JPH0255118B2 - - Google Patents
Info
- Publication number
- JPH0255118B2 JPH0255118B2 JP12156281A JP12156281A JPH0255118B2 JP H0255118 B2 JPH0255118 B2 JP H0255118B2 JP 12156281 A JP12156281 A JP 12156281A JP 12156281 A JP12156281 A JP 12156281A JP H0255118 B2 JPH0255118 B2 JP H0255118B2
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- activated sludge
- treatment
- equipment
- sludge treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002351 wastewater Substances 0.000 claims description 178
- 239000010802 sludge Substances 0.000 claims description 111
- 238000000034 method Methods 0.000 claims description 56
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 55
- 238000005273 aeration Methods 0.000 claims description 55
- 239000000571 coke Substances 0.000 claims description 47
- 229910021529 ammonia Inorganic materials 0.000 claims description 27
- 231100000331 toxic Toxicity 0.000 claims description 15
- 230000002588 toxic effect Effects 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 239000013505 freshwater Substances 0.000 claims description 7
- 239000013535 sea water Substances 0.000 claims description 7
- 238000007796 conventional method Methods 0.000 claims description 6
- 231100000820 toxicity test Toxicity 0.000 claims description 6
- 159000000014 iron salts Chemical class 0.000 claims description 3
- 159000000007 calcium salts Chemical class 0.000 claims description 2
- 231100000956 nontoxicity Toxicity 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000000691 measurement method Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 239000000126 substance Substances 0.000 description 23
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 18
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 17
- 150000004763 sulfides Chemical class 0.000 description 16
- 231100000419 toxicity Toxicity 0.000 description 16
- 230000001988 toxicity Effects 0.000 description 16
- 238000000265 homogenisation Methods 0.000 description 14
- 238000001784 detoxification Methods 0.000 description 12
- 230000007257 malfunction Effects 0.000 description 12
- 238000010979 pH adjustment Methods 0.000 description 12
- 238000000746 purification Methods 0.000 description 10
- 239000002699 waste material Substances 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 8
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000008439 repair process Effects 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 238000004821 distillation Methods 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 231100000614 poison Toxicity 0.000 description 7
- 239000003440 toxic substance Substances 0.000 description 7
- 238000002306 biochemical method Methods 0.000 description 6
- 239000003344 environmental pollutant Substances 0.000 description 6
- 239000002737 fuel gas Substances 0.000 description 6
- 150000002825 nitriles Chemical class 0.000 description 6
- 231100000719 pollutant Toxicity 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000036284 oxygen consumption Effects 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 5
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical class [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- -1 phenol and cresol Chemical class 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 231100001261 hazardous Toxicity 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002957 persistent organic pollutant Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- AGVJBLHVMNHENQ-UHFFFAOYSA-N Calcium sulfide Chemical class [S-2].[Ca+2] AGVJBLHVMNHENQ-UHFFFAOYSA-N 0.000 description 1
- 102100036044 Conserved oligomeric Golgi complex subunit 4 Human genes 0.000 description 1
- 102100040998 Conserved oligomeric Golgi complex subunit 6 Human genes 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101000876012 Homo sapiens Conserved oligomeric Golgi complex subunit 4 Proteins 0.000 description 1
- 101000748957 Homo sapiens Conserved oligomeric Golgi complex subunit 6 Proteins 0.000 description 1
- 101001104102 Homo sapiens X-linked retinitis pigmentosa GTPase regulator Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 208000036448 RPGR-related retinopathy Diseases 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 201000000467 X-linked cone-rod dystrophy 1 Diseases 0.000 description 1
- 201000000465 X-linked cone-rod dystrophy 2 Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003619 algicide Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000011325 biochemical measurement Methods 0.000 description 1
- 238000010876 biochemical test Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000009454 functional inhibition Effects 0.000 description 1
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- PANJMBIFGCKWBY-UHFFFAOYSA-N iron tricyanide Chemical compound N#C[Fe](C#N)C#N PANJMBIFGCKWBY-UHFFFAOYSA-N 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical class [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- OXNSNGFUWQVOKD-UHFFFAOYSA-N iron(2+);dicyanide Chemical compound [Fe+2].N#[C-].N#[C-] OXNSNGFUWQVOKD-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Description
製鉄所において、製鉄プロセスから排出される
廃水のなかで、コークス工場関係設備から排出す
る廃水がもつとも汚濁物の種類が多く、濃度も高
い。たとえば、コークス工場関係設備の廃水の化
学的酸素要求量(以下CODと略記)は、製鉄所
から排出される廃水の全CODの40〜70%を占め
ており、コークス工場関係設備の廃水の無害化処
理を円滑に行なう技術を確立することは、非常に
重要な課題である。
