Nothing Special   »   [go: up one dir, main page]

JPH0247238A - High-damping alloy and its production - Google Patents

High-damping alloy and its production

Info

Publication number
JPH0247238A
JPH0247238A JP19752088A JP19752088A JPH0247238A JP H0247238 A JPH0247238 A JP H0247238A JP 19752088 A JP19752088 A JP 19752088A JP 19752088 A JP19752088 A JP 19752088A JP H0247238 A JPH0247238 A JP H0247238A
Authority
JP
Japan
Prior art keywords
hydrogen
added
temp
heat treatment
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19752088A
Other languages
Japanese (ja)
Inventor
Goro Yamauchi
五郎 山内
Masato Mino
正人 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19752088A priority Critical patent/JPH0247238A/en
Publication of JPH0247238A publication Critical patent/JPH0247238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a lightweight high-damping alloy improved in damping characteristic in a high-frequency region by adding specific elements to Mg, subjecting the above to melting, forging, and rolling, and then carrying out heat treatment in a hydrogen air flow at a specific temp. CONSTITUTION:One or plural elements among Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, As, Cd, In, Sn, Sb, and Bi are added by 0.1-10% to Mg, which is melted, forged, and rolled. Subsequently, heat treat ment is applied to the above in a hydrogen air flow at a temp. between 90 deg.C and solidus temp., by which hydrogen atoms are allowed to enter into solid solution in an Mg matrix and grains of a compound of the added element with hydrogen are formed. As a result, internal friction due to the interaction between the hydrogen-compound grains and dislocation is increased, by which superior damping characteristic can be attained.

Description

【発明の詳細な説明】 (産業上利用分野) 本発明は、制振合金およびその製造方法、さらに詳細に
は軽量にして制振特性に優れたコンピュータ用、航空宇
宙用、自動車用などの機構部品材料およびその製造方法
に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a vibration damping alloy and a method for manufacturing the same, and more particularly to a structure for use in computers, aerospace, automobiles, etc. that is lightweight and has excellent vibration damping properties. The present invention relates to component materials and manufacturing methods thereof.

(従来技術) 従来、制振合金としてFe−Cr系合金や、Mn−Cu
合金、NiTi合金などが開発されている。
(Prior art) Conventionally, Fe-Cr alloys and Mn-Cu alloys have been used as damping alloys.
alloys, NiTi alloys, etc. have been developed.

これらの合金は、鉄道線路の補修機、さく岩槻ドリル、
防音車輪など、大きなエネルギーで、かつ低周波の振動
を吸収する性能を有するものである。
These alloys are used in railway track repair machines, Iwatsuki drills,
It has the ability to absorb large amounts of energy and low-frequency vibrations, such as soundproof wheels.

近年、メカトロニクス技術の進展に伴い、エネルギーが
小さくかつ高い周波数の振動を吸収する軽量な制振合金
の必要性が高まってきた。
In recent years, with the advancement of mechatronics technology, there has been an increasing need for lightweight damping alloys that absorb low energy and high frequency vibrations.

例えば、コンピュータ記憶装置の記録媒体は高密度化の
一途をたどっているが、これに伴い、記憶装置用のアー
ムなどの機構部品には軽量であることは無論のこと、位
置決めなどの精度向上のため、エネルギーは小さいが高
い振動数の振動を吸収する必要が高まっている。
For example, the recording media of computer storage devices are becoming more and more densely packed, and along with this, mechanical parts such as arms for storage devices need to be lightweight, as well as to improve precision in positioning. Therefore, there is an increasing need to absorb low-energy but high-frequency vibrations.

(発明が解決する問題点) しかしながら、前述の既存制振合金では、重量が大きい
うえ、周波数が高い領域での制振特性が劣っているので
、軽量で高い周波数領域において制振特性の優れた材料
の出現が望まれている。
(Problems to be solved by the invention) However, the existing vibration damping alloys mentioned above are heavy and have poor damping properties in high frequency ranges. It is hoped that new materials will emerge.

