JPH0261406B2 - - Google Patents
Info
- Publication number
- JPH0261406B2 JPH0261406B2 JP60011718A JP1171885A JPH0261406B2 JP H0261406 B2 JPH0261406 B2 JP H0261406B2 JP 60011718 A JP60011718 A JP 60011718A JP 1171885 A JP1171885 A JP 1171885A JP H0261406 B2 JPH0261406 B2 JP H0261406B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- particle size
- slurry
- average particle
- size distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 91
- 239000000843 powder Substances 0.000 claims description 85
- 238000000034 method Methods 0.000 claims description 34
- 239000002002 slurry Substances 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 26
- 238000001035 drying Methods 0.000 claims description 25
- 239000011148 porous material Substances 0.000 claims description 25
- 239000010419 fine particle Substances 0.000 claims description 12
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 239000011164 primary particle Substances 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 38
- 238000000635 electron micrograph Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000499 gel Substances 0.000 description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 239000012530 fluid Substances 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 8
- 238000003756 stirring Methods 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 229910002012 Aerosil® Inorganic materials 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 239000000017 hydrogel Substances 0.000 description 6
- 238000001694 spray drying Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000000084 colloidal system Substances 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 239000012798 spherical particle Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical class CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000011707 mineral Chemical class 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/36—Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
- C01B13/363—Mixtures of oxides or hydroxides by precipitation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
本発明は無機酸化物及び/又は含水酸化物から
なる粒度分布のシヤープな多孔質真球状微粒子粉
末の製造法に関するものであつて、さらに詳しく
は平均粒子径が1〜20μで、細孔容積が0.1〜0.8
c.c./gである多孔質真球状微粒子粉末の製造法に
係る。 従来知られている微粒子の製造法は、湿式法と
乾式法に大別される。湿式法としては、マイクロ
カプセル法、乳化法、オイル法などが知られてい
る。これらの方法はすべて液体中にて造粒を行う
為、固液分離、洗浄、乾燥等の工程に於て、粒子
の凝集が起り易く、かつ製品粒子の形状がいびつ
になるとか、粒度分布が広くなるなどの欠点があ
る。又これらの方法は固形分濃度の低い所で調整
しないと、微粒子が得られない為、工業的な大量
生産を目論む場合には、装置が大きくなり、コス
トが高くなるなどの欠点もある。 一方、乾式法としては、一度酸化物を固形化
し、これを所望の大きさに粉砕し、その酸化物の
融点以上の高温下に粉砕品を投下する事により球
状の微粒子を得る方法がある。しかし、この方法
では無孔質の粒子しか出来ず、又千数百℃という
高温下で行う為、粒子の付着が発生し易く、又非
常に高価である。 他の乾式法としては、食品、洗剤、触媒等の製
造に用いられている噴霧乾燥法がある。この方法
は通常110℃〜400℃の加熱空気中に原料スラリー
を噴霧し、乾燥粉末を得る方法であるが、乾燥空
気が高温であり、乾燥速度が速い為に、製品粒子
が非球形になるとか、粒子表面の一部が陥没した
りして真球状のものを得るのが困難である。又通
常の噴霧乾燥法は、平均粒子径が40μ〜150μ程度
の粉粒体の製造に適し、且つ粒度分布も20〜
180μと巾が広いのが通例である。 本発明者らは、こうした事情にかんがみ、上記
の欠点を解決すべく、鋭意研究した結果、温度、
湿度、気体の流速、気/液比並びに液中の粒度を
調整する事により、平均粒径が1〜20μで、粒度
分布が0.5〜30μとシヤープな無機酸化物及び/又
は含水酸化物からなる多孔質真球状微粒子粉末が
製造できることを見い出した。 すなわち、本発明によれば、Si,Al,Ti,Zr,
Fe,Sn,Zn,Sb及びMgの酸化物及び/又は含
水酸化物をコロイド分散質とするコロイド液10〜
95部と、無機酸化物のゲル5〜90部をよく混合し
たスラリーが気流中に噴霧される。 無機酸化物及び/又は含水酸化物のコロイド液
