Nothing Special   »   [go: up one dir, main page]

JPH0251378A - Ultrasonic motor and driving method thereof - Google Patents

Ultrasonic motor and driving method thereof

Info

Publication number
JPH0251378A
JPH0251378A JP63201616A JP20161688A JPH0251378A JP H0251378 A JPH0251378 A JP H0251378A JP 63201616 A JP63201616 A JP 63201616A JP 20161688 A JP20161688 A JP 20161688A JP H0251378 A JPH0251378 A JP H0251378A
Authority
JP
Japan
Prior art keywords
stator
rotor
torsional
longitudinal
ultrasonic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63201616A
Other languages
Japanese (ja)
Other versions
JP2615892B2 (en
Inventor
Osamu Onishi
修 大西
Osamu Myoga
修 冥加
Takeshi Inoue
武志 井上
Sadayuki Takahashi
高橋 貞行
Tadayasu Uchikawa
内川 忠保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63201616A priority Critical patent/JP2615892B2/en
Publication of JPH0251378A publication Critical patent/JPH0251378A/en
Application granted granted Critical
Publication of JP2615892B2 publication Critical patent/JP2615892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To improve efficiency, and to enhance practicability by utilizing longitudinal resonance and torsional resonance, resonance frequency of which is determined by not only a stator body but also the whole motor including a sub-stator. CONSTITUTION:A torsional-vibration piezoelectric ceramic element 3 and a piezoelectric ceramic element 2 for exciting longitudinal vibrations are held by two columnar metallic blocks 3, 4, and clamped by a bolt 5, thus constituting a stator main section. A sub-stator 6 is installed to the lower sections of the metallic blocks 3, 4 through a sliding material 13 such as a bearing in order to bring longitudinal and torsional resonance frequency close. A rotor 8 is pressure-welded to the end face of said stator by using a bearing 9, a nut 10, a pedestal 11 and a coil spring 12 through an abrasion-resistant material 7, thus constructing an ultrasonic motor. Accordingly, AC voltage is applied independently to both ceramic elements 1, 2, the frequency of the ceramic elements 1, 2 is used as resonance frequency, and the phase difference of 90 deg. is given, thus rotating the rotor 8 with high efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超音波振動によりロータを回転して、駆動力を
発生させる超音波モータに関するもである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ultrasonic motor that generates driving force by rotating a rotor using ultrasonic vibrations.

(従来の技術) 縦−捩り複合圧電振振動子をステータとし、ステータの
端面にロータを圧接して、これを回転させる構成の超音
波モータは、例えば煎出による特開昭61−12177
号公報で開示されている。
(Prior Art) An ultrasonic motor having a structure in which a vertical-torsion composite piezoelectric vibrator is used as a stator and a rotor is pressed against the end face of the stator to rotate the rotor is disclosed in, for example, Japanese Patent Application Laid-Open No. 12177-1987 by Deku.
It is disclosed in the publication no.

ここでは、捩り振動励振用圧電素子と縦振動励振用圧電
素子とを円柱あるいは円筒状超音波振動体ではさみ一体
化したものをステータとし、捩り振動励振用圧電素子と
縦振動励振用圧電素子とにそれぞれ独立に交流電圧を印
加して、ステータの端面に楕円振動を誘起し、この楕円
振動を利用してステータ端面に圧接したロータに回転運
動を与えるものである。
Here, the stator is a stator in which a piezoelectric element for torsional vibration excitation and a piezoelectric element for longitudinal vibration excitation are sandwiched between a cylindrical or cylindrical ultrasonic vibrator. An alternating current voltage is applied to each independently to induce elliptical vibration on the end face of the stator, and this elliptical vibration is used to impart rotational motion to the rotor that is pressed against the end face of the stator.