本発明は上述の問題点に鑑みなされたものであり、周波
数が高い領域での制振特性を改善した軽量機構部品材料
を提供することを目的とする。
The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a lightweight mechanical component material with improved vibration damping characteristics in a high frequency region.

(問題点を解決するための手段) 上述の問題点を解決するため、本発明による制振合金は
、Mgに、Al、 Si、 P、Ca、Ti、V、Cr
、Mn、 Fe、 Co、 Ni、 Cu、 Zn、 
Ga、 Ge、Y、 Zr、Nb、Mo、 As、 C
d、In、 Sn、 Sb、Biのうち1種又は複数種
を0.1%以上10%以下および水素をMgマトリック
ス中に固溶状態および前記添加元素との水素化合物の形
で添加したことを特徴としている。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the damping alloy according to the present invention contains Mg, Al, Si, P, Ca, Ti, V, and Cr.
, Mn, Fe, Co, Ni, Cu, Zn,
Ga, Ge, Y, Zr, Nb, Mo, As, C
d, In, Sn, Sb, and Bi in an amount of 0.1% to 10% and hydrogen in a solid solution state in the Mg matrix and in the form of a hydrogen compound with the additional element. It is a feature.

また本発明による制振合金の製造方法は、Mgに、Al
、 Si、 P、Ca、 Ti、 V、 Cr、 Mn
、 Fe、Co、Ni、Cu、 ZnSGa、 Ge、
 Y、 Zr、 Nb、Mo、 As、Cd、In、 
Sn、 Sb、 Biのうち1種又は複数種を0.1%
以上10%以下添加し、溶解、鍛造、圧延した後、H2
気流中において90℃以上、固相線以下の温度で熱処理
を施したことを特徴とする。
Further, the method for producing a damping alloy according to the present invention includes adding Al to Mg.
, Si, P, Ca, Ti, V, Cr, Mn
, Fe, Co, Ni, Cu, ZnSGa, Ge,
Y, Zr, Nb, Mo, As, Cd, In,
0.1% of one or more of Sn, Sb, and Bi
After adding 10% or more, melting, forging, and rolling, H2
It is characterized by being heat-treated in an air stream at a temperature of 90°C or higher and lower than the solidus line.

本発明は、Mgに前記元素を添加し水素気流中にて熱処
理を施すことにより、水素原子をMgマトリックス中に
固溶させるのみでなく、添加元素と水素化合物粒子を生
成せしめたことに特徴がある。
The present invention is characterized in that by adding the above-mentioned elements to Mg and performing heat treatment in a hydrogen stream, hydrogen atoms are not only dissolved in the Mg matrix, but also the added elements and hydrogen compound particles are generated. be.

この結果、固溶水素原子という点欠陥に起因する緩和型
内部摩擦を増加させるのみでなく、水素化合物粒子と転
位の相互作用に起因する内部摩擦を増加させることによ
り優れた制振特性を実現したものである。
As a result, excellent vibration damping properties were achieved by not only increasing the relaxed internal friction caused by the point defects of solid solution hydrogen atoms, but also by increasing the internal friction caused by the interaction between hydrogen compound particles and dislocations. It is something.

従来技術である磁壁移動を利用したFe−Cr系合金、
双晶境界を利用したTi−Ni系合金などがあるが、こ
れらの合金はいずれもMgと比較し、比重が大であるう
え単一の内部摩擦増加機構を有しているに過ぎず、本発
明と比較し、重量の点および高い周波数領域での制振特
性に劣っている。
Fe-Cr alloy using domain wall movement, which is a conventional technology,
There are Ti-Ni alloys that utilize twin boundaries, but all of these alloys have a higher specific gravity than Mg and only have a single internal friction increasing mechanism, Compared to the invention, it is inferior in terms of weight and vibration damping characteristics in a high frequency range.

