Nothing Special   »   [go: up one dir, main page]

JPH0248597B2 - - Google Patents

Info

Publication number
JPH0248597B2
JPH0248597B2 JP56055856A JP5585681A JPH0248597B2 JP H0248597 B2 JPH0248597 B2 JP H0248597B2 JP 56055856 A JP56055856 A JP 56055856A JP 5585681 A JP5585681 A JP 5585681A JP H0248597 B2 JPH0248597 B2 JP H0248597B2
Authority
JP
Japan
Prior art keywords
activated carbon
adsorption
naphtha
amount
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56055856A
Other languages
Japanese (ja)
Other versions
JPS57170988A (en
Inventor
Takayoshi Ookubo
Hideo Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP5585681A priority Critical patent/JPS57170988A/en
Publication of JPS57170988A publication Critical patent/JPS57170988A/en
Publication of JPH0248597B2 publication Critical patent/JPH0248597B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、石油留分中のAsを除去する方法に
関するものである。 本明細書における石油留分とは、直留ナフサ、
灯油、軽油、減圧留出物、エチレンプラント、コ
ーヒー、ビスブレーカーからの熱分解ガソリン、
接触分解装置で生成されたナフサ、リサイクル油
等から原油から留出された留分および熱処理、接
触分解などによつて生成された留分およびコンデ
ンセート(NGL)のように比較的軽質な原油相
当油等幅広い変化水素油の総称とする。またAs
とは、As元素を一つの構成元素とする化合物の
総称とする。 原油にはその産地によつて量は異るが、Asが
含有されている場合が多く、Asを含有した原油
を原料とした石油留分中には、微量のAsが含有
される。石油留分より石油化学原料または石油化
学製品を製造する工程においてAsの含有量にも
よるが、Asは触媒に対して毒性を示し或は熱分
解の際のコーキングを促進する等各種工程に支障
を及ぼす。例えば直留ナフサの熱分解副生ガソリ
ン又は灯軽油の熱分解副生ガソリンより芳香族化
合物のベンゼン、トルエンおよびキシレンを製造
する工程では、上記分解ガソリン中に含まれるジ
オレフインをオレフインに変える水添処理が行な
われるが、この際使用されるパラジウム触媒や
C2,C3アセチレンの水添触媒(pd,pt)等に対
して烈しい触媒毒として作用し、触媒活性を急激
に低下させる。Asは一般に触媒に対して毒性を
有するが、特に上記のように水素化、脱水素等に
用いられるpt,pd等を構成成分とする貴金属触
媒に対し微量であつても激しい毒性を示し、これ
ら触媒の活性を著しく低下せしめる。したがつ
て、上記貴金属触媒を用いる工程に使用する原料
石油留分は予め含有するAsを所定量以下に除去
しておかなければならない。 このため、従来、種々なAs除去法が提案実施
されている。例えば、接触的水素添加分解によつ
て炭化水素中のSを除去する水素化脱硫によつて
Sと共にAsを除去する方法は、Sを殆ど含有し
ない石油留分に適用することは、設備費、運転費
が嵩む不都合を生ずる。また塩基性化合物との接
触方法、銅及び起電力が銅より低い金属の塩との
接触方法、3個の付加した基と1個の不対電子を
含有する窒素化合物との接触方法は、いずれも脱
As能力が低く多量の脱As剤が必要であり、かつ
これら薬剤は汎用品でなく高価となるためコスト
上の問題を生ずる。さらに酸を含浸したアルミナ
等を担体とした貴金属触媒との接触法は、分解ガ
ソリンの様な反応性の高い石油留分を処理する場
合オレフイン、ジオレフインの重合および芳香族
留分との反応等トラブルを発生する。また亜炭系
活性炭との接触方法は、石油留分中のAs濃度を
許容限度以下とするには、この液中As濃度に平
衡な吸着量が少なく能率が悪い。 有機過酸化物等の酸化剤を用いて油中のAsを
直接酸化して、重質化させて蒸留分離する方法で
は、油中の不飽和炭化水素類が重合して機器の汚
れや閉そく等のトラブルを発生させたり、プロセ
ス内に含酸素化合物を入れることにより、安全上
問題点がある。 以上のように従来の脱As方法にはそれぞれ欠
点があり、容易かつ費用のかからない脱As技術
の出現が強く望まれている。 本発明者は、上記の事情に鑑み、鋭意研究を行
なつた結果、特殊な活性炭を用いて、石油留分を
処理すれば含有されているAsは触媒毒とならな
い程度まで十分除去さ、またAsを吸着してAsの
除去能力が劣化した活性炭を最初親水性、親油性
を共に有する溶剤で洗浄し、さらに水で洗浄する
ことによつて、容易に再生されることを知見し
た。本発明は上記知見に基づいて完成されたもの
で、石油留分中のAsを容易かつ安価に除去する
方法を提供することを目的とするものである。 以下本発明を詳細に説明する。 石油留分中のAs化合物は、留分によつて多少
異るが、通常は有機化合物となつて含有されてお
りその量は微量である。本発明者は、上記微量な
Asを吸着によつて除去すべく種々実験を行なつ
た結果、比表面積:1000〜1800m2/g、平均孔
径:25〜40Å、細孔容積:1.0〜1.5cm3/gの活性
炭がAsの吸着用として極めて優れていることを
確認した。上記活性炭に対し、通常の活性炭の性
状は、比表面積:700〜1800m2/g、平均孔径:
12〜40Å、細孔容積:0.5〜1.5cm3/gである。一
般に活性炭は、平均孔径が大きいと、比表面積が
小さく、細孔容積は大きい。しかし、本発明に使
用する活性炭は、平均孔径が大きいにもかかわら
ず、比表面積、細孔容積が共に大きい特殊な性状
を有する。このため、Asのような大分子をその
ミクロボア内に取入れることができ、かつ比表面
積および細孔容積が大きいので、大量のAs分子
が吸着されるものと思料する。 また、通常各種吸着処理に使用された活性炭
は、それぞれに適した再生処理が行なわれ再使用
される。しかしAsを吸着した活性炭の再生方法
は、末だ知られていない。 本発明者は、石油留分中のAsを吸着除去して、
除去能力の低下した活性炭の再生方法を種々検討
した。その結果、Asを吸着して吸着能力の劣化
した活性炭を、親水性、親油性を共に有し、水に
も油にも共に相当量溶解する溶剤によつて洗浄
し、さらに水によつて洗浄することによつて吸着
しているAsの大部分が抽出除去され、活性炭の
As吸着能力が容易に再生されることがわかつた。 上記親水性、親油性を有する溶剤とは、アセト
ン、アルコール類、(メタノール、エタノール、
イソプロピルアルコール等)アルデヒド類(アセ
トアルデヒド)、アミン類(エタノールアミン等)
等の単独又は混合液および下記の水を単独又は混
合液に一部混合したものである。また上記洗浄を
行なう水は、水又は、H2O2水溶液、酸性水溶液、