コークス工場関係設備から排出する廃水は、石
炭の乾留時に発生するガス廃液、コークス炉ガス
の精製設備から排出する廃水、コークス炉ガスの
凝縮水及び石炭乾留時に発生する有機化合物など
から化学薬品、肥料などを製造する化成工場から
排出する廃水などがある。
これらの廃水はフエノール,クレゾールなどの
有機化合物及びアンモニア塩,シアン塩,チオシ
アン塩,硫化塩,チオ硫酸塩などの無機化合物を
含有しており、CODが5000〜8000ppmと高く、
濃茶褐色を呈しており、このまま公供水域に放流
することができない。
このため、コークス工場をもつている製鉄所、
化学工場、都市ガス工場におけるこれらの廃水の
無害化処理は、まず廃水中の遊離及び又は固定ア
ンモニアを蒸留法により除去した後、海水及び又
は淡水により2〜6倍に稀釈してから好気性活性
汚泥法で処理するのが通常の方法である。
前述のコークス工場関係設備の廃水の活性汚泥
処理は、都市下水の活性汚泥を種汚泥として、前
記廃水によつて馴致を行えば、容易に活性汚泥処
理は可能であるが、安定した処理を行うのはかな
り困難である。この理由は、コークス工場関係の
廃水が、都市下水に比べて、組成がかなり異な
り、又研究があまり行なわれておらず、従つて、
これらの廃水の処理性能は十分把握されていない
からである。
たとえば、活性汚泥処理装置の曝気槽の基本設
計値であるCOD容積負荷量は、約15年前がCOD2
〜3Kg/曝気槽m3・日であつたが、現在はCOD1
Kgになつている。このことは、現在の曝気槽の容
量が15年前の2〜3倍の大きさの容量になつてい
る。このように、前述のコークス工場関係の廃水
の活性汚泥処理技術は、本装置の製造メーカーす
ら基本設計値が明確でなく、従つて十分確立した
技術とは云い難い。
また、コークス工場関係の廃水は、組成的に非
常に複雑で、しかも活性汚泥に対して有害なシア
ン、硫化物などを含有している。また、これらの
廃水は、工場の操業条件などによつて水質が大幅
に変動するのが特色である。たとえば、コークス
の生産量が減少し、コークス炉の温度が50〜70℃
低下すると、ガス廃液のCOD,シアン,硫化物
などの濃度が大幅に上昇する。この他に、コーク
ス炉ガスの精製条件,化成工場の操業条件などの
変更によつて、これらの設備から排出する廃水の
性状が変動する。
又コークス工場関係設備の廃水の活性汚泥処理
は、活性汚泥処理装置に流入する汚濁物の量(以
下COD負荷量と表記)の変動が大きかつたり、
流入する毒性物質が急激に増加すると、活性汚泥
処理は順調に行なわれず、処理水質が悪化する場
合がある。
たとえば、COD負荷量の変動が大きいと、曝
気槽の活性汚泥は非糸状菌性バルキングが発生し
活性汚泥処理装置の沈降槽で浮上、流出のトラブ
ルがおこり、処理水の浮遊性物質の濃度が高ま
り、水質が悪化する。また、シアン,硫化物など
の活性汚泥に対して有害な成分が増加すると活性
汚泥の機能が阻害され、COD,フエノール,チ
オシアンなどの分解性が低下し、処理水のこれら
の濃度が高くなる。
このような活性汚泥処理の不調は、根本的な回
復技術が確立しておらず、不調回復技術も試行錯
誤的で、このため、一旦不調になると短期間では
回復せず、3〜6ケ月の長期間にも達することが
ある。
このためコークス工場関係の廃水の活性汚泥処
理は、不調を未然に防止することが非常に重要な
課題である。本発明者らは、このような観点か
ら、コークス工場関係設備から排出する廃水の活
性汚泥処理について研究を行ない、これらの廃水
が活性汚泥法により安定に処理でき、また良好な
処理水質が得られるコークス工場関係設備の廃水
の活性汚泥処理プロセスを発明した。
次に、本発明のコークス工場関係設備から排出
する廃水の安定化活性汚泥処理プロセスを第1図
に示し、このプロセスについて詳細に説明する。
まず、コークス工場1,化成工場2,コークス炉
ガス精製設備3から発生する廃水及びコークス炉
ガスなどの燃料用ガスの配管から発生する凝縮水
4などのコークス工場関係設備から発生する廃水
を、廃水の種類別に7日間ないし10日間貯蔵でき
るタンク5〜8を設置し、このタンクに廃水を一
時的に貯蔵する。
この段階で、前述の貯蔵タンク5〜8中の廃水
について、生物化学的方法による毒性試験9を一
定時間ごとに行い、毒性がほとんどないか又は毒
性が弱い廃水は、そのまま均質化タンク11へ送
水する。しかし、この毒性試験により廃水に毒性
が認められた場合、これらの廃水を廃水無害化処
理設備10へ送水し、ここで無害化処理を行なつ
た後、均質化タンク11へ送水する。
このように均一にした廃水は、均質化タンク1
1よりアンモニア除去設備12へ送り、蒸留法よ
り遊離及び又は固定アンモニアを除去する。この
廃水をPH調整設備16へ送り、ここで曝気槽のPH
が7.0±0.5の範囲におさまるように配又はアルカ
リを添加してPHを調整する。次に、このPH調整し
た廃水を稀釈槽18へ送り、海水及び又は淡水よ
り2倍ないし6倍に稀釈し、また廃水の温度を30
℃前後に調整した後、調整槽19へ送りここから
活性汚泥処理設備の曝気槽20へCOD容積負荷
で、COD1.5Kg±0.25Kg/曝気槽m3・日になるよ
うに送り、活性汚泥処理を行なう。処理水は汚泥
沈降槽21で活性汚泥と分離されて放流される。
なお、アンモニア除去設備12はボイラー及び
蒸留塔などの定期修理、検査などによつて年間10
日間ないし30日間停止することがある。この場
合、このような廃水を直接活性汚泥処理設備へ送
らないで、高温PH調整設備13へ送り、40〜90℃
の温度で硫酸を添加して廃水のPHを7.0〜8.0に調
整し、この廃水を曝気処理設備14へ送り、40〜
90℃で空気により曝気を行なつた後、PH調整槽1
6及び稀釈槽18を経て前述の方法にしたがつて
活性汚泥処理を行なう。
このようなプロセスからなる本発明の要点は次
の通りである。
(1) コークス炉から発生するガス廃液、コークス
炉ガス精製設備から発生する廃水、化成工場か
ら発生する廃水及びコークス炉ガスなどの燃料
用ガスの凝縮水など発生経路の異る廃水を廃水
の種類ごとに別々のタンクに貯蔵する。これら
のタンクは、各廃水とも7日〜10日分の廃水が
貯蔵できる容量とする。
(2) 貯蔵タンクの各廃水について一定時間ごとに
生物化学的試験法により毒性試験を行ない、毒
性のある廃水は無害化処理をした後、遊離及び
又は固定アンモニアを除去し、活性汚泥処理を
行なう。
(3) アンモニア除去設備及び又は附属設備が修理
又は定期検査で停止した時、前述の廃水を40〜
90℃の温度で、硫酸によりPH7.0〜8.0に調整し
た後、曝気処理による予備処理を行なう。
(4) (2)又は(3)の廃水を活性汚泥処理をするにあた
り、活性汚泥処理の曝気槽がPH7.0±0.5に維持
できるように(2)又は(3)の廃水を淡水及び又は海
水で2〜6倍に稀釈する前に廃水のPH調整を行
なう。
(5) 活性汚泥処理の曝気槽の条件を活性汚泥(バ
クテリヤ)に対して最適な環境に維持できるよ
うに、曝気槽に流入するCOD負荷量、PH、
ORPを管理制御する。
次に、本発明の要点について条件などを設定し
た根拠理由などを詳細に説明する。
まず、前述の各廃水について廃水ごとのタンク
(第1図の5〜8)の設置及び容量を設定した理
由について説明する。各廃水ごとにタンクを設置
するのは、廃水の種類よつて、活性汚泥に対して
有害な成分の種類が異なるためである。各廃水の
主な有害成分は、コークス工場のガス廃液にはシ
アン化合物、硫化物などが、又コークス炉ガス精
製設備の廃水には硫化物などが、さらに、化成工
場の廃水には硫化物、装置の腐食防止剤あるいは
冷却配管の閉塞を防止すために用いられている生
物付着防止剤,殺藻剤などが、また各種燃料用ガ
スの凝縮水にはシアン化合物,硫化物などが、そ
れぞれ含まれている。また、これらの有害成分
は、工場の操業などによつて種類、濃度などがか
なり変動する。
このため、これらの発生源の異る廃水を同一タ
ンクに貯蔵して、後述する無害化処理を行なつた
場合、有害成分の種類及び廃水量が多いので、無
害化処理設備が大形化し、また処理工程が複雑化
し、有害成分が十分に除去できない場合がある。
そこで、各貯蔵タンクごとに毒性を試験して、毒
性が認められる場合だけ共用の無害化処理装置1
0を設置して無害化処理すると、処理設備が小形
化し、処理工程が簡単になり、有害成分の除去も
十分に行なうことができる。このため、廃水ごと
に貯蔵タンクを設置した方が有利である。
次に、貯蔵タンクの容量について説明する。コ
ークス工場、化成工場、コークス炉ガス精製設備
などは、7日ないし10日に1度位の割合いで、設
備の定期修理、操業条件の変更あるいは大修理な
どがある。このため、これらの修理、操業条件の
変更によつて、これらの工場、設備から排出され
る廃水の排出量、有害成分の濃度などが変動す
る。このため、廃水のタンク容量が十分でないと
有害成分の濃度が高い廃水が排出された時、直ち
に有害成分の影響が活性汚泥処理にあらわれ、
COD,フエノール,チオシアンなどの分解性が
不良になり、また活性汚泥の非糸状菌性バルキン
グが起り、処理水質が著しく悪化する。
一方、大容量の廃水タンクを設置すると有害成
分が均質化されて活性汚泥処理への影響が著しく
少なくなるが、設備費などが効率的でない。この
ため、廃水の有害成分の活性汚泥処理への影響が
少なく、最も効率的な容量は、工場,設備の定期
修理,操業条件変更などの頻度などを考慮すると
7日〜10日間に発生する程度の廃水が貯蔵できる
タンクを設置するのが最適である。
次に、前述の廃水の生物化学的毒性診断法につ
いて詳述する。まず、コークス工場から発生する
ガス廃液はシアン,硫化物などが活性汚泥(以下
バクテリヤと表記)に対して有害な物質が含まれ
ているが、これらの毒性物質の量的変動は少な
く、また活性汚泥処理を行なうため2〜6倍に稀
釈されるためその毒性がかなり低減する。
しかし、化成工場,コークス炉ガス精製設備か
らの廃水及び各種燃料用ガスの凝縮水などは硫化
物,シアンなどの有害物質が含まれているが、こ
れらの廃水は、前述のガス廃液と異り有害成分の
濃度的変動がかなりあり、有害物質の濃度が高い
廃水がガス廃液と混合され、アンモニア除去設備
を経て、活性汚泥処理設備に供給された場合、バ
クテリヤの機能が阻害されフエノール,チオシア
ン,CODなどの分解性が著しく低下し、処理水
の水質悪化をまねくとともに活性汚泥がバルキン
グ状になり、汚泥の浮上流出が起り、処理水質が
益々悪化する。
本発明者らは、このような毒性の強い廃水の活
性汚泥処理設備への流入による活性汚泥処理の不
調を未然に防止するため、前述の廃水ついて一定
時間ごとに生物化学的方法により毒性を試験する
方法を用いた。この方法は、前記廃水を一定時間
ごとに採取し、この採取廃水に活性汚泥処理設備
の曝気槽の活性汚泥を一定量加えて、十分空気を
吹き込み、この混合体の溶存酸素を6ppm以上に
する。これらを密閉容器に入れて30℃恒温状態で
撹拌しながら溶存酸素濃度の減少状態を測定し、
溶存酸素の消費速度より廃水の毒性を判定する。
廃水の毒性の判定方法は、第2図に示す代表的
な酸素消費速度のグラフによつて説明する。ま
ず、毒性のない廃水の酸素消費速度のグラフ(第
2図のb)を基準にする。たとえば、シアンなど
の毒性物質を含む廃水の酸素消費速度は、シアン
などの毒性物質がバクテリヤの呼吸機能を阻害す
るため、第2図のaに示しているように遅くな
る。また、硫化物などの還元性の毒性物質を含む
廃水の場合、還元性毒性物質が酸素を消費するの
で、第2図のcに示しているように溶存酸素は急
激に低下するが、その後溶存酸素の低下速度は緩
やかになる。これは、硫化物などの毒性物質によ
つてバクテリヤの機能が阻害されたためである。
こようにして、各種廃水の毒性を自動又は手動
により測定し、毒性のない廃水は、そのまま均質
化タンク(第1図の11)へ、一方毒性の強い廃
水は、無害化処理設備(第1図の10)へ送ら
れ、ここで無害化処理された後、均質化タンク
(第1図の11)へ送られる。これらの廃水の毒
性測定頻度は4〜8時間に1回程度の測定で良