本発明において添加する添加元素は、上述のようにに、
Si、 P、 Ca、 Ti、V、Cr、 Mn、 F
e、 Co、Ni、 Cu%Zn、 Ga、Ge、 Y
、Zr、 Nb、Mo、 As、 Cd、In、 Sn
、 Sb、 Biのうち1種又は複数種であり、その添
加量は0.1%以上10%以下である。
The additive elements added in the present invention are, as described above,
Si, P, Ca, Ti, V, Cr, Mn, F
e, Co, Ni, Cu%Zn, Ga, Ge, Y
, Zr, Nb, Mo, As, Cd, In, Sn
, Sb, and Bi, and the amount thereof added is 0.1% or more and 10% or less.

上述の元素はMg合金の特性を良好にすると共に、添加
される水素と水素化合物を形成させるために添加される
。上述のような添加元素の一種以上の添加量が0.1%
未満であると、Mg合金の改質効果がないと共に、水素
と化合物を生成しにくく、10%を越えると、Mg合金
の特性を悪化させる恐れがあり、実用的ではないからで
ある。
The above-mentioned elements are added to improve the properties of the Mg alloy and to form hydrogen compounds with added hydrogen. The amount of one or more of the above additive elements is 0.1%
If it is less than 10%, there is no effect of modifying the Mg alloy and it is difficult to form a compound with hydrogen, and if it exceeds 10%, the properties of the Mg alloy may be deteriorated, which is not practical.

本発明における制振合金の製造方法において、水素中で
の熱処理温度を90℃以上としたのは、これより低い温
度においては水素がMg合金中に充分固溶せず水素中熱
処理の効果が現われないためである。また、水素中での
熱処理温度を固相線以下の温度としたのはこれより高い
温度では液相を生成し、試料形状が維持できないためで
ある。
In the method for producing a damping alloy in the present invention, the heat treatment temperature in hydrogen is set to 90°C or higher because at lower temperatures, hydrogen does not dissolve sufficiently in the Mg alloy and the effect of heat treatment in hydrogen is not apparent. This is because there is no Furthermore, the heat treatment temperature in hydrogen was set below the solidus line because at higher temperatures a liquid phase is generated and the sample shape cannot be maintained.

(実施例) MgにZnを6%、Zrを0.5%添加し、溶解、鍛造
、圧延、切り出しにより、3mm X 30mm X 
100mmの短冊状試料を作製した。この試料を27/
min、のH2気流中において300℃にて2時間の熱
処理を行なった。
(Example) Add 6% Zn and 0.5% Zr to Mg, melt, forge, roll, and cut out 3 mm x 30 mm x
A 100 mm strip sample was prepared. This sample is 27/
A heat treatment was performed at 300° C. for 2 hours in a H2 gas flow of min.

この試料を両端自由振動状態に保ち、イナータンス伝達
関数応答加速度/加振力を測定し、固有振動モードの減
衰状悪を調べた。ただし、比較のため、水素中熱処理を
施す以前の状態でのイナータンス伝達関数も測定した。
This sample was kept in a state of free vibration at both ends, and the inertance transfer function response acceleration/excitation force was measured to examine the damping condition of the natural vibration mode. However, for comparison, the inertance transfer function was also measured before the heat treatment in hydrogen.

結果を第1図および第2図に示す、第1図は水素中熱処
理を施した実施例に記した本発明材料のイナータンスと
周波数の関係を表す図、第2図は実施例に記した材料の
水素中熱処理を施さない場合のイナータンス(縦軸)と
周波数(横軸)の関係を示す図である。
The results are shown in Figures 1 and 2. Figure 1 is a diagram showing the relationship between inertance and frequency of the material of the present invention described in the example subjected to heat treatment in hydrogen, and Figure 2 is a diagram showing the relationship between the inertance and frequency of the material described in the example which was subjected to heat treatment in hydrogen. FIG. 3 is a diagram showing the relationship between inertance (vertical axis) and frequency (horizontal axis) when heat treatment in hydrogen is not performed.