アルカリ性水溶液の単独または混合液を意味す
る。 本発明の方法は、上記性状の活性炭を用いるこ
とにより、石油留分中のAsを何等触媒毒となら
ない程度に容易に除去でき、かつ劣化した活性炭
を、溶剤洗浄、水洗浄を順次行なうことによつ
て、殆どもとの状態に再生できる方法である。 吸着剤の再生条件は、(イ)再生溶剤量:活性炭容
量の0.5〜5倍量、(ロ)再生水量:活性炭容量の1
〜5倍量、(ハ)温度:常温〜沸点、(ニ)再生溶剤(水
溶液)の濃度:30〜100%、(好ましくは70〜90
%)の範囲である。 次に実施例を示して本発明の方法をさらに詳し
く説明する。 実施例においては、石油留分としてナフサを用
いた。また、Asの吸着能力を示すAs濃度比、再
生能力を示すAs脱離率および吸着と再生の繰返
しによつて吸着能力が維持出来ているかどうかの
指標である繰返し吸着率は次の式によつて示され
る。 As濃度率=活性炭処理後のナフサ中のAs濃度(wt
ppb)/活性炭処理前のナフサ中のAs濃度(wtppb)×10
0(%) As脱難率=活性炭から洗浄液へ移行するAsの脱離
量(g)/ナフサから活性炭へのAsの吸着量(g)×10
0(%) 繰返し吸着率=今回のAs吸着量/前回のAs吸着量×10
0(%) また、操作は常圧、常温によつて行なつた。 〔実施例 1〕 各種吸着剤をAs:206wtppb含有するナフサ
100c.c.にナフサ/吸着剤:5c.c./c.c.の割合で添加
してAsを吸着せしめた、結果の代表例を第1表
に示す。
The present invention relates to a method for removing As from petroleum fractions. The petroleum fraction in this specification refers to straight-run naphtha,
Kerosene, gas oil, vacuum distillate, pyrolysis gasoline from ethylene plants, coffee, visbreakers,
Relatively light crude oil equivalents such as naphtha produced in catalytic cracking equipment, recycled oil, etc., distilled from crude oil, fractions produced by heat treatment, catalytic cracking, etc., and condensate (NGL) This is a general term for a wide range of hydrogen oils. Also As
is a general term for compounds containing As as one constituent element. Crude oil often contains As, although the amount varies depending on the region of production, and petroleum fractions made from crude oil containing As contain trace amounts of As. In the process of manufacturing petrochemical raw materials or petrochemical products from petroleum fractions, depending on the content of As, As can be toxic to catalysts or cause problems in various processes such as promoting coking during thermal decomposition. effect. For example, in the process of producing aromatic compounds benzene, toluene, and xylene from the gasoline by-products of the thermal decomposition of straight-run naphtha or the gasoline by-products of the thermal decomposition of kerosene, hydrogenation treatment converts the diolefins contained in the cracked gasoline into olefins. is carried out, but the palladium catalyst and
It acts as a severe catalyst poison for C 2 and C 3 acetylene hydrogenation catalysts (PD, PT), etc., and rapidly reduces catalytic activity. As is generally toxic to catalysts, but in particular, as mentioned above, it is extremely toxic to precious metal catalysts containing pt, pd, etc. used for hydrogenation, dehydrogenation, etc. even in minute amounts. Significantly reduces catalyst activity. Therefore, the As contained in the raw petroleum fraction used in the process using the noble metal catalyst must be removed in advance to a predetermined amount or less. For this reason, various As removal methods have been proposed and implemented in the past. For example, the method of removing S in hydrocarbons by catalytic hydrocracking and removing As together with S by hydrodesulfurization is difficult to apply to petroleum fractions that contain almost no S due to equipment costs, This causes the inconvenience of increased operating costs. In addition, the contact method with a basic compound, the contact method with copper and a salt of a metal whose electromotive force is lower than that of copper, and the contact method with a nitrogen compound containing three added groups and one unpaired electron are all different. Get rid of it too