には、例えば水硝子等のアルカリ珪酸塩から脱ア
ルカリする方法やエチルシリケートを加水分解す
る方法等で得られるシリカコロイド;鉱酸塩及
び/又は有機酸塩を加水分解及び/又は中和する
方法等で得られるZr,Fe,Ti,Sb,Sn,Zn,
Mgなどのコロイド;H2O2処理など特殊な処理を
行うことにより得られるSnやSbのコロイド等が
使用可能である。但し、コロイドの製造に関して
は上記した製法に限定されるものではなく、いか
なる方法で製造されたものでもよい。 しかし、コロイド液に分散するコロイド粒子
(一次粒子)の平均粒子径は2500Å以下である事
が必要であり、好ましくは800Å以下である。平
均粒子径が2500Å以上であると、乾燥時の粒子間
強度が弱く、乾燥中に破損するため粒度分布が広
くなるばかりでなく、非球状物の混入が起るから
である。又、理由はさだかではないが、粒径の大
きいゾルを使用した場合には、噴霧機が閉塞しや
すく、粒度分布が大きくなり工業的に連続して安
定に真球状微粒子を得ることが困難である。 上記のコロイド液に混合される無機酸化物のゲ
ルは、ヒドロゲル又はキセロゲルのどちらであつ
ても差支えない。例えば、気相酸化法で得られる
シリカのエアロジルとか、水硝子を中和、洗浄し
て得られるホワイトカーボン等が使用可能であ
る。しかし、ゲルの平均粒子径は1μ以下である
ことが必要で、好ましくは、0.5μ以下であること
を可とする。 コロイド液とゲルとの混合状態は出来るだけ均
一であることが好ましい。又その時の粘度は
500cp以下である事が必要であり、好ましくは
50cp以下とすべきである。 通常の噴霧乾燥に使用される噴霧法を、平均粒
子径及び/又は粒度分布の狭い順に列挙すると回
転デイスク法<加圧ノズル法<2流体ノズル法の
順である。回転デイスク法では、その極限の回転
数6〜7万rpmを採用しても、得られる粉粒体の
平均粒径は30μ前後であり、平均粒径数μの粉粒
体を歩留りよく作ることはできない。 2流体ノズル法は高粘度なスラリーを噴霧乾燥
して平均粒径70〜120μの粉末を作るのに適して
いる。 本発明に於て噴霧乾燥に用いられる噴霧法は、
例えば空気、チツ素等のマツハ1以上の高速気体
でスラリーを微細な液滴とした後、これをマツハ
1以上の対向流として、液滴同志を衝突させるこ
とにより超音波を発生させ、これにより液滴をよ
り小さくする方法である。この時の液滴径は10μ
以下であることが好ましい(液滴径の測定は高速
度カメラで写した写真を拡大して測定することが
できる)。すなわち、液滴径はノズルの気/液比
及び/又は気体の流速を調節することにより、コ
ントロールすることができ、同一径の液滴である
場合は、スラリーの固形分濃度が高いと粉体の粒
径が大きくなる。又同一濃度の場合は液滴径を小
さくすれば、得られる粉体の粒径は小さくなる。
又、液滴径、固形分濃度が一定であれば、乾燥速
度を遅くすると、密に充填され、粒径は小さくな
る。従つて目的とする粒径の粉体の得るには、ノ
ズルの気/液比及び/又は気体の流速並びに原料
液の固形分濃度及び/又は乾燥速度を調節する必
要がある。 次に細孔容積に関して説明すると、ゾル(コロ
イド液)は一次粒子が単一に存在している為、乾
燥時に粒子の充填がスムーズに行なわれ最密充填
に近くなる。又ゲルは一次粒子が数ケ〜数百ケ凝
集した網目構造をとつており、乾燥時にこの網目
構造を維持したまま充填される関係で疎の充填構
造となり、細孔容積が大きくなる。しかし、ヒド
ロゲルのみで乾燥すると、球の表面の一部が陥没
するなどのために真球状は得られない。又キセロ
ゲルのみで乾燥すると、粒子の表面活性が低い
為、乾燥時の粒子間強度が弱く、乾燥中に破損す
るとか、分級時に破損し、球状のものが得られな
い。そこでこれらの欠点をなくすために、本発明
ではゾルとゲルを混合して使用する。ゲルにゾル
を混合して用いれば、粒子間強度の弱いキセロゲ
ルに対しては、ゾルが粒子間を繋ぐバインダーと
なり、ヒドロゲルに対しては、ゲルの間にゾルが
入り、乾燥時の球表面の陥没を防ぐので球状の粉
末を得ることができる。この時の混合比は、酸化
物重量比でゾル/ゲル=10/90〜95/5の範囲に
あけばよく、好ましくはゾル/ゲル=30/70〜
80/20の範囲にある。またゾルとゲルを混合した
ものは、ゲルが網目構造している為骨材の役目と
してはたらき乾燥収縮が小さくなるため、ゾルの
み乾燥した時より収縮速度と乾燥速度が釣り合う
ものと考えられる。それ故に乾燥温度が150℃以
下であれば真球状微粒子を得ることが可能である
が、処理スピードや乾燥程度から40℃〜120℃が
好ましい。 乾燥雰囲気の湿度は温度によつて大幅に変わ
る。湿度を変えるために温度を変えると、乾燥速
度が変化し、粉末の形状に悪影響を及ぼす。150
℃以上の温度を採用すると収縮速度と乾燥速度の
釣り合いがくずれ、非球状物や粉末の割れが発生
する。湿度は150℃〜10℃の温度範囲であれば
13vol%〜3vol%の範囲を可とするが、処理液量
及び乾燥程度より5〜9vol%の範囲が好ましい。 先に述べたように粉体の粒径をコントロールす
るには、噴霧ノズルの気液比と気体の流速をコン
トロールする必要があり、この意味で本発明での
気/液比は10560〜500の範囲に、好ましくは5200
〜880の範囲にある。気体の流速に関しては、マ
ツハ1以上であれば良く、好ましくはマツナ1.1
〜1.7である。 本発明の方法に於て、スラリーの固形分濃度、
噴霧ノズルの気/液比及び気体の流速、乾燥温度
と湿度を特に調節した場合には、平均粒子径が3
〜10μで、0.7〜25μの粒度分布を有する粉体を製
造することが可能である。 本発明の方法で得られた微粒子粉末は、透明完
全球状で多孔質であり、耐熱性、耐酸耐アルカリ
性、耐溶剤性に優れ、粒度分布が非常に狭く、硬
度が高いので、色々な用途に使用することができ
る。例えば高級滑性フイラーとしてシリカの真球
状微粉末をフアンデーシヨンに使用すれば、非常
に軽くソフトで、のびの良いフアンデーシヨンが
得られる。また、チタンの真球状微粉末を現在使
用されている顔料の代りに使用するか、これと併
用すれば、現在使用されている顔料に較べ非常に
伸展性が良なり隠蔽力も落ちず、爽やかなフアン
デーシヨンが得られる。 このほか、本発明の微粉子粉末の用途として
は、インク用体質顔料、トナー、剥離性改良剤、
潤滑材、自動車用ワツクス等の研磨剤、樹脂・ゴ
ム耐摩耗性改良用高硬度フイラー剤、流動性改良
剤、艶消フイラー、無収縮フイラー、パテ用充填
剤、吸着剤、クロマト用担体、香料包括ビーズ、
殺菌剤・殺虫剤・防黴剤包括ビーズ等が例示でき
る。 本発明で言う真球とは、粉末試料を単一粒子が
重ならないよう分散させて走査型電子顕微鏡
(SEM)にて2000倍に拡大した電子顕微鏡写真を
撮り、これを島津製のイメージアナライザーで画
像解析し、単一粒子1ケ1ケの投影面の面積と円
周を測定し、面積から真円と仮定して得られる相
当直径をHDとし、又円周から真円と仮定して得
られる相当直径をHdとし、これらの2つの比を
形状係数とした。 形状係数=HD(面積からの相当直径)/Hd(円周からの
相当直径) そしてこの形状係数の値が0.85〜1.00のものを