(発明が解決しようとする問題点) ところで、捩り振動波の位相速度は縦振動波の位相速度
の約6割であるため、上記構成になるステータにおいて
、捩り振動の共振周波数と縦振動の共振周波数を一致さ
せることが困難である。従って、上記構成のステータで
は、捩り振動を共振駆動させれば、縦振動は非共振駆動
となり、逆に縦振動を共振駆動させれば、捩り振動は非
共振駆動となる。
(Problem to be Solved by the Invention) By the way, since the phase velocity of the torsional vibration wave is approximately 60% of the phase velocity of the longitudinal vibration wave, in the stator having the above configuration, the resonance frequency of the torsional vibration and the resonance of the longitudinal vibration Difficult to match frequencies. Therefore, in the stator having the above configuration, if the torsional vibration is driven resonantly, the longitudinal vibration becomes a non-resonant drive, and conversely, if the longitudinal vibration is driven resonantly, the torsional vibration becomes a non-resonant drive.

周知の如く、非共振駆動は共振駆動と比較して、同一電
力で駆動する場合には、極端に得られる振幅が小さくな
ってしまう。その結果、上記構成のステータの端面に誘
起される楕円振動の振幅は縦方向あるは捩り方向いずれ
か一方の振幅が極端に小さくなってしまうために効率の
高いモータを実現することは不可能である。
As is well known, in comparison with resonant drive, non-resonant drive provides an extremely small amplitude when driven with the same power. As a result, the amplitude of the elliptical vibration induced on the end face of the stator with the above configuration becomes extremely small in either the longitudinal or torsional direction, making it impossible to realize a highly efficient motor. be.

上記構成のステータにおいて、捩り振動励振用圧電素子
と縦振動励振用圧電素子とに互いに異った周波数の交流
電圧を印加して、2種類の振動を共振駆動することも可
能ではあるが、この場合には共振周波数が異なるために
ステータの端面に規則的に楕円振動を誘起することがで
きないため、ロータを安定して回転させることは不可能
である。
In the stator having the above configuration, it is possible to apply alternating current voltages of different frequencies to the piezoelectric element for torsional vibration excitation and the piezoelectric element for longitudinal vibration excitation to resonantly drive the two types of vibration. In some cases, it is not possible to regularly induce elliptical vibrations on the end face of the stator due to different resonance frequencies, and it is therefore impossible to stably rotate the rotor.

(問題を解決するための手段) 本発明に従った超音波モータの構成を第1図に示す。捩
り振動圧電セラミック素子1と縦振動励振用圧電セラミ
ック素子2を二つの円柱あるいは円筒状金属ブロック3
と4で挾み、ボルト5を用いて強固に締めつけて、ステ
ータ主要部を構成する。このときステータ主要部分だけ
を考えたとき、縦振動の半波長共振周波数は、矢張り、
捩り振動の半波長共振周波数の約1.6倍となっている
。縦と捩りの共振周波数がこのように大幅に違っていれ
ば、高性能の超音波モータを実現することが著しく困難
になるので、縦と捩りの共振周波数を十分近づけるため
に金属ブロックの下方に、たとえばベアリングあるいは
小さな摩擦係数を有する摺動材13などを介して、円筒
あるいは円柱状の金属あるいはセラミックスなどの高剛
性材からなるブロックで構成したサブステータ6を設け
る。また、上記ステータの端面(金属ブロック3の端面
)に、耐摩耗材7を介して、ロータ8をベアリング9、
ナツト10、台座11、コイルばね12を用いて圧接し
、超音波モータを構成する。この際、ロータ8、ベアリ
ング9、耐摩耗材7、ナツト10、ボルト5、サブステ
ータ6及びロータのステータに対する圧接力は超音波モ
ータ全体の縦共振周波数が捩り振動の半波長共振周波数
と一致するように選ぶ。
(Means for Solving the Problem) The configuration of an ultrasonic motor according to the present invention is shown in FIG. A torsional vibration piezoelectric ceramic element 1 and a longitudinal vibration excitation piezoelectric ceramic element 2 are mounted on two cylindrical or cylindrical metal blocks 3.
and 4, and tighten firmly using bolts 5 to form the main part of the stator. At this time, when considering only the main part of the stator, the half-wavelength resonance frequency of longitudinal vibration is
This is approximately 1.6 times the half-wavelength resonance frequency of torsional vibration. If the longitudinal and torsional resonance frequencies were to differ significantly, it would be extremely difficult to realize a high-performance ultrasonic motor. For example, a substator 6 made of a cylindrical or cylindrical block made of a highly rigid material such as metal or ceramics is provided via a bearing or a sliding material 13 having a small coefficient of friction. Further, the rotor 8 is attached to the end face of the stator (the end face of the metal block 3) via a wear-resistant material 7, and a bearing 9,
A nut 10, a pedestal 11, and a coil spring 12 are pressed together to form an ultrasonic motor. At this time, the rotor 8, the bearing 9, the wear-resistant material 7, the nut 10, the bolt 5, the substator 6, and the pressure force of the rotor against the stator are adjusted so that the longitudinal resonance frequency of the entire ultrasonic motor matches the half-wavelength resonance frequency of torsional vibration. choose.