The As capacity is low and a large amount of As removal agent is required, and these agents are not general-purpose products and are expensive, resulting in cost problems. Furthermore, the contact method with a precious metal catalyst using acid-impregnated alumina as a carrier may cause problems such as polymerization of olefins and diolefins and reactions with aromatic fractions when processing highly reactive petroleum fractions such as cracked gasoline. occurs. In addition, the method of contacting with lignite-based activated carbon is inefficient in order to reduce the As concentration in the petroleum fraction to below the permissible limit because the adsorption amount is small in equilibrium with the As concentration in the liquid. In the method of directly oxidizing As in oil using an oxidizing agent such as an organic peroxide, making it heavier, and separating it by distillation, the unsaturated hydrocarbons in the oil polymerize, resulting in equipment stains and blockages, etc. There are safety issues due to the introduction of oxygen-containing compounds into the process. As described above, each of the conventional As removal methods has its drawbacks, and there is a strong desire for the emergence of an easy and inexpensive As removal technology. In view of the above circumstances, the inventors of the present invention have conducted extensive research and found that by treating petroleum fractions using special activated carbon, the As contained in the petroleum fraction can be sufficiently removed to the extent that it does not poison the catalyst. It has been found that activated carbon, whose ability to remove As has deteriorated due to adsorption of As, can be easily regenerated by first washing it with a solvent that has both hydrophilicity and lipophilicity, and then washing it with water. The present invention was completed based on the above findings, and an object of the present invention is to provide a method for easily and inexpensively removing As from petroleum fractions. The present invention will be explained in detail below. Although As compounds in petroleum fractions vary somewhat depending on the fraction, they are usually contained as organic compounds and the amount thereof is very small. The present inventor has discovered that the above trace amount
As a result of various experiments to remove As by adsorption, it was found that activated carbon with a specific surface area of 1000 to 1800 m 2 /g, average pore diameter of 25 to 40 Å, and pore volume of 1.0 to 1.5 cm 3 /g can absorb As. It was confirmed that it is extremely excellent for adsorption. In contrast to the above activated carbon, the properties of normal activated carbon are: specific surface area: 700 to 1800 m 2 /g, average pore diameter:
12-40 Å, pore volume: 0.5-1.5 cm 3 /g. Generally, activated carbon has a large average pore diameter, a small specific surface area, and a large pore volume. However, although the activated carbon used in the present invention has a large average pore diameter, it has a special property of having a large specific surface area and a large pore volume. Therefore, large molecules such as As can be taken into the micropores, and since the specific surface area and pore volume are large, it is thought that a large amount of As molecules can be adsorbed. Activated carbon used for various adsorption treatments is usually reused after being subjected to appropriate regeneration treatments. However, there is still no known method for regenerating activated carbon that has adsorbed As. The present inventor adsorbed and removed As in petroleum fractions,