真球とした。かつサンプリングしたもののうち、
真球が90%以上認められるものを真球状微粒子と
名付けた。尚、表面上に小さい粒子の付着、陥没
などが認められる粒子は真球としない。 実施例 1 内容積150のタンクに平均粒子径130Åのシリ
カゾル(触媒化成製Cataloid SI−30)100Kg入
れ、これに平均粒子径0.1μのホワイトカーボン
(塩野義製薬カープレツクス)200Kgを入れて良く
撹拌する。ほぼ均一に混合出来たら、これを内容
積50のサンドミル(アシザワ製のパールミル
50STS)に滞留時間が30分になるような流量で
供給して、連続粉砕を行なつた。こうして得られ
たスラリーの粘度は26cpであつた。 このスラリーを対向式2流体ノズルに供給し、
処理液量60/Hr、空/液比=2100、空気流速
マツハ1.1、乾燥雰囲気温度120℃、湿度7.2vol%
の条件下に噴霧乾燥した。得られた乾燥粉末を
Kett式水分計で測定した時の水分は6.2wt%であ
つた。この粉末を600℃×3Hrs焼成後、堀場製の
粒度分布測定機Capa−500にて粒度分布を測定
し、さらに日本電子製LSM−T20走査形電子顕
微鏡(SEM)にて写真撮影し、前述したところ
に従つて形状係数を求めた。また粉末の細孔容積
をBET法で測定した。 第1図に粒度分布の測定結果を、第2図に粉末
の電子顕微鏡写真(倍率2000倍)を示す。 実施例 2 ホワイトカーボンの代りに平均粒子径0.05μの
アエロジルー200(日本アエロジル)を使用した以
外は実施例1と全く同一の方法にて粘度28cpの
スラリーを得、さらにシリカの真球状微粉末を製
造し、実施例1と同様にこの粉末の粒度分布及び
細孔容積を測定し、さらに形状係数を求めた。 本実施例で得た粉末の電子顕微鏡写真を第3図
に示する。 実施例 3 内容積150のタンクに水51.7と30%濃度の
シリカゾル(Cataloid SI−30)33.3Kgを入れ、
良く撹拌しながらこれにアエロジルー200を40Kg
徐々に添加し、ほぼ均一に混合したスラリーを対
向式2流体ノズルに供給し、実施例1と同様な方
法で粘度26cpのスラリーを得、さらにシリカの
真球状微粉末を製造した。この粉末の粒度分布と
細孔容積を実施例1と同様にして測定し、さらに
形状係数を求めた。 本実施例で得た粉末の電子顕微鏡写真を第4図
に示す。 実施例 4 酸化物として14.2wt%のチタンを含有する硫酸
チタンを内容積500のタンクに300Kg入れ、撹拌
しながら液温が10℃になる様冷却した後、28%ア
ンモニア水205を添加し、含水チタン酸のスラ
リーを作つた。これを0.5%のアンモニア水で
過洗浄する。こうして得られた含水チタン酸スラ
リーに塩酸を加えてPH2以上とし、良く撹拌し
て、TiO2として濃度31.7wt%のチタンゾルを149
Kg調製した。このゾルの平均粒子径は500Åであ
つた。このチタンゾルに平均粒子径は0.3μの顔料
チタンAW−200(帝国化工製)を10Kg加えて良く
混合し、得られたスラリーを対向式2流体ノズル
に供給して実施例1と同様な方法で粘度30cpの
スラリーを得、さらに酸化チタンからなる真球状
微粉末を製造した。この粉末の粒度分布と細孔容
積を実施例1と同様に測定し、また形状係数を求
めた。 本実施例で得た粉末の電子顕微鏡写真を第5図
に示す。 実施例 5 内容積300のタンクに水50を入れ、撹拌し
つつアルミン酸ソーダ70Kg(Al2O314wt%)と硫
酸アルミニウム90Kg(Al2O37wt%)をPHが7.5に
なる様調節しつつ同時添加した後、これを過洗
浄して平均粒子径0.02のアルミナのヒドロゲルを
得た。このヒドロゲルを内容積500のタンクに
入れ、良く撹拌しつつAl2O3として濃度10wt%の
平均粒子径1000Åアルミナゾル150Kg(触媒化成
製AS−2)を加えて良く混合し、得られたスラ
リーを対向式2流体ノズルに供給して実施例1と
同様な方法により粘度150cpのスラリーを得、さ
らに酸化アルミニウムからなる真球状微粉末を製
造した。この粉末の粒度分布と細孔容積を実施例
1と同様に測定し、さらに形状係数を求めた。 本実施例で得た粉末の電子顕微鏡写真を第6図
に示す。 比較例 1 酸化物として濃度30wt%のシルカゾル
(Cataloid SI−30 5cp)100Kgを対向式2流体ノ
ズルに供給し、実施例1と同一の方法でシリカの
微粉末を製造した。このシリカ粉末の分布粒度と
細孔容積を実施例1と同様に測定し、さらに形状
係数を求めた。 この比較例で得たシリカ粉末の電子顕微鏡写真
を第7図に示す。 比較例 2 実施例5で調製した粘土120cpのアルミナヒド
ロゲルをそのまま対向式2流体ノズルに供給し、
実施例1と同様な方法にてアルミナの微粉末を製
造した。この粉末の粒度分布と細孔容積を実施例
1と同様に測定し、さらに形状係数を求めた。 この比較例で得たアルミナ粉末の電子顕微鏡写
真を第8図に示す。 比較例 3 内容積150のタンクに水60を加え、撹拌し
つつアエロジル−200(日本アエロジル)40Kgを
徐々に加えて、良く混合し、得られた粘度15cp
のスラリーを対向式2流体ノズルに供給して実施
例1と同様な方法でシリカ微粉末を製造した。こ
のシリカ粉末の粒度分布と細孔容積を実施例1と
同様にして測定し、さらに形状係数を求めた。 この比較例で得た粉末の電子顕微鏡写真を第9
図に示す。 以上の実施例1〜5及び比較例1〜3で得た各
粉末の細孔容積、平均粒径及び形状係数は表−1
の通りである。
なる粒度分布のシヤープな多孔質真球状微粒子粉
末の製造法に関するものであつて、さらに詳しく
は平均粒子径が1〜20μで、細孔容積が0.1〜0.8
c.c./gである多孔質真球状微粒子粉末の製造法に
係る。 従来知られている微粒子の製造法は、湿式法と
乾式法に大別される。湿式法としては、マイクロ
カプセル法、乳化法、オイル法などが知られてい
る。これらの方法はすべて液体中にて造粒を行う
為、固液分離、洗浄、乾燥等の工程に於て、粒子
の凝集が起り易く、かつ製品粒子の形状がいびつ
になるとか、粒度分布が広くなるなどの欠点があ
る。又これらの方法は固形分濃度の低い所で調整
しないと、微粒子が得られない為、工業的な大量
生産を目論む場合には、装置が大きくなり、コス
トが高くなるなどの欠点もある。 一方、乾式法としては、一度酸化物を固形化
し、これを所望の大きさに粉砕し、その酸化物の
融点以上の高温下に粉砕品を投下する事により球
状の微粒子を得る方法がある。しかし、この方法
では無孔質の粒子しか出来ず、又千数百℃という
高温下で行う為、粒子の付着が発生し易く、又非
常に高価である。 他の乾式法としては、食品、洗剤、触媒等の製
造に用いられている噴霧乾燥法がある。この方法
は通常110℃〜400℃の加熱空気中に原料スラリー
を噴霧し、乾燥粉末を得る方法であるが、乾燥空
気が高温であり、乾燥速度が速い為に、製品粒子
が非球形になるとか、粒子表面の一部が陥没した
りして真球状のものを得るのが困難である。又通
常の噴霧乾燥法は、平均粒子径が40μ〜150μ程度
の粉粒体の製造に適し、且つ粒度分布も20〜
180μと巾が広いのが通例である。 本発明者らは、こうした事情にかんがみ、上記