上記構成の超音波モータにおいて、捩り振動励振用圧電
セラミックスと縦振動励振用圧電セラミックスとに独立
に交流電圧を印加し、この周波数を共振周波数とし、か
つ90°の位相差を与えるとロータは高効率で回転する
In the ultrasonic motor with the above configuration, if an AC voltage is applied independently to the piezoelectric ceramics for torsional vibration excitation and the piezoelectric ceramics for longitudinal vibration excitation, this frequency is set as the resonance frequency, and a phase difference of 90° is applied, the rotor will move at high speed. Rotate with efficiency.

(作用) 本発明の超音波モータを構成するステータは、単体では
捩り振動半波長共振周波数と縦振動半波長共振周波数は
異なるが、ベアリングあるいは摺動材を介して、サブス
テータを設け、前記ステータ部分とサブステータ部分を
ボルトで強固に締めつけて一体化することにより、捩り
振動に関する共振周波数は、サブステータ部分を設けて
もほとんど変化しないのに対して、縦共振周波数は大幅
に低下し、捩り共振周波数に近づく。さらにロータを圧
接すると、同様に、捩り共振周波数は殆んど変化しない
のに対して、縦共振周波数はロータの厚さ、質量の関数
となって、さらに低下する。この際、ロータとステータ
との締め付は圧を調整することにより、二つの共振周波
数を高精度で一致させることができる。従って、捩り振
動と縦振動とを同一周波数で共振駆動することができる
(Function) Although the stator constituting the ultrasonic motor of the present invention has a torsional vibration half-wavelength resonance frequency and a longitudinal vibration half-wavelength resonance frequency different when used alone, a substator is provided via a bearing or a sliding material, and the stator portion By firmly tightening and integrating the substator and substator parts with bolts, the resonant frequency related to torsional vibration hardly changes even if the substator part is installed, but the longitudinal resonant frequency is significantly reduced and the torsional resonant frequency is reduced. Get closer. When the rotor is further pressed against the rotor, similarly, while the torsional resonance frequency hardly changes, the longitudinal resonance frequency becomes a function of the thickness and mass of the rotor and further decreases. At this time, by adjusting the pressure when tightening the rotor and stator, it is possible to match the two resonance frequencies with high precision. Therefore, torsional vibration and longitudinal vibration can be driven resonantly at the same frequency.

以上述べた如く、本発明による超音波モータ(大捩り共
振と縦共振とを同一周波数で駆動するものであり、高効
率のモータが実現できる。
As described above, the ultrasonic motor according to the present invention (which drives large torsional resonance and longitudinal resonance at the same frequency) can realize a highly efficient motor.