その結果、水素中熱処理を施す前のイナータンスの値は
1.5K)L!において68dBであったのが、水素焼
鈍後には61dBへと減少し、制振特性の著しい向上が
認められた。即ち、第1図および第2図から明らかなと
おり、本発明の材料が優れた制振特性を示し、軽量機構
部品材料として期待できることが明かとなった。
As a result, the inertance value before heat treatment in hydrogen was 1.5K)L! It was 68 dB during hydrogen annealing, but it decreased to 61 dB after hydrogen annealing, indicating a significant improvement in the damping characteristics. That is, as is clear from FIGS. 1 and 2, it has become clear that the material of the present invention exhibits excellent vibration damping properties and can be expected as a material for lightweight mechanical parts.

同様な効果は、上記Zn−Mg系合金のほか、N、Si
、 P、 Ca、 Ti、V、Cr、 Mn、 Fe、
 Co、 Ni、Cu、Ga、 Ge、 Y、 Zr、
 Nb、Mo、 As、Cd、In、Sn、sb、Bi
のうち1種又は複数種添加したMg合金系においても認
められた。
Similar effects can be obtained with N, Si, in addition to the Zn-Mg alloys mentioned above.
, P, Ca, Ti, V, Cr, Mn, Fe,
Co, Ni, Cu, Ga, Ge, Y, Zr,
Nb, Mo, As, Cd, In, Sn, sb, Bi
It was also observed in Mg alloy systems in which one or more of these were added.

(発明の効果) Mg合金は比重が1.1g/cc程度と軽量であるうえ
、本発明の合金組成、水素中熱処理を施せば、IKHz
を越える高い周波数領域においても優れた割振特性を示
す。
(Effect of the invention) Mg alloy is lightweight with a specific gravity of about 1.1 g/cc, and with the alloy composition of the present invention and heat treatment in hydrogen, IKHz
It exhibits excellent allocation characteristics even in high frequency ranges exceeding .

近年、コンピュータ記憶装置のアームなどの機構部品材
料においては、メカトロニクス技術の著しい進展に見合
った軽量、高制振特性が要求されてやまないが、本発明
はこれに答えるものである。
In recent years, materials for mechanical parts such as arms of computer storage devices have been required to be lightweight and have high vibration damping properties commensurate with the remarkable progress in mechatronics technology, and the present invention is intended to meet these demands.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水素中熱処理を施した実施例に記した本発明材
料のイナータンスと周波数の関係を表す図、第2図は実
施例に記した材料の水素中熱処理を施さない場合のイナ
ータンス(縦軸)と周波数(横軸)の関係を示す図であ
る。
Figure 1 is a diagram showing the relationship between inertance and frequency of the material of the present invention described in the example where heat treatment was performed in hydrogen, and Figure 2 is a diagram showing the inertance (vertical) of the material described in the example when heat treatment in hydrogen was not performed. FIG. 2 is a diagram showing the relationship between the frequency (axis) and the frequency (horizontal axis).

Claims (2)

【特許請求の範囲】[Claims] (1)Mgに、Al、Si、P、Ca、Ti、V、Cr
、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、
Y、Zr、Nb、Mo、M、Cd、In、Sn、Sb、
Biのうち1種又は複数種を0.1%以上10%以下お
よび水素をMgマトリックス中に固溶状態および前記添
加元素との水素化合物の形で添加したことを特徴とする
制振合金。
(1) Mg, Al, Si, P, Ca, Ti, V, Cr
, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge,
Y, Zr, Nb, Mo, M, Cd, In, Sn, Sb,
A damping alloy characterized in that one or more of Bi is added in an amount of 0.1% to 10% and hydrogen in a solid solution state in an Mg matrix or in the form of a hydrogen compound with the above-mentioned additive element.
(2)Mgに、Al、Si、P、Ca、Ti、V、Cr
、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、
Y、Zr、Nb、Mo、As、Cd、In、Sn、Sb
、Biのうち1種又は複数種を0.1%以上10%以下
添加し、溶解、鍛造、圧延した後、H_2気流中におい
て90℃以上、固相線以下の温度で熱処理を施したこと
を特徴とする制振合金の製造方法。
(2) Mg, Al, Si, P, Ca, Ti, V, Cr
, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge,
Y, Zr, Nb, Mo, As, Cd, In, Sn, Sb
, one or more of Bi is added from 0.1% to 10%, melted, forged, rolled, and then heat treated in an H_2 gas flow at a temperature of 90°C or more and below the solidus line. A manufacturing method for a characteristic damping alloy.
JP19752088A 1988-08-08 1988-08-08 High-damping alloy and its production Pending JPH0247238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19752088A JPH0247238A (en) 1988-08-08 1988-08-08 High-damping alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19752088A JPH0247238A (en) 1988-08-08 1988-08-08 High-damping alloy and its production