の欠点を解決すべく、鋭意研究した結果、温度、
湿度、気体の流速、気/液比並びに液中の粒度を
調整する事により、平均粒径が1〜20μで、粒度
分布が0.5〜30μとシヤープな無機酸化物及び/又
は含水酸化物からなる多孔質真球状微粒子粉末が
製造できることを見い出した。 すなわち、本発明によれば、Si,Al,Ti,Zr,
Fe,Sn,Zn,Sb及びMgの酸化物及び/又は含
水酸化物をコロイド分散質とするコロイド液10〜
95部と、無機酸化物のゲル5〜90部をよく混合し
たスラリーが気流中に噴霧される。 無機酸化物及び/又は含水酸化物のコロイド液
には、例えば水硝子等のアルカリ珪酸塩から脱ア
ルカリする方法やエチルシリケートを加水分解す
る方法等で得られるシリカコロイド;鉱酸塩及
び/又は有機酸塩を加水分解及び/又は中和する
方法等で得られるZr,Fe,Ti,Sb,Sn,Zn,
Mgなどのコロイド;H2O2処理など特殊な処理を
行うことにより得られるSnやSbのコロイド等が
使用可能である。但し、コロイドの製造に関して
は上記した製法に限定されるものではなく、いか
なる方法で製造されたものでもよい。 しかし、コロイド液に分散するコロイド粒子
(一次粒子)の平均粒子径は2500Å以下である事
が必要であり、好ましくは800Å以下である。平
均粒子径が2500Å以上であると、乾燥時の粒子間
強度が弱く、乾燥中に破損するため粒度分布が広
くなるばかりでなく、非球状物の混入が起るから
である。又、理由はさだかではないが、粒径の大
きいゾルを使用した場合には、噴霧機が閉塞しや
すく、粒度分布が大きくなり工業的に連続して安
定に真球状微粒子を得ることが困難である。 上記のコロイド液に混合される無機酸化物のゲ
ルは、ヒドロゲル又はキセロゲルのどちらであつ
ても差支えない。例えば、気相酸化法で得られる
シリカのエアロジルとか、水硝子を中和、洗浄し
て得られるホワイトカーボン等が使用可能であ
る。しかし、ゲルの平均粒子径は1μ以下である
ことが必要で、好ましくは、0.5μ以下であること
を可とする。 コロイド液とゲルとの混合状態は出来るだけ均
一であることが好ましい。又その時の粘度は
500cp以下である事が必要であり、好ましくは
50cp以下とすべきである。 通常の噴霧乾燥に使用される噴霧法を、平均粒
子径及び/又は粒度分布の狭い順に列挙すると回
転デイスク法<加圧ノズル法<2流体ノズル法の
順である。回転デイスク法では、その極限の回転
数6〜7万rpmを採用しても、得られる粉粒体の
平均粒径は30μ前後であり、平均粒径数μの粉粒
体を歩留りよく作ることはできない。 2流体ノズル法は高粘度なスラリーを噴霧乾燥
して平均粒径70〜120μの粉末を作るのに適して
いる。 本発明に於て噴霧乾燥に用いられる噴霧法は、
例えば空気、チツ素等のマツハ1以上の高速気体
でスラリーを微細な液滴とした後、これをマツハ
1以上の対向流として、液滴同志を衝突させるこ
とにより超音波を発生させ、これにより液滴をよ
り小さくする方法である。この時の液滴径は10μ
以下であることが好ましい(液滴径の測定は高速
度カメラで写した写真を拡大して測定することが
できる)。すなわち、液滴径はノズルの気/液比
及び/又は気体の流速を調節することにより、コ
ントロールすることができ、同一径の液滴である
場合は、スラリーの固形分濃度が高いと粉体の粒
径が大きくなる。又同一濃度の場合は液滴径を小
さくすれば、得られる粉体の粒径は小さくなる。
又、液滴径、固形分濃度が一定であれば、乾燥速
度を遅くすると、密に充填され、粒径は小さくな
る。従つて目的とする粒径の粉体の得るには、ノ
ズルの気/液比及び/又は気体の流速並びに原料
液の固形分濃度及び/又は乾燥速度を調節する必
要がある。 次に細孔容積に関して説明すると、ゾル(コロ
イド液)は一次粒子が単一に存在している為、乾
燥時に粒子の充填がスムーズに行なわれ最密充填
に近くなる。又ゲルは一次粒子が数ケ〜数百ケ凝
集した網目構造をとつており、乾燥時にこの網目
構造を維持したまま充填される関係で疎の充填構
造となり、細孔容積が大きくなる。しかし、ヒド
ロゲルのみで乾燥すると、球の表面の一部が陥没
するなどのために真球状は得られない。又キセロ
ゲルのみで乾燥すると、粒子の表面活性が低い
為、乾燥時の粒子間強度が弱く、乾燥中に破損す
るとか、分級時に破損し、球状のものが得られな
い。そこでこれらの欠点をなくすために、本発明
ではゾルとゲルを混合して使用する。ゲルにゾル
を混合して用いれば、粒子間強度の弱いキセロゲ
ルに対しては、ゾルが粒子間を繋ぐバインダーと
なり、ヒドロゲルに対しては、ゲルの間にゾルが
入り、乾燥時の球表面の陥没を防ぐので球状の粉
末を得ることができる。この時の混合比は、酸化
物重量比でゾル/ゲル=10/90〜95/5の範囲に
あけばよく、好ましくはゾル/ゲル=30/70〜
80/20の範囲にある。またゾルとゲルを混合した
ものは、ゲルが網目構造している為骨材の役目と
してはたらき乾燥収縮が小さくなるため、ゾルの
み乾燥した時より収縮速度と乾燥速度が釣り合う
ものと考えられる。それ故に乾燥温度が150℃以
下であれば真球状微粒子を得ることが可能である
が、処理スピードや乾燥程度から40℃〜120℃が
好ましい。 乾燥雰囲気の湿度は温度によつて大幅に変わ
る。湿度を変えるために温度を変えると、乾燥速
度が変化し、粉末の形状に悪影響を及ぼす。150
℃以上の温度を採用すると収縮速度と乾燥速度の
釣り合いがくずれ、非球状物や粉末の割れが発生
する。湿度は150℃〜10℃の温度範囲であれば
13vol%〜3vol%の範囲を可とするが、処理液量
及び乾燥程度より5〜9vol%の範囲が好ましい。 先に述べたように粉体の粒径をコントロールす
るには、噴霧ノズルの気液比と気体の流速をコン
トロールする必要があり、この意味で本発明での
気/液比は10560〜500の範囲に、好ましくは5200
〜880の範囲にある。気体の流速に関しては、マ
ツハ1以上であれば良く、好ましくはマツナ1.1
〜1.7である。 本発明の方法に於て、スラリーの固形分濃度、
噴霧ノズルの気/液比及び気体の流速、乾燥温度
と湿度を特に調節した場合には、平均粒子径が3
〜10μで、0.7〜25μの粒度分布を有する粉体を製
造することが可能である。 本発明の方法で得られた微粒子粉末は、透明完
全球状で多孔質であり、耐熱性、耐酸耐アルカリ
性、耐溶剤性に優れ、粒度分布が非常に狭く、硬
度が高いので、色々な用途に使用することができ
る。例えば高級滑性フイラーとしてシリカの真球
状微粉末をフアンデーシヨンに使用すれば、非常
に軽くソフトで、のびの良いフアンデーシヨンが
得られる。また、チタンの真球状微粉末を現在使
用されている顔料の代りに使用するか、これと併
用すれば、現在使用されている顔料に較べ非常に
伸展性が良なり隠蔽力も落ちず、爽やかなフアン
デーシヨンが得られる。 このほか、本発明の微粉子粉末の用途として
は、インク用体質顔料、トナー、剥離性改良剤、
潤滑材、自動車用ワツクス等の研磨剤、樹脂・ゴ
ム耐摩耗性改良用高硬度フイラー剤、流動性改良
剤、艶消フイラー、無収縮フイラー、パテ用充填