(実施例) 以下、本発明の実施例について図面を参照しながら説明
する。第1図は、本発明の一実施例を示す断面図で、原
理と構成は先に述べた通りである。捩り振動励振用圧電
セラミック素子1は、外径20mm、内径8mm、厚さ
0.5mmの円周方向に分極した圧電セラミック板を8
枚積層して構成されている。各セラミック板の表裏面は
メタライズされ、間に金属薄板を挟んで、極性が互いに
逆相になるように積層されている。金属薄板は外部で電
気的に並列接続されている。一方、縦振動励振用圧電セ
ラミック素子2は、厚み方向に分極した圧電セラミック
板(外径20mm、内径8mm、厚さ0.5mm)を1
2枚積層したもので、構成は上記捩り振動励振用圧電セ
ラミック素子1に準じる。金属ブロック3,4.サブス
テータ6、台座9はすべてスチレンススチールを用いた
。また、静的、あるいは動的に大きな応力の加わるボル
ト5、ナツト14.10の部分は、高張力鋼、ロータ部
分8には軽量で剛性の大きなアルミナセラミックスを用
いた。ロータ8は、ベアリング9、台座11、コイルば
ね12、ボルト5、ナツト10を用いて、ステータの金
属ブロック3に圧接されている。16.17.18は、
圧電素子1,2をそれぞれ独立に駆動可能とするために
、挿入された絶縁板でアルミナセラミックス製で板厚は
0.4mmである。7は有機材料でできた耐摩耗材であ
る。15は皿ばねで、温度変化による圧電素子1,2に
加わるバイアス応力の変化を極力少なくするために設け
られたものである。
(Example) Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention, and the principle and structure are as described above. The piezoelectric ceramic element 1 for torsional vibration excitation consists of 8 piezoelectric ceramic plates polarized in the circumferential direction, each having an outer diameter of 20 mm, an inner diameter of 8 mm, and a thickness of 0.5 mm.
It is constructed by laminating layers. The front and back surfaces of each ceramic plate are metallized, and the ceramic plates are laminated with a thin metal plate sandwiched between them so that the polarities are opposite to each other. The metal sheets are electrically connected in parallel externally. On the other hand, the piezoelectric ceramic element 2 for longitudinal vibration excitation is made of one piezoelectric ceramic plate (outer diameter 20 mm, inner diameter 8 mm, thickness 0.5 mm) polarized in the thickness direction.
The piezoelectric ceramic element 1 is made by laminating two layers, and the structure is similar to the piezoelectric ceramic element 1 for torsional vibration excitation described above. Metal blocks 3, 4. The substator 6 and the pedestal 9 were all made of styrene steel. Further, the parts of the bolts 5 and nuts 14 and 10 to which large static or dynamic stresses are applied are made of high-tensile steel, and the rotor part 8 is made of lightweight and highly rigid alumina ceramics. The rotor 8 is pressed against the metal block 3 of the stator using a bearing 9, a pedestal 11, a coil spring 12, a bolt 5, and a nut 10. 16.17.18 is
In order to enable the piezoelectric elements 1 and 2 to be driven independently, the inserted insulating plate is made of alumina ceramics and has a thickness of 0.4 mm. 7 is a wear-resistant material made of organic material. Reference numeral 15 denotes a disc spring, which is provided to minimize changes in bias stress applied to the piezoelectric elements 1 and 2 due to temperature changes.

金属ブロック3から金属ブロック4までのステータ本体
の長さは36mmであり、ステータ本体をボルト締めし
たときの捩りの共振周波数は26.7kHz縦の共振周
波数は38.3kHzであった。さらに、ベアリング1
3を介してサブステータ6を付加して、皿ばね15とと
もに圧電素子1,2に120kg/cm2の圧縮バイア
ス応力が加わるようにボルト5、ナツト14で締めつけ
た結果、捩りの共振周波数の変化は200Hz程度であ
ったのに対して、縦振動の共振周波数は28kHzとな
った。次に、厚み3mmのロータ8を耐摩耗材7を介し
て、ステータにコイルばね12等を用いて圧接し、ステ
ータとロータ間の圧接力を種々変えることにより、縦共
振周波数と捩り共振周波数を完全に一致させることを試
みた。その結果、圧接力を大きくすると縦共振周波数は
上昇することがわかり、圧接力45kgfで二つの共振
周波数は26.2kHzで一致させることができた。
The length of the stator body from metal block 3 to metal block 4 was 36 mm, and when the stator body was bolted, the torsional resonance frequency was 26.7 kHz and the longitudinal resonance frequency was 38.3 kHz. Furthermore, bearing 1
The substator 6 is added via the bolt 5 and the nut 14 so that a compressive bias stress of 120 kg/cm2 is applied to the piezoelectric elements 1 and 2 together with the disc spring 15. As a result, the change in the torsional resonance frequency is 200 Hz. However, the resonance frequency of longitudinal vibration was 28 kHz. Next, the rotor 8 with a thickness of 3 mm is pressed against the stator via the wear-resistant material 7 using a coil spring 12, etc., and the longitudinal resonance frequency and torsional resonance frequency are completely adjusted by varying the pressure contact force between the stator and the rotor. I tried to match it. As a result, it was found that the longitudinal resonance frequency increased as the pressure contact force was increased, and it was possible to match the two resonance frequencies at 26.2 kHz with a pressure contact force of 45 kgf.

さらに、ロータの厚さを種々変えて、同一電力でモータ
の駆動力を測定したが、ロータの厚みが厚くなるほど逆
にトルク及び回転速度とも減少した。即ち、本構成の超
音波モータでは、ロータの厚みは、ロータの剛性さえ保
つことができれば、薄くするほど高効率のモータが得ら
れると言える。これは、ロータが薄いほど、ステータと
ロータの界面が縦振動の自由端に近くなり、大きな振幅
が確保されるからである。
Furthermore, the driving force of the motor was measured with the same electric power while varying the thickness of the rotor, but as the thickness of the rotor became thicker, the torque and rotation speed decreased. That is, in the ultrasonic motor having this configuration, it can be said that the thinner the rotor is, the more efficient the motor can be obtained, as long as the rigidity of the rotor can be maintained. This is because the thinner the rotor, the closer the interface between the stator and rotor is to the free end of longitudinal vibration, ensuring a larger amplitude.

第2図は、本実施例のモータの特性を示す図である。捩
り振動及び縦振動励振用圧電セラミック素子には、位相
が90°異なる周波数26.2kHz、電圧100Vの
正弦波が印加された。その結果、無負荷回転速度28O
rpm、最大トルク4.Okgf−cmという従来にな
い高性能を実現できた。
FIG. 2 is a diagram showing the characteristics of the motor of this example. A sine wave having a frequency of 26.2 kHz and a voltage of 100 V and having a phase difference of 90° was applied to the piezoelectric ceramic element for exciting torsional vibration and longitudinal vibration. As a result, the no-load rotation speed was 28O
rpm, maximum torque4. We were able to achieve unprecedented high performance of Okgf-cm.

(発明の効果) 本発明は上述のように、ステータ本体のみではなく、サ
ブステータを含めたモータ全体で共振周波数が決まる縦
共振と捩り共振を利用したものであり、かつ縦振動の共
振周波数のみロータとステータとの圧接力で変化する構
成となっているため、容易に二つの共振周波数を一致さ
せることができる。従って、高効率で実用性の高い超音
波モータが実現できる。
(Effects of the Invention) As described above, the present invention utilizes longitudinal resonance and torsional resonance, which determine the resonance frequency not only in the stator body but also in the entire motor including the substator, and only the resonance frequency of the longitudinal vibration is determined by the rotor. Since the configuration changes depending on the pressure contact force between the stator and the stator, it is possible to easily match the two resonance frequencies. Therefore, a highly efficient and highly practical ultrasonic motor can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のモータの構成を示す図。第2図は、
本発明に従った実施例モータの特性を示す図。 図中、1は捩り振動励振用圧電セラミック素子、2は縦
振動励振用圧電セラミック素子、3,4は金属ブロック
、5はボルト6はサブステータ、7は耐摩耗材、8はロ
ータ、9,13はベアリング、10.14はナツト、1
1は台座、12はコイルばね、15は皿ばね、16.1
7.18は絶縁板である。
FIG. 1 is a diagram showing the configuration of a motor of the present invention. Figure 2 shows
FIG. 3 is a diagram showing characteristics of an example motor according to the present invention. In the figure, 1 is a piezoelectric ceramic element for torsional vibration excitation, 2 is a piezoelectric ceramic element for longitudinal vibration excitation, 3 and 4 are metal blocks, 5 is a bolt 6 is a substator, 7 is a wear-resistant material, 8 is a rotor, 9 and 13 are Bearing, 10.14 is nut, 1
1 is a pedestal, 12 is a coil spring, 15 is a disc spring, 16.1
7.18 is an insulating plate.