い。又均質化タンク11へ各タンクより廃水を直
接又は無毒化処理後に送る場合は、各々異る経路
の廃水の発生量比で送ることにより廃水の発生量
と処理量をバランスさせることができるので最も
好ましい。
なお、従来の生物化学的方法による廃水の毒性
評価試験法は、検圧法、例えばワールブルグ検圧
計、クーロメーター等が多く用いられている。こ
れらの検圧計の測定機構は、植種したバクテリヤ
(活性汚泥)が廃水の有機性汚濁物を分解する時
に発生する炭酸ガスをアルカリ水溶液、ソーダラ
イムに吸収させ、この時の測定容器内の減圧度を
植種したバクテリヤの消費した酸素量に換算して
廃水の有機性性汚濁物の分解性、毒性、活性汚泥
の活性度等の評価を行う。
これらの検圧法には多くの問題点が包含されて
いる。例えば、廃水に揮発性の硫化物、シアン化
合物等アルカリ水溶液、ソーダライムに吸収され
易いものが含まれていると、これらがアルカリ水
溶液、ソーダライムに吸収されて測定容器内が減
圧になり、あたかも廃水の有機性汚濁物が分解し
ているような挙動を示す。このため、揮発性の硫
化物、シアン化合物等、アルカリ水溶液、ソーダ
ライムに吸収され易い化合物を含む廃水、例えば
ガス廃液、コークス工場関係設備から排出される
廃水の毒性評価に従来の検圧法を用いて測定する
ことができない。
従つて、揮発性の硫化物、シアン化合物等アル
カリ水溶液、ソーダライムに吸収され易い化合物
を含む廃水の毒性評価は、従来の検圧法は不適当
であり、前述の溶存酸素濃度消費速度測定法の適
用が最適である。
次に、毒性のある廃水の無害化処理方法につい
て説明する。
シアンを含む毒性廃水の場合、シアンを無毒化
する方法として、鉄塩を加えてシアンと鉄との錯
塩を形成する方法、オゾン、次亜塩素酸塩などに
より酸化分解する方法があるが、活性汚泥に対し
て悪影響がない方法としては鉄―シアンの錯塩を
形成する方法が最適である。
また、硫化物を含む毒性廃水の場合、廃水に水
溶性の鉄塩、カルシウム塩を単独又は両者を併用
添加して、不溶性の硫化鉄、硫化カルシウムにし
て無害化する方法が最適である。シアンと硫化物
とが共存する廃水の場合、鉄塩を添加して、シア
ンはシアン―鉄錯塩に、硫化物は硫化鉄にして無
害化する方法が最適である。
以上述べたように、活性汚泥法により処理する
各種廃水を、前述の生物化学的方法により毒性を
測定し、毒性のある廃水は無害化処理した後に活
性汚泥処理を行なうと、毒性廃水による前述のよ
うな活性汚泥処理の不調が発生せず、処理を円滑
に行なうことができる。
次に、本発明のもう1つの特徴であるアンモニ
ア除去設備停止時のガス廃液と各種廃水との混合
体の処理方法について説明する。
ガス廃液とコークス炉ガス精製設備、化成工場
などからの廃水及び各種燃料用ガスの凝縮水など
との混合廃水(以下混合廃水と表記)は、蒸留去
によるアンモニア除去設備(第1図の12)によ
り遊離及び又は固定アンモニアを除去してから活
性汚泥法により処理を行なうのが通常の方法であ
る。
この蒸留法によるアンモニア除去設備はボイラ
ー、蒸留設備などの定期修理、定期点検などによ
り、1年に10日ないし30日間位停止することがあ
る。この時、活性汚泥処理設備に、アンモニア濃
度及びPHの高い混合廃水が供給される。このた
め、活性汚泥処理の曝気槽のPHが異常に高くなり
活性汚泥処理の不調を招くことがある。この場
合、PHが異常に高くなるのを防止するため、曝気
槽入口でアンモニア濃度及びPHの高い混合廃水を
硫酸、塩酸によつて中和し、曝気槽のPHが高くな
るのを防ぐ方法があるが、この方法では、この混
合廃水の活性汚泥処理の不調を完全に防止するこ
とができない。
本発明者らは、アンモニア除去設備停止時の活
性汚泥処理の不調を完全に防止する方法を発明し
た。
この方法は、均質化タンク(第1図の11)か
ら出たアンモニ濃度及びPHの高い混合廃水に40〜
90℃の温度で硫酸を添加し、PHを7.0〜8.0に調整
し、次にPH調整した廃水を曝気槽(第1図の1
4)に送り、ここで空気を混合廃水量の1/2以上
吹き込んで処理を行なう。なお、PH調整の際塩酸
と使用すると、空気曝気の時に塩化アンモンのヒ
ユームが発生し、周囲の環境を悪化するので硫酸
が最適である。
このようにPH調整、空気曝気を行なつた混合廃
水を活性汚泥法により処理しても、活性汚泥処理
の不調和を招くことがない。この方法においてPH
7.0〜8.0、温度40〜90゜で処理するのは、これらの
範囲内においてのみ処理後の廃水は活性汚泥処理
しても不調にならないことを経験的に見い出した
ものである。なお曝気槽から発生する排気は排気
処理設備(第1図の15)に送り処理を行なう。
次に、活性汚泥処理の曝気槽入口のPH調整設備
(第1図の16)及び活性汚泥処理の曝気槽(第
1図の20)の酸化還元電位(以下ORPと表記)
及びPH管理について説明する。
前記の混合廃水はチオ硫酸イオン、亜硫酸イオ
ン、硫化イオンなどをかなり高濃度に含有してい
る。これらの還元性硫黄化合物は、活性汚泥処理
によつて酸化されて、一部が硫酸を生成する。こ
のため、活性汚泥処理の曝気槽のPHが異常に低下
し、フエノール、チオシアン、CODなどの分解
性が著しく低下するとともに曝気槽の活性汚泥に
木の枝状の糸状菌が発生し、糸状菌性バルキング
が起り、汚泥の流出で処理水質が著しく悪化す
る。このような不調を防止するためには、曝気槽
のPHを7.0±0.5に維持する方法が最適であり、曝
気槽に流入する混合廃水を、海水及び又は淡水に
より稀釈する前にPH調整する方法が良い。すなわ
ち、曝気槽にPHセンサーを設置し、曝気槽のPH変
化に応じて混合廃水に酸又はアルカリを添加す
る。なお、曝気槽に酸又はアルカリを直接添加す
る場合、高濃度のものを添加すると、曝気槽の容
量が1000〜5000m3と非常に大きいので局部的にPH
が異常になり活性汚泥に対して悪影響を及ぼすこ
とがあり、また、低濃度の酸、アルカリを添加す
る方法はこれらの薬剤のタンクなどが大形になり
不適当である。したがつて、混合廃水に高濃度の
酸、アルカリを添加してPHを制御する方法は、曝
気槽のPH調整に時間がかかるが、前述のような問
題点がおこらないため活性汚泥処理を円滑に行な
うことができる。
次に活性汚泥処理装置の曝気槽(第1図の2
0)の管理について説明する。
曝気槽はPH、及び溶存酸素、活性汚泥、亜硝酸
性窒素などの濃度、活性汚泥の沈降性などを測定
して管理を行なつている。又活性汚泥処理水は
PH、COD、フエノール、チオシアン、アンモニ
ア性及び亜硝酸性窒素、浮遊物質などの濃度を測
定して管理を行なつている。この他に曝気槽に流
入する汚濁物量、たとえばCOD負荷量なども重
要な管理項目である。
これらの方法でガス廃液の活性汚泥処理を管理
していても、活性汚泥の不調が起り処理水質が悪
化することがある。これは、ガス廃液の活性汚泥
処理の場合、前記管理項目だけでは十分でなく、
何か適切な管理項目が必要である。本発明者ら
は、この点について研究した結果、上記管理項目
の他に曝気槽のORPを指標にして曝気量、流入
する汚泥物量を管理し、さらに前述の混合廃水の
生物化学的測定法、毒性廃水の無害化処理法、PH
調整―曝気法及び曝気槽のPH管理制御法などと総
合的に組合せてガス廃液の活性汚泥処理を行なう
と、従来の方法よりも処理を安定して行なうこと
ができ、CODが低い処理水が得られる。
ORPを指標にして曝気量、流入汚濁物量を管
理すると安定した処理ができる理由について説明
する。前述の混合廃水は硫化物、チオ硫酸化合
物、亜硫酸化合物などの還元性物質を含有してい
る。これらの廃水が活性汚泥処理設備に供給され
ると曝気槽の酸化力が弱まり、フエノール、チオ
シアンなどのCOD成分の分解性が低下し、処理
水質の悪化を招く。しかし、曝気槽にORPセン
サーを設置し、曝気槽の酸化力を測定し、ORP
が設定値より低下したら、すなわち酸化力が弱つ
たら、曝気量を増加させたり、あるいは流入する
汚濁物量を減少させ、ORPを設定値に回復させ
る。一方、ORPが設定値より高くなつたら、曝
気量を減少させたり、あるいは流入汚濁物の量を
増加させて、ORPを設定値に戻す。このような
ORPの管理を行なうと、前記混合廃水のフエノ
ール、チオシアンなどCOD成分の分解性が著し
く向上し、またアンモニアの酸化による亜硝酸性
窒素の生成がなくなるので、亜硝酸イオンによる
COD解資化菌の機能阻害、汚泥沈降槽での浮上
流出などのトラブルが完全になくなり、安定した
処理ができ良好な処理水が得られるようになつ
た。
以上説明したように、コークス工場関係の上記
混合廃水を活性汚泥法により無害化処理を行なう
場合、活性汚泥処理を順調に行なうためには、単
に活性汚泥処理のみを管理しても安定した処理が
できず、本発明のごとく混合廃水の毒性試験と無
害化処理、アンモニアの除去、アンモニア除去設
備停止時の代替技術、活性汚泥処理の適正な管理
技術など総合的な技術を組合せることにより、活
性汚泥処理によるコークス工場関係の混合廃水の
無害化処理を安定して行なうことができるように
なつた。
次に、本発明の実施例について説明する。
化成工場(第1図の2)、コークス炉ガス精製
設備(第1図の3)および各種ガスの凝縮水(第
1図の4)から発生する廃水を、好気性活性汚泥
処理の曝気槽の活性汚泥混合液をもちいて酸素消
費速度を測定し、第2図の曲線より、無害廃水、
シアン系毒性廃水、硫化物系毒性廃水に分類し、
これらの廃水をそれぞれ別々のタンクに貯蔵す
る。無害廃水は均質化タンク(第1図の11)へ
送る。一方、有害廃水は無害化処理設備(第1図
の10)へ送り、ここで無害化処理を行なつた
後、均質化タンク(第1図の11)へ送る。
有害廃水の無害方法は、シアン系廃水は紺青法
により、硫化物系廃水は硫化鉄沈澱法により無害
化処理を行なつた。すなわち、シアン系廃水はシ
アンイオンに対して大過剰の硫酸第1鉄塩
(Fe/CNモル比5〜8倍)を加え、水酸化カル
シウムでPH6〜7に調整し、空気曝気を行なつた
後、処理水の遊離シアンイオンを5ppm以下にし、
均質化タンク11(第1図の11)へ送水する。
また、硫化物系廃水は、塩化第2鉄を添加し、水
酸化カルシウムなどのアルカリ剤また硫酸などの
酸によつてPH7±0.5に調整する。塩化第2鉄の
添加量は、硫化イオン(S″)に対して約1.5倍
(モル比)が適当である。硫化物系廃水に塩化鉄
を添加すると、硫化鉄の沈澱が生成するが、特に
この沈澱を分離することなく均質化タンク(第1
図の11)へ送水する。
均質化タンクの各種廃水は、蒸気吹き込み蒸留
方式のアンモニア除去設備(第1図の12)へ送
り、遊離アンモニアを80〜95%以上除去し、PH調
整設備(第1図の16)へ送り、活性汚泥処理設
備の曝気槽(第1図の20)のPHが7.0±0.2に維
持できるように、PH調整設備において廃水のPHを
調整する。
このPH調整した廃水を均一混合槽(第1図1
8)へ送り、ここで海水及び又は淡水により3〜
6倍に稀釈し調整槽(第1図―19)へ送り、こ
こでCOD負荷1.5±0.25Kg/MLSS・Kg・日にな
るように活性汚泥処理設備に廃水を供給する。
活性汚泥処理設備では、酸化還元電位200〜
250mV(金―銀/塩化銀複合電極)になるように
曝気を行なう。なお、曝気槽のPHは、7.0±0.2
に、温度は30℃に管理する。
このような活性汚泥処理を行なうことにより、
従来の管理方式の活性汚泥処理に比べて、第1表
に示すように処理水質、汚泥性状などが著しく優
れており、しかも活性汚泥処理の不調がほとんど
発生しなかつた。