剤、吸着剤、クロマト用担体、香料包括ビーズ、
殺菌剤・殺虫剤・防黴剤包括ビーズ等が例示でき
る。 本発明で言う真球とは、粉末試料を単一粒子が
重ならないよう分散させて走査型電子顕微鏡
(SEM)にて2000倍に拡大した電子顕微鏡写真を
撮り、これを島津製のイメージアナライザーで画
像解析し、単一粒子1ケ1ケの投影面の面積と円
周を測定し、面積から真円と仮定して得られる相
当直径をHDとし、又円周から真円と仮定して得
られる相当直径をHdとし、これらの2つの比を
形状係数とした。 形状係数=HD(面積からの相当直径)/Hd(円周からの
相当直径) そしてこの形状係数の値が0.85〜1.00のものを
真球とした。かつサンプリングしたもののうち、
真球が90%以上認められるものを真球状微粒子と
名付けた。尚、表面上に小さい粒子の付着、陥没
などが認められる粒子は真球としない。 実施例 1 内容積150のタンクに平均粒子径130Åのシリ
カゾル(触媒化成製Cataloid SI−30)100Kg入
れ、これに平均粒子径0.1μのホワイトカーボン
(塩野義製薬カープレツクス)200Kgを入れて良く
撹拌する。ほぼ均一に混合出来たら、これを内容
積50のサンドミル(アシザワ製のパールミル
50STS)に滞留時間が30分になるような流量で
供給して、連続粉砕を行なつた。こうして得られ
たスラリーの粘度は26cpであつた。 このスラリーを対向式2流体ノズルに供給し、
処理液量60/Hr、空/液比=2100、空気流速
マツハ1.1、乾燥雰囲気温度120℃、湿度7.2vol%
の条件下に噴霧乾燥した。得られた乾燥粉末を
Kett式水分計で測定した時の水分は6.2wt%であ
つた。この粉末を600℃×3Hrs焼成後、堀場製の
粒度分布測定機Capa−500にて粒度分布を測定
し、さらに日本電子製LSM−T20走査形電子顕
微鏡(SEM)にて写真撮影し、前述したところ
に従つて形状係数を求めた。また粉末の細孔容積
をBET法で測定した。 第1図に粒度分布の測定結果を、第2図に粉末
の電子顕微鏡写真(倍率2000倍)を示す。 実施例 2 ホワイトカーボンの代りに平均粒子径0.05μの
アエロジルー200(日本アエロジル)を使用した以
外は実施例1と全く同一の方法にて粘度28cpの
スラリーを得、さらにシリカの真球状微粉末を製
造し、実施例1と同様にこの粉末の粒度分布及び
細孔容積を測定し、さらに形状係数を求めた。 本実施例で得た粉末の電子顕微鏡写真を第3図
に示する。 実施例 3 内容積150のタンクに水51.7と30%濃度の
シリカゾル(Cataloid SI−30)33.3Kgを入れ、
良く撹拌しながらこれにアエロジルー200を40Kg
徐々に添加し、ほぼ均一に混合したスラリーを対
向式2流体ノズルに供給し、実施例1と同様な方
法で粘度26cpのスラリーを得、さらにシリカの
真球状微粉末を製造した。この粉末の粒度分布と
細孔容積を実施例1と同様にして測定し、さらに
形状係数を求めた。 本実施例で得た粉末の電子顕微鏡写真を第4図
に示す。 実施例 4 酸化物として14.2wt%のチタンを含有する硫酸
チタンを内容積500のタンクに300Kg入れ、撹拌
しながら液温が10℃になる様冷却した後、28%ア
ンモニア水205を添加し、含水チタン酸のスラ
リーを作つた。これを0.5%のアンモニア水で
過洗浄する。こうして得られた含水チタン酸スラ
リーに塩酸を加えてPH2以上とし、良く撹拌し
て、TiO2として濃度31.7wt%のチタンゾルを149
Kg調製した。このゾルの平均粒子径は500Åであ
つた。このチタンゾルに平均粒子径は0.3μの顔料
チタンAW−200(帝国化工製)を10Kg加えて良く
混合し、得られたスラリーを対向式2流体ノズル
に供給して実施例1と同様な方法で粘度30cpの
スラリーを得、さらに酸化チタンからなる真球状
微粉末を製造した。この粉末の粒度分布と細孔容
積を実施例1と同様に測定し、また形状係数を求
めた。 本実施例で得た粉末の電子顕微鏡写真を第5図
に示す。 実施例 5 内容積300のタンクに水50を入れ、撹拌し
つつアルミン酸ソーダ70Kg(Al2O314wt%)と硫
酸アルミニウム90Kg(Al2O37wt%)をPHが7.5に
なる様調節しつつ同時添加した後、これを過洗
浄して平均粒子径0.02のアルミナのヒドロゲルを
得た。このヒドロゲルを内容積500のタンクに
入れ、良く撹拌しつつAl2O3として濃度10wt%の
平均粒子径1000Åアルミナゾル150Kg(触媒化成
製AS−2)を加えて良く混合し、得られたスラ
リーを対向式2流体ノズルに供給して実施例1と
同様な方法により粘度150cpのスラリーを得、さ
らに酸化アルミニウムからなる真球状微粉末を製
造した。この粉末の粒度分布と細孔容積を実施例
1と同様に測定し、さらに形状係数を求めた。 本実施例で得た粉末の電子顕微鏡写真を第6図
に示す。 比較例 1 酸化物として濃度30wt%のシルカゾル
(Cataloid SI−30 5cp)100Kgを対向式2流体ノ
ズルに供給し、実施例1と同一の方法でシリカの
微粉末を製造した。このシリカ粉末の分布粒度と
細孔容積を実施例1と同様に測定し、さらに形状
係数を求めた。 この比較例で得たシリカ粉末の電子顕微鏡写真
を第7図に示す。 比較例 2 実施例5で調製した粘土120cpのアルミナヒド
ロゲルをそのまま対向式2流体ノズルに供給し、
実施例1と同様な方法にてアルミナの微粉末を製
造した。この粉末の粒度分布と細孔容積を実施例
1と同様に測定し、さらに形状係数を求めた。 この比較例で得たアルミナ粉末の電子顕微鏡写
真を第8図に示す。 比較例 3 内容積150のタンクに水60を加え、撹拌し
つつアエロジル−200(日本アエロジル)40Kgを
徐々に加えて、良く混合し、得られた粘度15cp
のスラリーを対向式2流体ノズルに供給して実施
例1と同様な方法でシリカ微粉末を製造した。こ
のシリカ粉末の粒度分布と細孔容積を実施例1と
同様にして測定し、さらに形状係数を求めた。 この比較例で得た粉末の電子顕微鏡写真を第9
図に示す。 以上の実施例1〜5及び比較例1〜3で得た各
粉末の細孔容積、平均粒径及び形状係数は表−1
の通りである。
【表】
実施例 6
平均粒子径が0.03μのシリカゾル(触媒化成製
Cataloid SI−30p)10Kgと、平均粒子径が0.3μの
酸化チタン顔料(帝国化工製、AW−200)2Kg
を良く混合する。これを内容積12のサンドミル
(アシザワ製パールミル12 STS)に滞留時間が
30分になるような流量で供給し、連続粉砕を行な
つた。こうして得られたスラリーの粘度は14cp
であつた。 このスラリーを対向式2流体ノズルに供給し、
処理液量10/hr、空/液比=2300、空気流速マ
ツハ1.3、乾燥雰囲気温度120℃、湿度6.9vol%の
条件下に噴霧乾燥した。得られた乾燥粉末を
Kett水分計で測定した時の水分は5.9wt%であつ
た。この粉末を600℃で3時間焼成後、実施例1
と同様にして粉末の粒度分布と細孔容積を測定
し、形状係数を求めた。 本実施例で得た粉末の電子顕微鏡写真を第10
図に示す。 実施例 7 酸化チタン量を4Kgに増量した以外は実施例6