We investigated various methods for regenerating activated carbon whose removal ability has decreased. As a result, activated carbon, whose adsorption capacity had deteriorated due to adsorption of As, was washed with a solvent that has both hydrophilic and lipophilic properties and dissolves in considerable amounts in both water and oil, and then washed with water. By doing this, most of the adsorbed As is extracted and removed, and the activated carbon
It was found that the As adsorption capacity was easily regenerated. The above hydrophilic and lipophilic solvents include acetone, alcohols, (methanol, ethanol,
isopropyl alcohol, etc.) aldehydes (acetaldehyde), amines (ethanolamine, etc.)
These are either used alone or as a mixture, and the following water is used alone or as a mixture. The water used for the above-mentioned cleaning may be water, H 2 O 2 aqueous solution, acidic aqueous solution,
It means an alkaline aqueous solution alone or a mixture. The method of the present invention uses activated carbon with the above properties to easily remove As in petroleum fractions to the extent that it does not poison the catalyst, and the deteriorated activated carbon is sequentially washed with solvent and water. Therefore, it is a method that can restore almost the original state. The regeneration conditions for the adsorbent are (a) Regeneration solvent amount: 0.5 to 5 times the activated carbon capacity, (b) Regeneration water amount: 1 of the activated carbon capacity.
~5 times the amount, (c) Temperature: room temperature to boiling point, (d) Concentration of regeneration solvent (aqueous solution): 30 to 100%, (preferably 70 to 90%)
%) range. Next, the method of the present invention will be explained in more detail with reference to Examples. In the examples, naphtha was used as the petroleum fraction. In addition, the As concentration ratio, which indicates As adsorption capacity, the As desorption rate, which indicates regeneration capacity, and the repeated adsorption rate, which indicates whether or not adsorption capacity can be maintained through repeated adsorption and regeneration, are calculated using the following formula. will be shown. As concentration rate = As concentration in naphtha after activated carbon treatment (wt
ppb) / As concentration in naphtha before activated carbon treatment (wtppb) x 10
0 (%) As removal rate = Amount of As removed from activated carbon to cleaning solution (g) / Amount of As adsorbed from naphtha to activated carbon (g) x 10
0 (%) Repeated adsorption rate = current amount of As adsorption/previous amount of As adsorption x 10
0 (%) Further, the operation was performed at normal pressure and room temperature. [Example 1] Naphtha containing various adsorbents with As: 206wtppb
Table 1 shows a representative example of the results obtained when As was adsorbed by adding naphtha/adsorbent: 5 c.c./cc to 100 c.c.