Among the wastewater discharged from the steelmaking process at a steelworks, the wastewater discharged from equipment related to coke plants contains many types of pollutants and has a high concentration. For example, the chemical oxygen demand (hereinafter abbreviated as COD) of wastewater from coke factory-related equipment accounts for 40 to 70% of the total COD of wastewater discharged from steelworks, and the wastewater from coke factory-related equipment is harmless. Establishing technology to smoothly carry out the oxidation process is a very important issue. Wastewater discharged from coke factory-related equipment includes gas waste generated during coal carbonization, wastewater discharged from coke oven gas purification equipment, coke oven gas condensate, and organic compounds generated during coal carbonization, chemicals, fertilizers, etc. This includes wastewater discharged from chemical plants that manufacture products such as chemicals. These wastewaters contain organic compounds such as phenol and cresol, and inorganic compounds such as ammonia salts, cyanide salts, thiocyanate salts, sulfide salts, and thiosulfate salts, and have a high COD of 5000 to 8000 ppm.
The water is dark brown in color and cannot be discharged into public waters as is. For this reason, steel mills with coke plants,
The detoxification treatment of wastewater at chemical plants and city gas plants involves first removing free and/or fixed ammonia in the wastewater by distillation, diluting it 2 to 6 times with seawater and/or fresh water, and then subjecting it to aerobic activation. The usual treatment method is the sludge method. Activated sludge treatment of wastewater from coke factory-related equipment mentioned above can be easily performed if activated sludge from municipal sewage is used as a seed sludge and acclimatized with the wastewater, but stable treatment is not possible. is quite difficult. The reason for this is that the composition of wastewater from coke factories is quite different from that of municipal sewage, and little research has been conducted.
This is because the treatment performance of these wastewaters is not fully understood. For example, the COD volumetric load, which is the basic design value for the aeration tank of an activated sludge treatment facility, was COD2
~3Kg/aeration tank m 3 days, but now COD1
It is becoming Kg. This means that the current capacity of aeration tanks is two to three times larger than it was 15 years ago. As described above, the basic design values of the above-mentioned activated sludge treatment technology for coke factory-related wastewater are not clear even by the manufacturer of this device, and therefore it is difficult to say that it is a sufficiently established technology. In addition, wastewater from coke plants has a very complex composition and contains cyanide, sulfides, etc. that are harmful to activated sludge. Furthermore, the quality of these wastewaters varies greatly depending on the operating conditions of the factory and other factors. For example, coke production decreases and coke oven temperature increases from 50 to 70℃
When the concentration decreases, the concentration of COD, cyanide, sulfide, etc. in the gas waste fluid increases significantly. In addition, changes in coke oven gas refining conditions, chemical plant operating conditions, etc. change the properties of wastewater discharged from these facilities. In addition, activated sludge treatment of wastewater from coke factory-related equipment has large fluctuations in the amount of pollutants (hereinafter referred to as COD load amount) flowing into the activated sludge treatment equipment.
If the amount of toxic substances flowing into the system increases rapidly, activated sludge treatment may not proceed smoothly and the quality of the treated water may deteriorate. For example, if the COD load fluctuates greatly, non-filamentous bulking will occur in the activated sludge in the aeration tank, causing problems with floating and outflow in the settling tank of the activated sludge treatment equipment, and the concentration of suspended substances in the treated water will increase. water quality will deteriorate. Furthermore, when components harmful to activated sludge, such as cyanide and sulfides, increase, the function of activated sludge is inhibited, the decomposability of COD, phenol, thiocyanate, etc. decreases, and the concentration of these substances in treated water increases. No fundamental recovery technology has been established for such malfunctions in activated sludge treatment, and the technology for recovering from malfunctions is based on trial and error.For this reason, once a malfunction occurs, it cannot be recovered in a short period of time, and it may take 3 to 6 months. It can even last for a long time. For this reason, it is extremely important to prevent malfunctions in activated sludge treatment of wastewater from coke plants. From this perspective, the present inventors conducted research on activated sludge treatment of wastewater discharged from coke factory related equipment, and found that these wastewaters can be stably treated by the activated sludge method and that good treated water quality can be obtained. Invented an activated sludge treatment process for wastewater from coke factory equipment. Next, a stabilized activated sludge treatment process for wastewater discharged from coke factory-related equipment according to the present invention is shown in FIG. 1, and this process will be described in detail.
First, wastewater generated from coke factory-related equipment, such as wastewater generated from coke factory 1, chemical plant 2, coke oven gas purification equipment 3, and condensed water 4 generated from piping for fuel gas such as coke oven gas, is treated as wastewater. Tanks 5 to 8 that can store wastewater for 7 to 10 days are installed depending on the type of wastewater, and wastewater is temporarily stored in these tanks. At this stage, the wastewater in the storage tanks 5 to 8 described above is subjected to a toxicity test 9 using a biochemical method at regular intervals, and wastewater that has almost no toxicity or is weakly toxic is directly sent to the homogenization tank 11. do. However, if the wastewater is found to be toxic as a result of this toxicity test, the wastewater is sent to the wastewater detoxification treatment facility 10, where it is detoxified and then sent to the homogenization tank 11. The wastewater homogenized in this way is transferred to homogenization tank 1.
1 to ammonia removal equipment 12, where free and/or fixed ammonia is removed by distillation. This wastewater is sent to the PH adjustment equipment 16, where the PH of the aeration tank is adjusted.
Adjust the pH by adding water or alkali so that the pH falls within the range of 7.0±0.5. Next, this pH-adjusted wastewater is sent to the dilution tank 18, where it is diluted 2 to 6 times as much as seawater and/or fresh water, and the temperature of the wastewater is adjusted to 30%.
After adjusting the temperature around ℃, it is sent to the adjustment tank 19 and from there is sent to the aeration tank 20 of the activated sludge treatment facility at a COD volumetric load of 1.5Kg ± 0.25Kg/aeration tank m 3 days, and then the activated sludge is treated. Do this. The treated water is separated from activated sludge in a sludge settling tank 21 and discharged. In addition, the ammonia removal equipment 12 is operated at 10 times a year due to regular repairs and inspections of boilers, distillation columns, etc.
It may be suspended for 1 to 30 days. In this case, such wastewater is not sent directly to the activated sludge treatment facility, but is sent to the high temperature PH adjustment facility 13 and heated to a temperature of 40 to 90℃.
The pH of the wastewater is adjusted to 7.0 to 8.0 by adding sulfuric acid at a temperature of 40 to
After aeration with air at 90℃, PH adjustment tank 1
6 and dilution tank 18, activated sludge treatment is carried out according to the method described above. The main points of the present invention comprising such a process are as follows. (1) Types of wastewater include wastewater generated from different routes, such as gas wastewater generated from coke ovens, wastewater generated from coke oven gas purification equipment, wastewater generated from chemical plants, and condensed water from fuel gases such as coke oven gas. Store each in separate tanks. Each of these tanks will have a capacity that can store 7 to 10 days worth of wastewater. (2) Each wastewater in the storage tank is tested for toxicity using a biochemical test method at regular intervals, and toxic wastewater is rendered harmless, free and/or fixed ammonia is removed, and activated sludge treatment is performed. . (3) When the ammonia removal equipment and/or auxiliary equipment is stopped for repair or periodic inspection, the aforementioned wastewater is
After adjusting the pH to 7.0 to 8.0 with sulfuric acid at a temperature of 90°C, pretreatment by aeration treatment is performed. (4) When performing activated sludge treatment on the wastewater in (2) or (3), the wastewater in (2) or (3) must be treated with fresh water and or Adjust the pH of the wastewater before diluting it 2 to 6 times with seawater. (5) In order to maintain the conditions of the aeration tank for activated sludge treatment in an optimal environment for activated sludge (bacteria), the COD load flowing into the aeration tank, PH,
Manage and control ORP. Next, the grounds and reasons for setting conditions regarding the main points of the present invention will be explained in detail. First, the reason why the tanks (5 to 8 in FIG. 1) were installed and the capacity was set for each waste water will be explained. The reason why tanks are installed for each type of wastewater is that the types of components harmful to activated sludge differ depending on the type of wastewater. The main harmful components of each wastewater are cyanide compounds, sulfides, etc. in gas wastewater from coke plants, sulfides, etc. in wastewater from coke oven gas purification equipment, and sulfides, etc. in wastewater from chemical plants. Corrosion inhibitors for equipment, biofouling inhibitors, algaecides, etc. used to prevent clogging of cooling pipes, and condensed water from various fuel gases contain cyanide compounds, sulfides, etc. It is. Furthermore, the types and concentrations of these harmful components vary considerably depending on factors such as factory operations. For this reason, when wastewater from different sources is stored in the same tank and subjected to detoxification treatment as described below, the detoxification treatment equipment becomes large due to the large number of types of harmful components and the amount of wastewater. Furthermore, the treatment process becomes complicated, and harmful components may not be sufficiently removed.
Therefore, we test each storage tank for toxicity, and only if toxicity is found, we use a shared detoxification equipment 1.
0 and performs detoxification treatment, the treatment equipment becomes smaller, the treatment process becomes simpler, and harmful components can be sufficiently removed. For this reason, it is advantageous to install a storage tank for each wastewater. Next, the capacity of the storage tank will be explained. Coke plants, chemical plants, coke oven gas purification equipment, etc. undergo periodic repairs, changes to operating conditions, or major repairs to equipment about once every seven to 10 days. Therefore, due to these repairs and changes in operating conditions, the amount of wastewater discharged from these factories and equipment, the concentration of harmful components, etc. change. For this reason, if the wastewater tank capacity is not sufficient, when wastewater with a high concentration of harmful components is discharged, the effects of the harmful components will immediately appear in activated sludge treatment.
The decomposition of COD, phenol, thiocyanate, etc. becomes poor, and non-filamentous bulking of activated sludge occurs, significantly deteriorating the quality of treated water. On the other hand, installing a large-capacity wastewater tank homogenizes harmful components and significantly reduces the impact on activated sludge treatment, but equipment costs are not efficient. For this reason, the effect of harmful components of wastewater on activated sludge treatment is small, and the most efficient capacity is the one that occurs every 7 to 10 days, taking into account the frequency of periodic repairs to factories and equipment, changes in operating conditions, etc. It is best to install a tank that can store wastewater. Next, the aforementioned biochemical toxicity diagnosis method for wastewater will be described in detail. First, the gas waste generated from coke factories contains substances such as cyanide and sulfides that are harmful to activated sludge (hereinafter referred to as bacteria), but the quantitative changes in these toxic substances are small, and Because it is diluted 2 to 6 times for sludge treatment, its toxicity is considerably reduced. However, wastewater from chemical plants, coke oven gas purification equipment, and condensed water from various fuel gases contain harmful substances such as sulfides and cyanide, but these wastewaters differ from the gas wastewater mentioned above. There is considerable variation in the concentration of harmful components, and when wastewater with a high concentration of harmful substances is mixed with gas wastewater and supplied to activated sludge treatment equipment after passing through ammonia removal equipment, the function of bacteria is inhibited and phenols, thiocyanine, The decomposability of COD and other substances decreases significantly, leading to deterioration of the quality of treated water, and the activated sludge becomes bulky, causing sludge to float to the surface and flow out, further deteriorating the quality of treated water. In order to prevent malfunctions in activated sludge treatment due to the inflow of such highly toxic wastewater into activated sludge treatment equipment, the present inventors tested the toxicity of the aforementioned wastewater at regular intervals using a biochemical method. We used the following method. This method collects the wastewater at regular intervals, adds a certain amount of activated sludge from the aeration tank of the activated sludge treatment equipment to the collected wastewater, and blows in enough air to make the dissolved oxygen in the mixture 6 ppm or more. . These were placed in a sealed container and stirred at a constant temperature of 30°C to measure the decrease in dissolved oxygen concentration.
Determine the toxicity of wastewater based on the consumption rate of dissolved oxygen. The method for determining the toxicity of wastewater will be explained with reference to a typical oxygen consumption rate graph shown in FIG. First, the graph (b in Figure 2) of the oxygen consumption rate of non-toxic wastewater is used as a reference. For example, the oxygen consumption rate of wastewater containing toxic substances such as cyanide slows down as shown in FIG. 2a because the toxic substances such as cyanide inhibit the respiratory function of bacteria. In addition, in the case of wastewater containing reducing toxic substances such as sulfides, the reducing toxic substances consume oxygen, so dissolved oxygen rapidly decreases as shown in Figure 2 c, but then The rate of oxygen decline becomes slower. This is because the functions of bacteria are inhibited by toxic substances such as sulfides. In this way, the toxicity of each type of wastewater is measured automatically or manually, and non-toxic wastewater is directly transferred to the homogenization tank (11 in Figure 1), while highly toxic wastewater is transferred to the detoxification treatment facility (No. 1 in Figure 1). After being sent to 10) in the figure, where it is rendered harmless, it is sent to the homogenization tank (11 in Figure 1). The toxicity of these wastewaters may be measured once every 4 to 8 hours. In addition, when sending wastewater directly from each tank to the homogenization tank 11 or after detoxification treatment, it is possible to balance the amount of wastewater generated and the amount of treatment by sending the wastewater through different routes in the ratio of the amount of wastewater generated. preferable. In addition, in conventional biochemical methods for evaluating the toxicity of wastewater, pressure detection methods, such as Warburg manometers and coulometers, are often used. The measurement mechanism of these manometers is to absorb carbon dioxide gas, which is generated when inoculated bacteria (activated sludge) decomposes organic pollutants in wastewater, into an alkaline aqueous solution or soda lime, and reduce the pressure inside the measuring container at this time. The degree of decomposition of organic pollutants in wastewater, toxicity, and the activity of activated sludge are evaluated by converting the degree of oxygen consumption into the amount of oxygen consumed by the inoculated bacteria. These pressure detection methods involve many problems. For example, if the wastewater contains volatile sulfides, cyanide compounds, and other substances that are easily absorbed by alkaline aqueous solutions and soda lime, these will be absorbed by the alkali aqueous solution and soda lime, and the pressure inside the measuring container will be reduced. It behaves as if organic pollutants in wastewater are being decomposed. For this reason, conventional pressure detection methods are used to evaluate the toxicity of wastewater containing volatile sulfides, cyanides, and other compounds that are easily absorbed by alkaline aqueous solutions and soda lime, such as gas wastewater and wastewater discharged from coke factory related equipment. cannot be measured. Therefore, the conventional pressure detection method is inappropriate for evaluating the toxicity of wastewater containing volatile sulfides, cyanide compounds, and other compounds that are easily absorbed by alkaline aqueous solutions and soda lime. Application is optimal. Next, a method for detoxifying toxic wastewater will be explained. In the case of toxic wastewater containing cyanide, there are two ways to detoxify cyanide: adding iron salts to form a complex salt of cyanide and iron, and oxidative decomposition using ozone, hypochlorite, etc. As a method that does not have an adverse effect on sludge, the most suitable method is to form an iron-cyanide complex salt. Furthermore, in the case of toxic wastewater containing sulfides, the optimal method is to add water-soluble iron salts and calcium salts to the wastewater, either alone or in combination, to make them insoluble iron sulfides and calcium sulfides and render them harmless. In the case of wastewater in which cyanide and sulfide coexist, the optimal method is to add iron salt to render cyanide harmless by converting cyanide into a cyanide-iron complex salt and converting sulfide into iron sulfide. As mentioned above, if the toxicity of various wastewaters treated by the activated sludge method is measured by the biochemical method described above, and the toxic wastewater is treated to be harmless, then the activated sludge treatment is performed. Such malfunctions in activated sludge treatment do not occur, and the treatment can be carried out smoothly. Next, a method for treating a mixture of gas waste liquid and various wastewaters when the ammonia removal equipment is stopped, which is another feature of the present invention, will be explained. Mixed wastewater (hereinafter referred to as mixed wastewater) consisting of gas wastewater, wastewater from coke oven gas purification equipment, chemical plants, etc., and condensed water of various fuel gases, etc., is removed by ammonia removal equipment (12 in Figure 1) by distillation. The usual method is to remove free and/or fixed ammonia using an activated sludge method. Ammonia removal equipment using this distillation method may be shut down for about 10 to 30 days a year due to regular repairs and inspections of boilers, distillation equipment, etc. At this time, mixed wastewater with high ammonia concentration and pH is supplied to the activated sludge treatment facility. For this reason, the pH of the aeration tank for activated sludge treatment may become abnormally high, leading to malfunctions in activated sludge treatment. In this case, in order to prevent the PH from becoming abnormally high, a method is to neutralize the mixed wastewater with high ammonia concentration and PH with sulfuric acid and hydrochloric acid at the inlet of the aeration tank to prevent the PH from becoming high in the aeration tank. However, this method cannot completely prevent malfunctions in the activated sludge treatment of this mixed wastewater. The present inventors have invented a method for completely preventing malfunctions in activated sludge treatment when ammonia removal equipment is stopped. This method is applied to mixed wastewater with high ammonia concentration and pH from the homogenization tank (11 in Figure 1).
Sulfuric acid was added at a temperature of 90℃ to adjust the pH to 7.0 to 8.0, and then the pH-adjusted wastewater was transferred to an aeration tank (1 in Figure 1).
4), where air is blown in at least 1/2 of the amount of mixed wastewater for treatment. If hydrochloric acid is used to adjust the pH, ammonium chloride fumes will be generated during air aeration, which will deteriorate the surrounding environment, so sulfuric acid is best. Even if the mixed wastewater that has been subjected to pH adjustment and air aeration is treated by the activated sludge method, there will be no inconsistency in the activated sludge treatment. In this method the PH
The reason why the treatment is carried out at a temperature of 7.0 to 8.0 degrees and a temperature of 40 to 90 degrees is based on the experience that has been found that only within these ranges will the treated wastewater be treated with activated sludge without causing any problems. The exhaust gas generated from the aeration tank is sent to an exhaust treatment facility (15 in Figure 1) for treatment. Next, the PH adjustment equipment at the inlet of the aeration tank for activated sludge treatment (16 in Figure 1) and the oxidation-reduction potential (hereinafter referred to as ORP) of the aeration tank for activated sludge treatment (20 in Figure 1)
and PH management. The mixed wastewater mentioned above contains thiosulfate ions, sulfite ions, sulfide ions, etc. in fairly high concentrations. These reducible sulfur compounds are oxidized by activated sludge treatment to partially produce sulfuric acid. As a result, the pH of the aeration tank for activated sludge treatment drops abnormally, and the decomposition of phenol, thiocyanide, COD, etc. drops significantly, and tree-like filamentous fungi occur in the activated sludge in the aeration tank. bulking occurs, and the quality of treated water deteriorates significantly due to sludge flow. In order to prevent such problems, the best method is to maintain the pH of the aeration tank at 7.0±0.5, and a method of adjusting the pH of the mixed wastewater that flows into the aeration tank before diluting it with seawater and/or fresh water. is good. That is, a PH sensor is installed in the aeration tank, and acid or alkali is added to the mixed wastewater depending on the PH change in the aeration tank. In addition, when adding acid or alkali directly to the aeration tank, if high concentration is added, the aeration tank has a very large capacity of 1000 to 5000 m3 , so the PH may locally increase.
may become abnormal and have an adverse effect on activated sludge, and the method of adding low-concentration acids and alkalis is unsuitable because the tanks for these agents become large. Therefore, the method of controlling PH by adding highly concentrated acids and alkalis to mixed wastewater takes time to adjust the PH in the aeration tank, but it does not cause the problems mentioned above and makes activated sludge treatment smoother. can be done. Next, the aeration tank of the activated sludge treatment equipment (2 in Figure 1)
0) management will be explained. The aeration tank is managed by measuring the pH, concentration of dissolved oxygen, activated sludge, nitrite nitrogen, etc., and the settling ability of activated sludge. In addition, activated sludge treated water
Concentrations of PH, COD, phenol, thiocyanate, ammonia and nitrite nitrogen, suspended solids, etc. are measured and controlled. In addition to this, the amount of pollutants flowing into the aeration tank, such as the amount of COD load, is also an important management item. Even if activated sludge treatment of gas waste liquid is managed using these methods, activated sludge may malfunction and the quality of treated water may deteriorate. In the case of activated sludge treatment of gas waste liquid, the above control items alone are not sufficient;
Some appropriate control items are required. As a result of research on this point, the present inventors have found that in addition to the above management items, the aeration amount and the amount of inflowing sludge are managed using the ORP of the aeration tank as an index, and the above-mentioned biochemical measurement method of mixed wastewater is used. Toxic wastewater detoxification treatment method, PH
Adjustment - If activated sludge treatment of gas waste liquid is performed in comprehensive combination with aeration method and PH management control method of aeration tank, treatment can be carried out more stably than conventional methods, and treated water with low COD can be produced. can get. We will explain why stable treatment can be achieved by controlling the amount of aeration and the amount of inflowing pollutants using ORP as an indicator. The aforementioned mixed wastewater contains reducing substances such as sulfides, thiosulfate compounds, and sulfite compounds. When these wastewaters are supplied to activated sludge treatment equipment, the oxidizing power of the aeration tank weakens, reducing the decomposition of COD components such as phenol and thiocyanine, leading to a deterioration in the quality of treated water. However, by installing an ORP sensor in the aeration tank and measuring the oxidizing power of the aeration tank, ORP
If the oxidizing power decreases below the set value, that is, the oxidizing power weakens, the amount of aeration is increased or the amount of inflowing pollutants is reduced to restore ORP to the set value. On the other hand, if the ORP becomes higher than the set value, the amount of aeration is reduced or the amount of inflowing pollutants is increased to return the ORP to the set value. like this
When ORP is managed, the decomposition of COD components such as phenol and thiocyanine in the mixed wastewater is significantly improved, and the production of nitrite nitrogen due to ammonia oxidation is eliminated, so nitrite ions are
Problems such as functional inhibition of COD-decomposing bacteria and floating outflow in the sludge settling tank have been completely eliminated, making it possible to perform stable treatment and obtain high-quality treated water. As explained above, when detoxifying the mixed wastewater from a coke factory using the activated sludge method, in order to perform the activated sludge treatment smoothly, stable treatment cannot be achieved even if only the activated sludge treatment is managed. However, by combining comprehensive technologies such as toxicity testing and detoxification treatment of mixed wastewater, ammonia removal, alternative technology when ammonia removal equipment is stopped, and appropriate management technology for activated sludge treatment, as in the present invention, it is possible to It has become possible to stably detoxify mixed wastewater from coke plants through sludge treatment. Next, examples of the present invention will be described. Wastewater generated from chemical plants (2 in Figure 1), coke oven gas purification equipment (3 in Figure 1), and condensed water of various gases (4 in Figure 1) is transferred to the aeration tank for aerobic activated sludge treatment. The oxygen consumption rate was measured using the activated sludge mixture, and based on the curve in Figure 2, it was determined that harmless wastewater,
Classified into cyanide-based toxic wastewater and sulfide-based toxic wastewater,
These wastewaters are stored in separate tanks. The non-hazardous wastewater is sent to the homogenization tank (11 in Figure 1). On the other hand, hazardous wastewater is sent to a detoxification treatment facility (10 in Figure 1), where it is detoxified and then sent to a homogenization tank (11 in Figure 1). To make hazardous wastewater harmless, cyanide wastewater was treated using the navy blue method, and sulfide wastewater was treated using the iron sulfide precipitation method. That is, cyanide-based wastewater was treated by adding a large excess of ferrous sulfate salt (Fe/CN molar ratio 5 to 8 times) to cyanide ions, adjusting the pH to 6 to 7 with calcium hydroxide, and performing air aeration. After that, the free cyanide ions in the treated water are reduced to 5ppm or less.
Water is sent to the homogenization tank 11 (11 in FIG. 1).
In addition, sulfide-based wastewater is adjusted to pH 7±0.5 by adding ferric chloride and using an alkaline agent such as calcium hydroxide or an acid such as sulfuric acid. The appropriate amount of ferric chloride to be added is approximately 1.5 times (molar ratio) to the sulfide ion (S″). When iron chloride is added to sulfide-based wastewater, iron sulfide precipitates are formed, but In particular, without separating this precipitate, the homogenization tank (first
Water is sent to 11) in the figure. The various wastewaters in the homogenization tank are sent to the steam blow distillation type ammonia removal equipment (12 in Figure 1), which removes 80 to 95% or more of free ammonia, and then sent to the PH adjustment equipment (16 in Figure 1). Adjust the pH of the wastewater using the pH adjustment equipment so that the pH of the aeration tank (20 in Figure 1) of the activated sludge treatment equipment can be maintained at 7.0±0.2. This pH-adjusted wastewater is mixed in a uniform mixing tank (Fig.
8), where it is treated with seawater and/or fresh water.
The wastewater is diluted 6 times and sent to the adjustment tank (Figure 1-19), where the wastewater is supplied to the activated sludge treatment equipment so that the COD load is 1.5±0.25Kg/MLSS・Kg・day. In activated sludge treatment equipment, the redox potential is 200~
Aerate to 250mV (gold-silver/silver chloride composite electrode). In addition, the pH of the aeration tank is 7.0±0.2
The temperature was controlled at 30℃. By performing this type of activated sludge treatment,
Compared to activated sludge treatment using conventional management methods, the treated water quality and sludge properties were significantly superior, as shown in Table 1, and there were almost no problems with activated sludge treatment.
【表】【table】
【表】
また、蒸気の吹込みによるアンモニア除去設備
は、ボイラーなどの定期検査のため、1年に1回
は必らず停止する。このような場合、従来の方法
だと活性汚泥に対して毒性の強い排水がそのまま
活性汚泥によつて処理されるため、活性汚泥の機
能が阻害され、活性汚泥の不調をきたし、回復に
長期間要する。
アンモニア除去設備が定期検査により停止した
時は、均質化タンク11より廃水を定量的にPH調
整設備(第1図の13)へ送り、ここで、温度70
℃に保ち、廃水1m3当り濃硫酸を5Kg注入混合し
てPH7.5に調整した。このPH調整した廃水を曝気
処理設備(第1図の14)へ送り、ここで、廃水
に対して3〜5倍の空気を連続的に吹き込んだ。
このように処理した廃水をPH調整設備(第1図の
16)へ送り、曝気槽のPHが7.0±0.2に維持でき
るようにPH調整を行ない、その後は、前述の方法
とまつたく同じ条件で活性汚泥処理を行なつた。
その結果、第2表に示すように本発明の方法は、
従来の方法に比べて処理水の水質、活性汚泥の性
状などの処理性能が著しく優れており、又本発明
の方法で行なえば不調はほとんど発生しなかつ
た。なお、従来の方法では、アンモニア除去設備
が定期修理などにより停止したとき不調が発生し
やすく、回復に長期間を要した。[Table] Additionally, ammonia removal equipment that uses steam injection must be shut down at least once a year for periodic inspections of boilers, etc. In such cases, with conventional methods, wastewater that is highly toxic to activated sludge is treated directly with activated sludge, which impedes the function of activated sludge, causing activated sludge to malfunction and requiring a long period of time to recover. It takes. When the ammonia removal equipment is stopped due to periodic inspection, the wastewater is quantitatively sent from the homogenization tank 11 to the PH adjustment equipment (13 in Figure 1), where the temperature is 70.
℃, and adjusted the pH to 7.5 by injecting and mixing 5 kg of concentrated sulfuric acid per 1 m 3 of waste water. This pH-adjusted wastewater was sent to an aeration treatment facility (14 in Figure 1), where 3 to 5 times the amount of air was continuously blown into the wastewater.
The wastewater treated in this way is sent to the PH adjustment equipment (16 in Figure 1), and the PH is adjusted so that the PH of the aeration tank can be maintained at 7.0 ± 0.2. Activated sludge treatment was performed.
As a result, as shown in Table 2, the method of the present invention:
Compared to conventional methods, the treatment performance in terms of the quality of treated water and the properties of activated sludge was significantly superior, and when the method of the present invention was used, almost no problems occurred. In addition, with the conventional method, malfunctions tend to occur when the ammonia removal equipment is stopped due to regular repairs, etc., and it takes a long time to recover.
【表】【table】
【表】
なお、曝気処理設備(第1図の14)から発生
した排気は、排気処理設備(第1図の15)にお
いて、硫酸水溶液および苛性ソーダ水溶液によつ
て洗浄した後、水洗などを行ない、さらに、コー
クス炉の廃熱を利用して燃焼を行なつて、完全に
無害化処理した後コークス炉の排気と一緒にして
排出する。
このように、本発明の方法は従来の方法に比べ
て非常にすぐれており、工業的規模で活性汚泥に
よる廃水処理を長期にわたつて安定して行うこと
が可能になつた。[Table] In addition, the exhaust gas generated from the aeration treatment equipment (14 in Figure 1) is washed with a sulfuric acid aqueous solution and a caustic soda aqueous solution in the exhaust treatment equipment (15 in Figure 1), and then washed with water. Furthermore, the waste heat of the coke oven is used to perform combustion, and after completely detoxifying the waste, it is discharged together with the exhaust gas of the coke oven. As described above, the method of the present invention is extremely superior to conventional methods, and has made it possible to stably perform wastewater treatment using activated sludge on an industrial scale over a long period of time.
第1図は、本発明の方法によりコークス工場関
係の混合廃水を活性汚泥法により無害化処理する
プロセスの説明図である。
第2図は、本発明の方法によりコークス工場関
係の廃水を生物化学的方法により毒性試験を行な
つた時の毒性と溶存酸素の消費速度との関係を図
示したものである。
1…コークス工場、2…化成工場、3…コーク
ス炉ガス精製設備、4…燃料用ガス凝縮水の集水
設備、5…ガス廃液の貯蔵タンク、6…化成工場
廃水の貯蔵タンク、7…コークス炉ガス精製設備
発生廃水の貯蔵タンク、8…ガス凝縮水の貯蔵タ
ンク、9…廃水の生物化学的方法による毒性試験
設備、10…廃水の無害化処理設備、11…廃水
の均質化タンク、12…アンモニア除去設備、1
3…PH調整設備、14…曝気処理設備、15…排
気処理設備、16…PH調整設備、17…海水及び
又は淡水、18…均一混合槽(稀釈槽)、19…
調整槽、20…活性汚泥処理設備の曝気槽、21
…汚泥沈降槽、22…返送汚泥、23…処理水。
FIG. 1 is an explanatory diagram of a process in which mixed wastewater from a coke factory is rendered harmless by an activated sludge method according to the method of the present invention. FIG. 2 illustrates the relationship between toxicity and the consumption rate of dissolved oxygen when wastewater from a coke factory was subjected to a toxicity test by a biochemical method according to the method of the present invention. 1...Coke factory, 2...Chemical plant, 3...Coke oven gas purification equipment, 4...Fuel gas condensed water collection equipment, 5...Gas waste liquid storage tank, 6...Chemical plant wastewater storage tank, 7...Coke Storage tank for wastewater generated by furnace gas purification equipment, 8...Storage tank for gas condensed water, 9...Toxicity test facility for wastewater using a biochemical method, 10...Detoxification treatment equipment for wastewater, 11...Homogenization tank for wastewater, 12 ...Ammonia removal equipment, 1
3... PH adjustment equipment, 14... Aeration treatment equipment, 15... Exhaust treatment equipment, 16... PH adjustment equipment, 17... Seawater and/or fresh water, 18... Uniform mixing tank (dilution tank), 19...
Adjustment tank, 20...Aeration tank of activated sludge treatment equipment, 21
...Sludge settling tank, 22...Return sludge, 23...Treated water.
Claims (1)
を混合して好気性活性汚泥法で処理するにあた
り、発生経路の異なる廃水を一時的に7日〜10日
間分の廃水量が貯蔵できるタンクに別々に貯蔵
し、この一時的に貯蔵中の各廃水について植種し
た活性汚泥による溶存酸素濃度消費速度測定法に
よる生物化学的毒性試験を行い、毒性試験により
毒性が認められない場合には廃水をそのまま、毒
性が認められる場合には廃水を取り出して活性汚
泥に対する毒性の無毒化処理を行つた後に、各廃
水を発生量比にもとづいて同一タンクに入れて均
質に混合し、次いで均質混合した廃水中の遊離ア
ンモニア及び/又は固定アンモニアを常法により
除去するか、又は廃水を加熱した状態で曝気によ
る予備処理を行つた後、廃水のPHを調整し、海水
及び/又は淡水で希釈した後、好気性活性汚泥処
理することを特徴とするコークス工場関係設備か
ら発生する廃水の好気性活性汚泥処理方法。 2 活性汚泥に対して毒性が認められる廃水に鉄
塩及び/又はカルシウム塩を添加して無毒化処理
する特許請求の範囲第1項に記載の方法。 3 廃水の温度を40〜95℃、PHを7.0〜8.0に調整
した状態で曝気による予備処理を行つた後に活性
汚泥処理する特許請求の範囲第1項に記載の方
法。 4 曝気槽内のPH、酸化還元電位を制御しながら
好気性活性汚泥処理する特許請求の範囲第1項に
記載の方法。[Claims] 1. When various types of wastewater generated from equipment related to a coke factory are mixed and treated by the aerobic activated sludge method, wastewater from different generation routes is temporarily stored in an amount equivalent to 7 to 10 days. A biochemical toxicity test is conducted using the dissolved oxygen concentration consumption rate measurement method using activated sludge seeded on each temporarily stored wastewater, and if no toxicity is found in the toxicity test. If the wastewater is found to be toxic, the wastewater is taken out and treated to detoxify the activated sludge, and then each wastewater is mixed homogeneously in the same tank based on the generation ratio. After removing free ammonia and/or fixed ammonia in the mixed wastewater using conventional methods, or pre-treating the wastewater by aeration while heating it, the pH of the wastewater is adjusted and diluted with seawater and/or fresh water. An aerobic activated sludge treatment method for wastewater generated from coke factory-related equipment, which is characterized in that aerobic activated sludge treatment is performed on wastewater generated from equipment related to a coke factory. 2. The method according to claim 1, wherein wastewater that is found to be toxic to activated sludge is treated to be detoxified by adding iron salts and/or calcium salts. 3. The method according to claim 1, wherein activated sludge treatment is performed after preliminary treatment by aeration with wastewater temperature adjusted to 40 to 95°C and pH to 7.0 to 8.0. 4. The method according to claim 1, in which aerobic activated sludge treatment is performed while controlling the pH and redox potential in the aeration tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56121562A JPS5824396A (en) | 1981-08-03 | 1981-08-03 | Aerobic activated sludge treatment for waste water produced from installation relating to coke factory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56121562A JPS5824396A (en) | 1981-08-03 | 1981-08-03 | Aerobic activated sludge treatment for waste water produced from installation relating to coke factory |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5824396A JPS5824396A (en) | 1983-02-14 |
JPH0255118B2 true JPH0255118B2 (en) | 1990-11-26 |
Family
ID=14814301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56121562A Granted JPS5824396A (en) | 1981-08-03 | 1981-08-03 | Aerobic activated sludge treatment for waste water produced from installation relating to coke factory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5824396A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2605536B2 (en) * | 1991-11-16 | 1997-04-30 | ヤマハ株式会社 | Rotary encoder |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6402801B1 (en) * | 1998-05-01 | 2002-06-11 | N-Viro International Corp. | Method for treating ammonia-containing organic waste |
JP4756593B2 (en) * | 2006-03-07 | 2011-08-24 | 共英製鋼株式会社 | Waste beverage processing method and waste beverage processing equipment |
CN104496122B (en) * | 2014-12-23 | 2017-01-04 | 吉林建筑大学 | Micro-oxygen Co metabolism processes the method for brown coal upgrading waste water |
CN105439359A (en) * | 2015-12-29 | 2016-03-30 | 北京华福工程有限公司 | Phenol-containing sewage treatment method and equipment |
-
1981
- 1981-08-03 JP JP56121562A patent/JPS5824396A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2605536B2 (en) * | 1991-11-16 | 1997-04-30 | ヤマハ株式会社 | Rotary encoder |
Also Published As
Publication number | Publication date |
---|---|
JPS5824396A (en) | 1983-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wild et al. | Fate and effects of cyanide during wastewater treatment processes | |
Parker | Mechanics of corrosion of concrete sewers by hydrogen sulfide | |
US5705072A (en) | Biotreatment of wastewater from hydrocarbon processing units | |
Jochimsen et al. | Combined oxidative and biological treatment for separated streams of tannery wastewater | |
US6235204B1 (en) | Method and system for removal of selenium from FGD scrubber purge water | |
Tang et al. | Inhibition kinetics of ammonium oxidizing bacteria under Cu (II) and As (III) stresses during the nitritation process | |
US6495096B1 (en) | Deodorant and process for deodorization using said deodorant | |
Munter | Industrial wastewater characteristics | |
JPH0255118B2 (en) | ||
CN114455790B (en) | Method for stably and efficiently producing nitrite based on iron ammonia oxidation and application thereof | |
Einarsen et al. | Biological prevention and removal of hydrogen sulphide in sludge at Lillehammer wastewater treatment plant | |
CN113003888B (en) | Method for water treatment by using desulfurization ash | |
Rice et al. | Fundamental aspects of ozone chemistry in recirculating cooling water systems—Data evaluation needs | |
US20050077251A1 (en) | Method for control of wastewater treatment plant odors | |
Choi | Evaluation of fenton's process for the treatment of landfill leachate | |
JP4790243B2 (en) | Method for treating wastewater containing sulfur compounds | |
JP2005046697A (en) | Activated sludge treatment method | |
JPH08323387A (en) | Anaerobic treatment | |
JP2003290793A (en) | Method for preventing odor development from flocculated sludge | |
JPH0585240B2 (en) | ||
EP0086592A1 (en) | Abatement of hydrogen sulfide in aqueous media using hydrogen peroxide and transition metal catalyst | |
Matson | Treatment of cooling tower blowdown | |
Lambert et al. | Can stored sludge cake be deodorised by chemical or biological treatment? | |
Dzombak et al. | Management of Cyanide in Municipal Wastewaters | |
Moise et al. | Wastewater management in the Dumbrăveni wastewater treatment plant, Sibiu County, in the conditions of 2021. |