と全く同様にして粘度12cpのスラリーを得、さ
らに粉末を製造し、その粒度分布及び細孔容積を
測定すると共に形状係数を求めた。この粉末の電
子顕微鏡写真を第11図に示す。 実施例 8 酸化チタン量を1Kgに減量した以外は実施例6
同様にして粘度16cpのスラリーを得、さらに粉
末を製造し、その粒度分布及び細孔容積を測定し
て、さらに形状係数を求めた。この粉末の電子顕
微鏡写真を第12図に示す。 実施例 9 酸化チタンの代りに、平均粒子径0.02μの酸化
アルミニウム(日本エアロジル・C)を使用した
以外は実施例6を同様な方法で粘度14cpのスラ
リーを得、さらに粉末を得た。この粉末の粒度分
布及び細孔容積を測定し、さらに形状係数を求め
た。この粉末の電子顕微鏡写真を第13図に示
す。 実施例 10 シリカゾルの代りに平均粒子径23mμのジルコ
ニアゾル(第一希元素製)を用いた以外は実施例
6と全く同様な方法で粉末を得た。この粉末の粒
度分布と細孔容積を測定し、形状係数を求めた。
この粉末の電子顕微鏡写真を第14図に示す。 実施例 11 酸化チタンの代りに平均粒子径0.8mmの酸化ア
ルミニウムを用いた以外は実施例6と全く同様な
方法で粘度12cpのスラリーを得、さらに粉末を
得た。この粉末の粒度分布と細孔容積を測定し、
形状係数を求めた。この粉末の電子顕微鏡写真を
第15図に示す。 実施例 12 実施例6で使用したシリカゾルに代えて平均粒
子径1800Åのシリカゾル(触媒化成製SI−180P)
を使用し、酸化チタンの代りに平均粒子径0.02μ
二酸化チタンのエアロジル(日本エアロジル製・
P−25)を使用した以外は実施例6と同様な方法
で粘度10cpのスラリーを得、さらに粉末を得た。
この粉末の粒度分布及び細孔容積を測定し、さら
に形状係数を求めた。この粉末の電子顕微鏡写真
を第16図に示す。 比較例 4 乾燥雰囲気温度を160℃に、湿度を2vol%に変
えた以外は、実施例6と全く同様にして粉末を得
た。この粉末の粒度分布及び細孔容積を測定し、
形状係数を求めた。この粉末の電子顕微鏡写真を
第17図に示す。 比較例 5 乾燥雰囲気温度を80℃に、湿度を15vol%に変
えた以外は実施例6と全く同様にして粉末を得
た。この粉末の粒度分布及び細孔容積を測定し、
形状係数を求めた。 比較例 6 実施例6に用いたシリカゾルに代えて平均粒子
3000Åのシリカゾル(触媒化成製Cataloid SI−
300p)を使用した以外は実施例6と全く同様に
して粘度10cpのスラリーを得、さらに粉末を得
た。この粉末の粒度分布及び細孔容積を測定し、
形状係数を求めた。この粉末の電子顕微鏡写真を
第18図に示す。 比較例 7 酸化チタンに代りに平均粒子径2μの水酸化ア
ルミニウム(昭和電工・H−42)を使用した以外
は実施例6と全く同様な方法で粘度10cpのスラ
リーを得、さらに粉末を得た。この粉末の粒度分
布及び細孔容積を測定し、形状係数を求めた。こ
の粉末の電子顕微鏡写真を第19図に示す。 以上の実施例6〜12及び比較例4〜7で得られ
た各粉末の形状係数、平均粒径、粒度分布及び細
孔容積をまとめて表−2に示す。
Cataloid SI−30p)10Kgと、平均粒子径が0.3μの
酸化チタン顔料(帝国化工製、AW−200)2Kg
を良く混合する。これを内容積12のサンドミル
(アシザワ製パールミル12 STS)に滞留時間が
30分になるような流量で供給し、連続粉砕を行な
つた。こうして得られたスラリーの粘度は14cp
であつた。 このスラリーを対向式2流体ノズルに供給し、
処理液量10/hr、空/液比=2300、空気流速マ
ツハ1.3、乾燥雰囲気温度120℃、湿度6.9vol%の
条件下に噴霧乾燥した。得られた乾燥粉末を
Kett水分計で測定した時の水分は5.9wt%であつ
た。この粉末を600℃で3時間焼成後、実施例1
と同様にして粉末の粒度分布と細孔容積を測定
し、形状係数を求めた。 本実施例で得た粉末の電子顕微鏡写真を第10
図に示す。 実施例 7 酸化チタン量を4Kgに増量した以外は実施例6
と全く同様にして粘度12cpのスラリーを得、さ
らに粉末を製造し、その粒度分布及び細孔容積を
測定すると共に形状係数を求めた。この粉末の電
子顕微鏡写真を第11図に示す。 実施例 8 酸化チタン量を1Kgに減量した以外は実施例6
同様にして粘度16cpのスラリーを得、さらに粉
末を製造し、その粒度分布及び細孔容積を測定し
て、さらに形状係数を求めた。この粉末の電子顕
微鏡写真を第12図に示す。 実施例 9 酸化チタンの代りに、平均粒子径0.02μの酸化
アルミニウム(日本エアロジル・C)を使用した
以外は実施例6を同様な方法で粘度14cpのスラ
リーを得、さらに粉末を得た。この粉末の粒度分
布及び細孔容積を測定し、さらに形状係数を求め
た。この粉末の電子顕微鏡写真を第13図に示
す。 実施例 10 シリカゾルの代りに平均粒子径23mμのジルコ
ニアゾル(第一希元素製)を用いた以外は実施例
6と全く同様な方法で粉末を得た。この粉末の粒
度分布と細孔容積を測定し、形状係数を求めた。
この粉末の電子顕微鏡写真を第14図に示す。 実施例 11 酸化チタンの代りに平均粒子径0.8mmの酸化ア
ルミニウムを用いた以外は実施例6と全く同様な
方法で粘度12cpのスラリーを得、さらに粉末を
得た。この粉末の粒度分布と細孔容積を測定し、
形状係数を求めた。この粉末の電子顕微鏡写真を
第15図に示す。 実施例 12 実施例6で使用したシリカゾルに代えて平均粒
子径1800Åのシリカゾル(触媒化成製SI−180P)
を使用し、酸化チタンの代りに平均粒子径0.02μ
二酸化チタンのエアロジル(日本エアロジル製・
P−25)を使用した以外は実施例6と同様な方法
で粘度10cpのスラリーを得、さらに粉末を得た。
この粉末の粒度分布及び細孔容積を測定し、さら
に形状係数を求めた。この粉末の電子顕微鏡写真
を第16図に示す。 比較例 4 乾燥雰囲気温度を160℃に、湿度を2vol%に変
えた以外は、実施例6と全く同様にして粉末を得
た。この粉末の粒度分布及び細孔容積を測定し、
形状係数を求めた。この粉末の電子顕微鏡写真を
第17図に示す。 比較例 5 乾燥雰囲気温度を80℃に、湿度を15vol%に変
えた以外は実施例6と全く同様にして粉末を得
た。この粉末の粒度分布及び細孔容積を測定し、
形状係数を求めた。 比較例 6 実施例6に用いたシリカゾルに代えて平均粒子
3000Åのシリカゾル(触媒化成製Cataloid SI−
300p)を使用した以外は実施例6と全く同様に
して粘度10cpのスラリーを得、さらに粉末を得
た。この粉末の粒度分布及び細孔容積を測定し、
形状係数を求めた。この粉末の電子顕微鏡写真を
第18図に示す。 比較例 7 酸化チタンに代りに平均粒子径2μの水酸化ア
ルミニウム(昭和電工・H−42)を使用した以外
は実施例6と全く同様な方法で粘度10cpのスラ
リーを得、さらに粉末を得た。この粉末の粒度分
布及び細孔容積を測定し、形状係数を求めた。こ
の粉末の電子顕微鏡写真を第19図に示す。 以上の実施例6〜12及び比較例4〜7で得られ
た各粉末の形状係数、平均粒径、粒度分布及び細
