くことを特徴とする超電導物質線材の製造方法。(2) A plurality of grooves are formed on the surface of a metal substrate or a metal substrate coated with an oxide other than an oxide-based superconducting material, and the grooves are parallel to the axial direction of the wire when it is later processed into a wire. A method for producing a superconducting material wire, which comprises forming an oxide-based superconducting material layer on a substrate or a metal substrate coated with an oxide, and winding the obtained plate-like material into a wire.
たはその両方の加工を施す特許請求の範囲第2項記載の
超電導物質線材の製造方法。(3) The method for manufacturing a superconducting material wire according to claim 2, which further comprises rolling or drawing, or both, after winding it into a wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63213260A JPH0261910A (en) | 1988-08-26 | 1988-08-26 | Superconducting material wire and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63213260A JPH0261910A (en) | 1988-08-26 | 1988-08-26 | Superconducting material wire and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0261910A true JPH0261910A (en) | 1990-03-01 |
Family
ID=16636149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63213260A Pending JPH0261910A (en) | 1988-08-26 | 1988-08-26 | Superconducting material wire and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0261910A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192116A (en) * | 2009-02-13 | 2010-09-02 | Sumitomo Electric Ind Ltd | Superconductive wire rod, and superconductive cable using the same |
JP4955884B2 (en) * | 2000-01-31 | 2012-06-20 | ジェオックス エス.ピー.エー. | Clothing with vents |
WO2014141777A1 (en) * | 2013-03-15 | 2014-09-18 | 古河電気工業株式会社 | Method for manufacturing superconducting conductor and superconducting conductor |
CN113257477A (en) * | 2021-07-05 | 2021-08-13 | 上海超导科技股份有限公司 | Method for preparing quasi-isotropic superconducting tape, superconducting tape and superconducting cable |
-
1988
- 1988-08-26 JP JP63213260A patent/JPH0261910A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4955884B2 (en) * | 2000-01-31 | 2012-06-20 | ジェオックス エス.ピー.エー. | Clothing with vents |
JP2010192116A (en) * | 2009-02-13 | 2010-09-02 | Sumitomo Electric Ind Ltd | Superconductive wire rod, and superconductive cable using the same |
WO2014141777A1 (en) * | 2013-03-15 | 2014-09-18 | 古河電気工業株式会社 | Method for manufacturing superconducting conductor and superconducting conductor |
CN105009228A (en) * | 2013-03-15 | 2015-10-28 | 古河电气工业株式会社 | Method for manufacturing superconducting conductor and superconducting conductor |
CN105009228B (en) * | 2013-03-15 | 2017-10-13 | 古河电气工业株式会社 | The manufacture method and superconducting conductor of superconducting conductor |
US10096403B2 (en) | 2013-03-15 | 2018-10-09 | Furukawa Electric Co., Ltd. | Method for producing superconductive conductor and superconductive conductor |
CN113257477A (en) * | 2021-07-05 | 2021-08-13 | 上海超导科技股份有限公司 | Method for preparing quasi-isotropic superconducting tape, superconducting tape and superconducting cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2567460B2 (en) | Superconducting thin film and its manufacturing method | |
JPH01163058A (en) | Supercoductive thin film and its preparation | |
JPH113620A (en) | Oxide superconducting wire and manufacture thereof | |
US8420575B2 (en) | Underlying layer of alignment film for oxide superconducting conductor and method of forming same, and device for forming same | |
JPH0772349B2 (en) | Method and apparatus for producing large area compound thin film | |
JP5799081B2 (en) | Thick oxide film with single layer coating | |
EP0499411B1 (en) | Method of making a metal substrate having a superconducting layer | |
WO2006071542A2 (en) | Architecture for coated conductors | |
JPH0261910A (en) | Superconducting material wire and its manufacture | |
JP2877367B2 (en) | Superconducting wire | |
JPH01186711A (en) | Wire material of superconductive wire and manufacture thereof | |
JPH02273418A (en) | Manufacture of oxide superconductive conductor | |
JP3099891B2 (en) | Superconducting material | |
JPH026394A (en) | Superconductive thin layer | |
JP2813287B2 (en) | Superconducting wire | |
JPH0395806A (en) | Superconductive conductor, its manufacture and superconducting coil formed by using the same superconductive conductor | |
JP2891365B2 (en) | Manufacturing method of ceramic superconductor | |
JP3061634B2 (en) | Oxide superconducting tape conductor | |
JPS63271816A (en) | Superconductive wire | |
JP2643972B2 (en) | Oxide superconducting material | |
JP2704625B2 (en) | Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure | |
JP2529347B2 (en) | Preparation method of superconducting thin film | |
JP2813257B2 (en) | Superconducting member manufacturing method | |
JPH11329118A (en) | Oxide superconducting composite material and its manufacture | |
US6451742B1 (en) | High temperature superconducting composite conductor and method for manufacturing the same |