Claims (2)

【特許請求の範囲】[Claims]  1.縦−捩り複合圧電振振動子をステータとし、これ
にロータを圧接して構成する超音波モータにおいて、ス
テータ本体を構成する縦−捩り複合振動子の片端面に、
所定の摺動部を介してサブステータを設けたことを特徴
とする超音波モータ。
1. In an ultrasonic motor configured by using a vertical-torsional composite piezoelectric vibrator as a stator and press-fitting a rotor to the stator, one end surface of the vertical-torsional composite vibrator constituting the stator body,
An ultrasonic motor characterized in that a substator is provided via a predetermined sliding part.
 2.特許請求の範囲第1項の超音波モータの駆動方法
において、サブステータを設けることにより捩りと縦の
2つの共振周波数を近づけ、さらにステータにロータを
圧接し、かつ圧接力を調整し、2つの共振周波数を一致
させることを特徴とした超音波モータの駆動方法。
2. In the method for driving an ultrasonic motor according to claim 1, by providing a sub-stator, two resonance frequencies, torsional and longitudinal, are brought close to each other, and further, the rotor is pressed against the stator, and the pressure contact force is adjusted, so that the two resonance frequencies are reduced. An ultrasonic motor driving method characterized by matching frequencies.
JP63201616A 1988-08-11 1988-08-11 Ultrasonic motor and its driving method Expired - Lifetime JP2615892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63201616A JP2615892B2 (en) 1988-08-11 1988-08-11 Ultrasonic motor and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63201616A JP2615892B2 (en) 1988-08-11 1988-08-11 Ultrasonic motor and its driving method

Publications (2)

Publication Number Publication Date
JPH0251378A true JPH0251378A (en) 1990-02-21
JP2615892B2 JP2615892B2 (en) 1997-06-04

Family

ID=16444014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63201616A Expired - Lifetime JP2615892B2 (en) 1988-08-11 1988-08-11 Ultrasonic motor and its driving method

Country Status (1)

Country Link
JP (1) JP2615892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107162A (en) * 1990-02-28 1992-04-21 Brother Kogyo Kabushiki Kaisha Ultrasonic motor using rectangular wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107162A (en) * 1990-02-28 1992-04-21 Brother Kogyo Kabushiki Kaisha Ultrasonic motor using rectangular wave

Also Published As

Publication number Publication date
JP2615892B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US4933590A (en) Ultrasonic motor
JPS62247870A (en) Method of controlling drive of ultrasonic vibrator
US5001382A (en) Stepping motor and a method of driving the same
JPH0251378A (en) Ultrasonic motor and driving method thereof
JPH09117168A (en) Supersonic motor
JP2703927B2 (en) Driving method of ultrasonic motor
JP2658233B2 (en) Ultrasonic motor and its driving method
JPH02184274A (en) Ultrasonic motor and driving thereof
JP2615953B2 (en) Ultrasonic motor and its driving method
JP2814583B2 (en) Ultrasonic motor
JPH08242593A (en) Vibrating actuator
JP2682035B2 (en) Ultrasonic motor
JPH02228275A (en) Ultrasonic motor and method of drive thereof
JP2870022B2 (en) Ultrasonic motor
JP2638943B2 (en) Ultrasonic motor and driving method thereof
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JP3000591B2 (en) Ultrasonic motor
JPH07256207A (en) Ultrasonic oscillator
JPH0681523B2 (en) Vibration wave motor
JPH0522966A (en) Ultrasonic motor
JPH0251377A (en) Ultrasonic motor
JP2897259B2 (en) Ultrasonic motor
JPH03150080A (en) Ultrasonic motor
JPH01238477A (en) Ultrasonic motor
JPH08228494A (en) Ultrasonic oscillator and ultrasonic motor