孔容積をまとめて表−2に示す。
第1図は実施例1で得た粉末の粒度分布を示す
グラフである。第2〜6図はそれぞれ実施例1〜
5で得た粉末の電子顕微鏡写真であり、第7〜9
図はそれぞれ比較例1〜3で得た粉末の電子顕微
鏡写真である。また、第10〜16図はそれぞれ
実施例6〜12で得た粉末の電子顕微鏡写真であ
り、第17〜19図はそれぞれ比較例4,6及び
7で得た粉末の電子顕微鏡写真である。
グラフである。第2〜6図はそれぞれ実施例1〜
5で得た粉末の電子顕微鏡写真であり、第7〜9
図はそれぞれ比較例1〜3で得た粉末の電子顕微
鏡写真である。また、第10〜16図はそれぞれ
実施例6〜12で得た粉末の電子顕微鏡写真であ
り、第17〜19図はそれぞれ比較例4,6及び
7で得た粉末の電子顕微鏡写真である。
Claims (1)
- 【特許請求の範囲】 1 無機酸化物又は含水酸化物のコロイド液10〜
95部と無機酸化物のゲル5〜90部を混合したスラ
リーを気流中に噴霧して乾燥することを特徴とす
る平均粒度1〜20μの多孔質真球状微粒子粉末の
製造法。 2 前記のコロイド液における一次粒子の平均粒
径が2500Å以下であることを特徴とする特許請求
の範囲第1項記載の方法。 3 前記のコロイド液に混合される無機酸化物の
ゲルの大きさが1μ以下であることを特徴とする
特許請求の範囲第1項記載の方法。 4 乾燥雰囲気温度が150℃〜10℃、湿度13vol%
〜3vol%である事を特徴とする特許請求の範囲第
1項記載の方法。 5 前記のコロイド液中の分散質がSi,Ti,Al,
Fe,Zr,Sn,Zn,Sb及びMgの酸化物及び含水
酸化物の1種もしくは2種以上であることを特徴
とする特許請求の範囲第1項記載の方法。 6 多孔質真球状微粒子粉末の細孔容積が0.1〜
0.8c.c./gであることを特徴とする特許請求の範
囲第1項記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60011718A JPS61174103A (ja) | 1985-01-23 | 1985-01-23 | 金属酸化物からなる多孔質真球状微粒子粉末の製造法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60011718A JPS61174103A (ja) | 1985-01-23 | 1985-01-23 | 金属酸化物からなる多孔質真球状微粒子粉末の製造法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61174103A JPS61174103A (ja) | 1986-08-05 |
JPH0261406B2 true JPH0261406B2 (ja) | 1990-12-20 |
Family
ID=11785819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60011718A Granted JPS61174103A (ja) | 1985-01-23 | 1985-01-23 | 金属酸化物からなる多孔質真球状微粒子粉末の製造法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61174103A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002160907A (ja) * | 2000-11-22 | 2002-06-04 | Catalysts & Chem Ind Co Ltd | 球状多孔質粒子およびその製造方法 |
JP2003012460A (ja) * | 2001-06-28 | 2003-01-15 | Catalysts & Chem Ind Co Ltd | 樹脂被覆球状多孔質粒子、その製造方法、および該粒子を配合した化粧料 |
WO2004006873A1 (ja) | 2002-07-11 | 2004-01-22 | Catalysts & Chmicals Industries Co.,Ltd. | 化粧料 |
WO2011155536A1 (ja) | 2010-06-09 | 2011-12-15 | 日揮触媒化成株式会社 | 蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法 |
WO2019131873A1 (ja) * | 2017-12-27 | 2019-07-04 | 日揮触媒化成株式会社 | 多孔質シリカ粒子及びその製造方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6279841A (ja) * | 1985-10-02 | 1987-04-13 | Teikoku Kako Kk | 無機球状体の製造方法 |
US4837011A (en) * | 1987-09-08 | 1989-06-06 | Revlon, Inc. | Cosmetic powder employing spherical silica particles |
FR2623793B1 (fr) * | 1987-11-30 | 1991-06-07 | Rhone Poulenc Chimie | Procede de preparation de granules a base d'oxyde de titane, de zirconium, ou de cerium et produits ainsi obtenus |
JPH0757689B2 (ja) * | 1989-05-15 | 1995-06-21 | ニチアス株式会社 | 多孔質球状アルミナの製造法 |
US5304382A (en) * | 1989-08-18 | 1994-04-19 | Monsanto Company | Ferritin analogs |
EP0765191B1 (en) * | 1994-06-17 | 1999-03-17 | Bio-Technical Resources Lp | Method for making spherical adsorbent particles |
JP3791936B2 (ja) * | 1994-08-26 | 2006-06-28 | 触媒化成工業株式会社 | 無機酸化物粒子 |
US6313061B1 (en) | 1998-12-22 | 2001-11-06 | W. R. Grace & Co.-Conn. | Method of making frangible spray dried agglomerated supports and olefin polymerization catalysts supported thereon |
FR2807022B1 (fr) * | 2000-03-28 | 2002-05-10 | Pechiney Electrometallurgie | Procede de recuperation de l'energie thermique des gaz d'un four d'electrometallurgie et application a la fabrication de poudre de silice |