〔実施例 2〕[Example 2]

比表面積、平均孔径、細孔容積の異なる活性炭
を用い、As:539wtppb含有するナフサ112c.c.に
活性炭をそれぞれ4g添加し20分間ゆるく撹拌し
てAsを吸着せしめた。結果を第2表に示す。
Using activated carbons with different specific surface areas, average pore diameters, and pore volumes, 4 g of each activated carbon was added to 112 c.c. of naphtha containing 539 wtppb of As, and the mixture was gently stirred for 20 minutes to adsorb As. The results are shown in Table 2.

【表】【table】

〔実施例 3〕[Example 3]

実施例2のNo.4の活性炭5gを298wtppbのAs
を含有するナフサ250c.c.に添加し、30分間撹拌し
てAsを吸着し、ナフサ中に吸着されずに残るAs
濃度を測定した。 次にAsを吸着した活性炭(5g)を所定量の
各種溶剤で30分撹拌洗浄し、さらに水45c.c.によつ
て30分撹拌洗浄してAsを脱離せしめ、それぞれ
の洗浄によるAsの脱離量を測定した。なお、活
性炭を洗浄した溶剤および水にはAsは含有され
ていない。結果を第3表に示す。
5g of activated carbon No. 4 of Example 2 was added to 298wtppb of As.
is added to 250 c.c. of naphtha containing Naphtha and stirred for 30 minutes to adsorb As.
The concentration was measured. Next, the activated carbon (5 g) that had adsorbed As was stirred and washed with a predetermined amount of various solvents for 30 minutes, and then stirred and washed with 45 c.c. of water for 30 minutes to remove As. The amount of desorption was measured. Note that the solvent and water used to wash the activated carbon do not contain As. The results are shown in Table 3.

【表】 適当な溶剤を選べば溶剤、水による二段洗浄に
よつて、活性炭に吸着されたAsの殆どを除去す
ることができる。 〔実施例 4〕 実施例3に用いた活性炭1(170g)を内径
3.75cm、長さ100cmの管に充填し、上方より下方
に向けて、Asを含有したナフサをSV=3.3で16時
間通し、次いで下方より上方に向けて70%のアセ
トン水溶液をSV=1.6で2時間通し、さらに水を
SV=1.4で2時間通して活性炭を再生した。この
再生活性炭に再びAsを含有したナフサを上より
SV=3.3で16時間通した。このようにAs吸着と活
性炭再生を交互に繰返えして吸着能力の変化を調
べた。結果を第4表に示す。
[Table] If an appropriate solvent is selected, most of the As adsorbed on activated carbon can be removed by two-stage cleaning with solvent and water. [Example 4] Activated carbon 1 (170 g) used in Example 3 was
A 3.75 cm, 100 cm long tube was filled, and naphtha containing As was passed from the top to the bottom at SV = 3.3 for 16 hours, then 70% acetone aqueous solution was passed from the bottom to the top at SV = 1.6. Add more water for 2 hours
The activated carbon was regenerated for 2 hours at SV=1.4. Naphtha containing As is added to this recycled activated carbon again from above.
It ran for 16 hours at SV=3.3. In this way, As adsorption and activated carbon regeneration were repeated alternately to examine changes in adsorption capacity. The results are shown in Table 4.

【表】 表より明かなように十分な再生が可能であり、
反覆してAsの吸着除去ができる。また、Asを除
去したナフサは、何等コンタミを受けていないこ
とを確認した。なお、他の石油留分として灯油を
用い上記流通によるAsを除去を行ないほぼ同様
の結果を得た。
[Table] As is clear from the table, sufficient playback is possible.
As can be adsorbed and removed by repeating the process. It was also confirmed that the naphtha from which As had been removed was not contaminated in any way. In addition, almost the same results were obtained by using kerosene as another petroleum fraction to remove As caused by the above distribution.

Claims (1)

【特許請求の範囲】[Claims] 1 石油留分中のAsを、比表面積:1000〜1800
m2/g、平均孔径:25〜40Å、細孔容積:1.0〜
1.5cm3/gを有する活性炭により吸着除去し、As
を吸着して除去能力の低下した活性炭を親水性、
親油性を共に有する溶剤によつて洗浄した後さら
に水で洗浄して再生し、上記As吸着除去用の活
性炭として繰返えし使用することを特徴とした石
油留分のAsの除去方法。
1 As in petroleum fraction, specific surface area: 1000-1800
m2 /g, average pore diameter: 25~40Å, pore volume: 1.0~
The As
Hydrophilic activated carbon, which has a reduced ability to adsorb and remove
A method for removing As from petroleum fractions, which comprises washing with a solvent having lipophilic properties and then washing with water to regenerate and repeatedly use the activated carbon for adsorption and removal of As.
JP5585681A 1981-04-14 1981-04-14 Removal of arsenic (as) in petroleum fraction Granted JPS57170988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5585681A JPS57170988A (en) 1981-04-14 1981-04-14 Removal of arsenic (as) in petroleum fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5585681A JPS57170988A (en) 1981-04-14 1981-04-14 Removal of arsenic (as) in petroleum fraction

Publications (2)

Publication Number Publication Date
JPS57170988A JPS57170988A (en) 1982-10-21
JPH0248597B2 true JPH0248597B2 (en) 1990-10-25

Family

ID=13010691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5585681A Granted JPS57170988A (en) 1981-04-14 1981-04-14 Removal of arsenic (as) in petroleum fraction

Country Status (1)

Country Link
JP (1) JPS57170988A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250913A (en) * 1986-04-23 1987-10-31 Tonen Sekiyukagaku Kk Method for removing arsenic in petroleum fraction
JPH0729049B2 (en) * 1987-04-30 1995-04-05 三菱重工業株式会社 Method for removing arsenic compounds in combustion exhaust gas
US8211294B1 (en) 2011-10-01 2012-07-03 Jacam Chemicals, Llc Method of removing arsenic from hydrocarbons

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134874A (en) * 1974-07-12 1976-03-24 Roehm & Haas Gmbh
JPS5313607A (en) * 1976-07-23 1978-02-07 Jgc Corp Method of removing metals from hydrocarbon oil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134874A (en) * 1974-07-12 1976-03-24 Roehm & Haas Gmbh
JPS5313607A (en) * 1976-07-23 1978-02-07 Jgc Corp Method of removing metals from hydrocarbon oil

Also Published As

Publication number Publication date
JPS57170988A (en) 1982-10-21

Similar Documents

Publication Publication Date Title
US8425764B2 (en) Process for producing petroleum oils with ultra-low nitrogen content
CN1277988B (en) Modifying and hydrogenation processing for diesel union method
US6118037A (en) Process for the removal of contaminant compounds containing one or more heteroatoms of sulfur, nitrogen and/or oxygen from hydrocarbon streams
JP2591663B2 (en) Method for simultaneous removal of arsenic and carbon oxysulfide from liquid phase unsaturated hydrocarbon fraction
JPH0376789A (en) Capturing substance for removal of arsenic and phosphorus from liquid hydrocarbon, its manufacture and use
JPS6322183B2 (en)
JPS6210278B2 (en)
US4116820A (en) Process for demetallizing of heavy hydrocarbons
JPH0248597B2 (en)
EP1888226B8 (en) Process for removing color bodies from hydrocarbon-based fuels using actived carbon
JP4922542B2 (en) Method for regenerating heterogeneous catalyst and adsorbent
JP5119121B2 (en) Method for removing ethers from crude hydrocarbon and method for producing purified hydrocarbon
US6911569B1 (en) Sulfur resistant adsorbents
CA2601433A1 (en) Process for removing color bodies from hydrocarbon-based fuels using activated carbon
JP3949204B2 (en) Regeneration method of hydrogenation catalyst
JPH0417698B2 (en)
JPH055877B2 (en)
US20060223702A1 (en) Activated carbon for fuel purification
JPH10110173A (en) Removal of injurious compound in liquid hydrocarbon
JPH07116446B2 (en) Method for removing mercury in liquid hydrocarbons
JPH0670222B2 (en) Purification process of cracked light fraction
WO2006104781A2 (en) Activated carbon for fuel purification