Publications (1)

Publication Number Publication Date
JPH0247238A true JPH0247238A (en) 1990-02-16

Family

ID=16375834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19752088A Pending JPH0247238A (en) 1988-08-08 1988-08-08 High-damping alloy and its production

Country Status (1)

Country Link
JP (1) JPH0247238A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257657A (en) * 1988-08-23 1990-02-27 Furukawa Alum Co Ltd High damping material of mg alloy and its manufacture
WO1994006945A1 (en) * 1992-09-11 1994-03-31 Nippon Kinzoku Co., Ltd. Refined magnesium material and process for producing the same
WO1996019594A1 (en) * 1994-12-22 1996-06-27 Energy Conversion Devices, Inc. Magnesium mechanical alloys for thermal hydrogen storage
US6755922B2 (en) * 1999-12-03 2004-06-29 Hitachi, Ltd. High strength Mg based alloy and Mg based casting alloy and article made of the alloy
US7041179B2 (en) * 2001-11-05 2006-05-09 Dead Sea Magnesium Ltd. High strength creep resistant magnesium alloys
CN100463989C (en) * 2006-07-26 2009-02-25 哈尔滨工业大学 Cariaceous high-damping deformation magnesium alloy and its prepn process
CN102383012A (en) * 2011-11-01 2012-03-21 西安理工大学 Low-rare-earth high-strength heat-resisting magnesium alloy and preparation method thereof
JP2012136727A (en) * 2010-12-24 2012-07-19 Sumitomo Electric Ind Ltd Magnesium alloy for damping and damping material
CN103882272A (en) * 2014-04-18 2014-06-25 重庆大学 Mg-Sn-Ti wrought magnesium alloy and preparation method thereof
CN103981415A (en) * 2014-05-09 2014-08-13 曹帅 High-damping Mg-based damping alloy and preparation method thereof
CN104087804A (en) * 2014-07-28 2014-10-08 农彩丽 Creep resistant magnesium alloy and preparation method thereof
CN104099506A (en) * 2014-08-06 2014-10-15 杨攀 Multicomponent heat-resistant magnesium alloy and production method thereof
CN104233030A (en) * 2014-09-30 2014-12-24 东北大学 Magnesium, zinc, aluminum, chromium, bismuth and calcium alloy allowing age hardening and preparation method thereof
CN106011567A (en) * 2016-06-23 2016-10-12 南京龙超金属制造科技有限公司 Magnesium alloy casting and preparation method thereof
RU2615938C1 (en) * 2016-06-16 2017-04-11 Юлия Алексеевна Щепочкина Alloy on base of magnesium
RU2640700C2 (en) * 2012-06-26 2018-01-11 Биотроник Аг Magnesium alloy, method of its manufacture and use
CN107739941A (en) * 2017-10-27 2018-02-27 桂林市漓江机电制造有限公司 A kind of carbide modified magnesium alloy materials and preparation method thereof
CN108179337A (en) * 2017-12-25 2018-06-19 广东省材料与加工研究所 The diecast magnesium alloy and its pressure casting method of a kind of high temperature creep-resisting
CN109161753A (en) * 2018-10-20 2019-01-08 广州宇智科技有限公司 A kind of antiflaming magnesium alloy of coupled surface liquid metal and matrix high heat-transfer performance
CN109338187A (en) * 2018-11-19 2019-02-15 河北工业大学 A kind of low cost can high-speed extrusion the tough wrought magnesium alloy of height and preparation method thereof
US10344365B2 (en) 2012-06-26 2019-07-09 Biotronik Ag Magnesium-zinc-calcium alloy and method for producing implants containing the same
CN110423928A (en) * 2018-02-09 2019-11-08 河南科技大学 A kind of high-strength anti-flaming magnesium alloy
CN110453124A (en) * 2018-05-08 2019-11-15 有研工程技术研究院有限公司 Stanniferous magnesium alloy and its preparation and processing method
US10895000B2 (en) 2012-06-26 2021-01-19 Biotronik Ag Magnesium alloy, method for the production thereof and use thereof
US10995398B2 (en) 2012-06-26 2021-05-04 Biotronik Ag Corrosion resistant stent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128398A (en) * 1986-11-19 1988-05-31 富士通株式会社 Mg based composite vibration-proof material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128398A (en) * 1986-11-19 1988-05-31 富士通株式会社 Mg based composite vibration-proof material

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257657A (en) * 1988-08-23 1990-02-27 Furukawa Alum Co Ltd High damping material of mg alloy and its manufacture
WO1994006945A1 (en) * 1992-09-11 1994-03-31 Nippon Kinzoku Co., Ltd. Refined magnesium material and process for producing the same
US5613999A (en) * 1992-09-11 1997-03-25 Nippon Kinzoku Co., Ltd. Method for producing magnesium
US6444056B1 (en) 1992-09-11 2002-09-03 Nippon Kinzoku Co., Ltd. Refined magnesium material and method for producing the same
WO1996019594A1 (en) * 1994-12-22 1996-06-27 Energy Conversion Devices, Inc. Magnesium mechanical alloys for thermal hydrogen storage
US5916381A (en) * 1994-12-22 1999-06-29 Energy Conversion Devices, Inc. Magnesium mechanical alloys for thermal hydrogen storage
US6755922B2 (en) * 1999-12-03 2004-06-29 Hitachi, Ltd. High strength Mg based alloy and Mg based casting alloy and article made of the alloy
US7041179B2 (en) * 2001-11-05 2006-05-09 Dead Sea Magnesium Ltd. High strength creep resistant magnesium alloys
CN100463989C (en) * 2006-07-26 2009-02-25 哈尔滨工业大学 Cariaceous high-damping deformation magnesium alloy and its prepn process
JP2012136727A (en) * 2010-12-24 2012-07-19 Sumitomo Electric Ind Ltd Magnesium alloy for damping and damping material
CN102383012A (en) * 2011-11-01 2012-03-21 西安理工大学 Low-rare-earth high-strength heat-resisting magnesium alloy and preparation method thereof
US10358709B2 (en) 2012-06-26 2019-07-23 Biotronik Ag Magnesium-zinc-calcium alloy, method for production thereof, and use thereof
US10344365B2 (en) 2012-06-26 2019-07-09 Biotronik Ag Magnesium-zinc-calcium alloy and method for producing implants containing the same
US12123086B2 (en) 2012-06-26 2024-10-22 Biotronik Ag Method for producing magnesium alloy
RU2640700C2 (en) * 2012-06-26 2018-01-11 Биотроник Аг Magnesium alloy, method of its manufacture and use
US11499214B2 (en) 2012-06-26 2022-11-15 Biotronik Ag Magnesium-zinc-calcium alloy and method for producing implants containing the same
US10995398B2 (en) 2012-06-26 2021-05-04 Biotronik Ag Corrosion resistant stent
US10895000B2 (en) 2012-06-26 2021-01-19 Biotronik Ag Magnesium alloy, method for the production thereof and use thereof
CN103882272A (en) * 2014-04-18 2014-06-25 重庆大学 Mg-Sn-Ti wrought magnesium alloy and preparation method thereof
CN103981415A (en) * 2014-05-09 2014-08-13 曹帅 High-damping Mg-based damping alloy and preparation method thereof
CN104087804A (en) * 2014-07-28 2014-10-08 农彩丽 Creep resistant magnesium alloy and preparation method thereof
CN104099506A (en) * 2014-08-06 2014-10-15 杨攀 Multicomponent heat-resistant magnesium alloy and production method thereof
CN104233030A (en) * 2014-09-30 2014-12-24 东北大学 Magnesium, zinc, aluminum, chromium, bismuth and calcium alloy allowing age hardening and preparation method thereof
RU2615938C1 (en) * 2016-06-16 2017-04-11 Юлия Алексеевна Щепочкина Alloy on base of magnesium
CN106011567A (en) * 2016-06-23 2016-10-12 南京龙超金属制造科技有限公司 Magnesium alloy casting and preparation method thereof
CN107739941A (en) * 2017-10-27 2018-02-27 桂林市漓江机电制造有限公司 A kind of carbide modified magnesium alloy materials and preparation method thereof
CN108179337A (en) * 2017-12-25 2018-06-19 广东省材料与加工研究所 The diecast magnesium alloy and its pressure casting method of a kind of high temperature creep-resisting
CN110423928A (en) * 2018-02-09 2019-11-08 河南科技大学 A kind of high-strength anti-flaming magnesium alloy
CN110453124A (en) * 2018-05-08 2019-11-15 有研工程技术研究院有限公司 Stanniferous magnesium alloy and its preparation and processing method
CN110453124B (en) * 2018-05-08 2021-02-05 有研工程技术研究院有限公司 Tin-magnesium alloy and preparation and processing method thereof
CN109161753A (en) * 2018-10-20 2019-01-08 广州宇智科技有限公司 A kind of antiflaming magnesium alloy of coupled surface liquid metal and matrix high heat-transfer performance
CN109338187A (en) * 2018-11-19 2019-02-15 河北工业大学 A kind of low cost can high-speed extrusion the tough wrought magnesium alloy of height and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0247238A (en) High-damping alloy and its production
US8097095B2 (en) Hardfacing material
US4650528A (en) High damping capacity aluminum alloy
JP4112952B2 (en) Method for producing metal product with nanocrystallized surface layer
JPS61210148A (en) Al base amorphous alloy mainly containing ni and/or fe and si and its production
US9293166B2 (en) Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
Graves et al. Pathways for microstructural development in TiAl
US4497669A (en) Process for making alloys having coarse, elongated grain structure
Chaki Boron in polycrystalline Ni3Al-mechanism of enhancement of ductility and reduction of environmental embrittlement
JP2007302930A (en) METHOD FOR PRODUCING Mn-Cu BASED DAMPING ALLOY
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JP3695935B2 (en) Fe-Si-C amorphous alloy and powder metallurgy member using the alloy
JP5659930B2 (en) Iron alloy damping material manufacturing method and iron alloy damping material
US6361740B1 (en) Suspension arm and load beam for a disk drive
JP5601268B2 (en) Iron alloy damping material manufacturing method and iron alloy damping material
JPS5930783B2 (en) vibration absorbing alloy
JP2007321243A (en) HIGH-STRENGTH HIGH-DAMPING Fe-Mn-Cr-Ni ALLOY, MANUFACTURING METHOD THEREFOR, AND FORMED BODY THEREOF
JPH08269613A (en) Low thermal expansion cast iron and production thereof
Mahajan et al. Rapidly solidified microstructure of AI-8Fe-4 lanthanide alloys
JPH04147943A (en) Vibration absorbing spring alloy
Pattanaik et al. CRSS of disordered and ordered Cu3Au single crystals containing SiO2 particles Correlation with the Orowan stress
JPH1092135A (en) Suspension of magnetic head
JP2023045935A (en) Fe-Al ALLOY, Fe-Al ALLOY MEMBER, Fe-Al ALLOY POWDER AND METHOD FOR PRODUCING Fe-Al ALLOY
JPH03294447A (en) Aluminum alloy material excellent in high temperature strength and its manufacture
JPH0542490B2 (en)