JP5354960B2 (ja) | 2008-05-30 | 2013-11-27 | 日揮触媒化成株式会社 | 光電気セル用多孔質金属酸化物半導体膜形成用塗料および光電気セル |
JP2010064218A (ja) * | 2008-09-12 | 2010-03-25 | Jgc Catalysts & Chemicals Ltd | 研磨用砥石 |
JP5692983B2 (ja) * | 2008-12-26 | 2015-04-01 | 日揮触媒化成株式会社 | 貫通孔を有するマイクロリング状無機酸化物粒子および該粒子を用いた透明被膜付基材および透明被膜形成用塗布液 |
JP5495273B2 (ja) * | 2010-11-18 | 2014-05-21 | 日揮触媒化成株式会社 | 貫通孔に繊維状バクテリアセルロースが貫通したマイクロリング状無機酸化物粒子 |
WO2016002797A1 (ja) | 2014-06-30 | 2016-01-07 | 日揮触媒化成株式会社 | 多孔質シリカ系粒子、その製造方法及びそれを配合した化粧料 |
CN107498059B (zh) * | 2017-08-28 | 2019-01-22 | 西北有色金属研究院 | 一种气雾化制备粒径细化钛基球形粉末的方法 |
-
1985
- 1985-01-23 JP JP60011718A patent/JPS61174103A/ja active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002160907A (ja) * | 2000-11-22 | 2002-06-04 | Catalysts & Chem Ind Co Ltd | 球状多孔質粒子およびその製造方法 |
JP2003012460A (ja) * | 2001-06-28 | 2003-01-15 | Catalysts & Chem Ind Co Ltd | 樹脂被覆球状多孔質粒子、その製造方法、および該粒子を配合した化粧料 |
WO2004006873A1 (ja) | 2002-07-11 | 2004-01-22 | Catalysts & Chmicals Industries Co.,Ltd. | 化粧料 |
WO2011155536A1 (ja) | 2010-06-09 | 2011-12-15 | 日揮触媒化成株式会社 | 蛋白質固定化用担体、固定化蛋白質及びそれらの製造方法 |
WO2019131873A1 (ja) * | 2017-12-27 | 2019-07-04 | 日揮触媒化成株式会社 | 多孔質シリカ粒子及びその製造方法 |
JPWO2019131873A1 (ja) * | 2017-12-27 | 2020-04-02 | 日揮触媒化成株式会社 | 多孔質シリカ粒子及びその製造方法 |
JP2020073436A (ja) * | 2017-12-27 | 2020-05-14 | 日揮触媒化成株式会社 | 多孔質シリカ粒子及びその製造方法 |
US12134563B2 (en) | 2017-12-27 | 2024-11-05 | Jgc Catalysts And Chemicals Ltd. | Porous silica particles and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPS61174103A (ja) | 1986-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0261406B2 (ja) | ||
US5342876A (en) | Spherical granules of porous silica or silicate, process for the production thereof, and applications thereof | |
US5236683A (en) | Amorphous silica spherical particles | |
US6113682A (en) | Method for preparation of composite pigments for make-up cosmetics and make-up cosmetic compositions containing composite pigments made thereby | |
EP0442268B1 (en) | Production of stable aqueous silica sol | |
US6228927B1 (en) | Powder coating composition | |
US5989510A (en) | Method of producing granular amorphous silica | |
JPH02225314A (ja) | 非晶質シリカ・アルミナ系球状粒子及びその製法 | |
WO1999052822A1 (fr) | Procede de production de particules de silice spheriques | |
JPH0324255B2 (ja) | ||
JPH0343201B2 (ja) | ||
JP3454554B2 (ja) | 非晶質シリカ粒状体及びその製法 | |
JPH08209029A (ja) | 塗料用球状艶消し剤及び塗料組成物 | |
JP3775901B2 (ja) | 非晶質シリカ系複合粒子及びその用途 | |
US5108508A (en) | Rutile mixed phase pigment microgranulates, a process for their preparation and their use | |
JP3004184B2 (ja) | トップコート用艶消しシリカ | |
JP3410522B2 (ja) | 粒状非晶質シリカの製造方法 | |
US20050017105A1 (en) | Superfine powders and methods for manufacture of said powders | |
JPH0343202B2 (ja) | ||
JP2519465B2 (ja) | 複合粉体及びその製造方法 | |
JPH10297915A (ja) | シリカ系微小球状無孔質体及びその製造方法 | |
JP2701877B2 (ja) | 非晶質シリカアルミナ粒子及びその製造法 | |
JPS61168520A (ja) | 微小球状シリカ粉末の製造法 | |
RU2762462C2 (ru) | Способ получения устойчивого к истиранию гранулированного материала | |
JP3342905B2 (ja) | 多孔質球状ケイ酸塩粒子、その製造方法及びその用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |