Nothing Special   »   [go: up one dir, main page]

JPH0246762A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0246762A
JPH0246762A JP63199138A JP19913888A JPH0246762A JP H0246762 A JPH0246762 A JP H0246762A JP 63199138 A JP63199138 A JP 63199138A JP 19913888 A JP19913888 A JP 19913888A JP H0246762 A JPH0246762 A JP H0246762A
Authority
JP
Japan
Prior art keywords
gate
series
field effect
circuit
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63199138A
Other languages
Japanese (ja)
Inventor
Katsushi Asahina
朝比奈 克志
Satoshi Takano
聡 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63199138A priority Critical patent/JPH0246762A/en
Publication of JPH0246762A publication Critical patent/JPH0246762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To enable high speed operation and reduce gate input capacitance and occupied area, by a method wherein, when two or more insulated gate field effect transistors are connected in series, the gate length of the insulated gate field effect transistor is made short, as compared with the gate length of the one which is not connected in series. CONSTITUTION:When at least one of an input A and an input B is 'high', either one of PMOSFET's P1A, P2A turns off. Since the MOSFET's are connected in series, the voltage applied between the source and drain of the PMOSFET becomes smaller than Vcc, an MISFET, whose gate length is short as compared with a circuit not connected in series, can be used in a circuit connected in series. As a result, the current of an MISFET increases, so that it is unnecessary to increase the gate width, and the gate capacitance is reduced. Thereby high speed operation is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は絶縁ゲート型電界効果トランジスタを用いて
構成される半導体集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit constructed using insulated gate field effect transistors.

〔従来の技術〕[Conventional technology]

第3図及び第4図は相補形金属酸化膜電界効果トランジ
スタ(以下CMOSFETという)を用いたNOR回路
及びNAND回路の構成図で、図において、PI、P2
.P3.P4はPMOSFET、 N 1 、 N 2
 。
Figures 3 and 4 are block diagrams of a NOR circuit and a NAND circuit using complementary metal oxide field effect transistors (hereinafter referred to as CMOSFETs).
.. P3. P4 is PMOSFET, N 1 , N 2
.

N3.N4はNMOSFII!Tである。N3. N4 is NMOSFII! It is T.

また第5図、第6図は他の半導体集積回路の構成図で、
P5はPMOSFET 、 N 5はNMO5FI!T
、 N 6はNMO3FET、 R1は抵抗を示す。
In addition, FIGS. 5 and 6 are configuration diagrams of other semiconductor integrated circuits,
P5 is PMOSFET, N5 is NMO5FI! T
, N6 is an NMO3FET, and R1 is a resistance.

次に動作について説明する。Next, the operation will be explained.

第3図において、PMOSFET P 1 、  P 
2は直列に接続されているので、A=B=“10W″の
ときPMO5FtiT P 1 、  P 2が共にO
nするのでX=”high”となる。NMO3FET 
N 1 、  N 2は並列に接続されているので、A
またはBがhigh”のときNMO5FET N 1ま
たはN2がOnするのでX=″Ilowとなり、NOR
動作をする。ここで、PMOSFET P 1 。
In FIG. 3, PMOSFETs P 1 , P
2 are connected in series, so when A=B="10W", both PMO5FtiT P1 and P2 are O.
n, so X=“high”. NMO3FET
Since N 1 and N 2 are connected in parallel, A
Or when B is "high", NMO5FET N1 or N2 is turned on, so X = "Ilow", and NOR
take action. Here, PMOSFET P1.

P2は直列に接続されているのでX =”high”を
出力しているとき、出力電流はPMOSFET P 1
 、  P 2の直列抵抗により制限される。このため
高速動作を要求される回路においては、直列に接続され
ているPMOSF[!T P 1 、  P 2のゲー
ト幅を第4図において並列に接続されているPMOSF
ET P 3 、  P 4のゲート幅より大きくする
必要があった。
Since P2 is connected in series, when outputting X = "high", the output current is PMOSFET P1
, P2 is limited by the series resistance. Therefore, in circuits that require high-speed operation, PMOSF[! The gate widths of T P 1 and P 2 are PMOSFs connected in parallel in Fig. 4.
It was necessary to make the gate width larger than that of ET P3 and P4.

この時CMOS回路に使用されるMISFET (絶縁
ゲート型電界効果トランジスタ)はコンハンスメント型
が使用されるので、第7図に示すように、■。。
At this time, the enhancement type MISFET (insulated gate field effect transistor) used in the CMOS circuit is used, so as shown in FIG. .

=0■においてoffすることが要求される。It is required to turn off at =0■.

しかしながらMISFETのゲート長を縮小することに
よりパンチスルー現象が発生し、第8図に示すようにI
voglを増大するとVes=OVにおいてもIl、1
が増大する。第8図において、曲線1はNMOSFET
、曲線2はPMoSFETMISFETニツイである。
However, by reducing the gate length of the MISFET, a punch-through phenomenon occurs, and as shown in Figure 8, the I
When vogl is increased, Il, 1 even at Ves=OV
increases. In Figure 8, curve 1 is the NMOSFET
, curve 2 is PMoSFETMISFET.

ゲート長を縮小すると第8図の曲線はNMOSFETに
おいては曲線1bから1aへ、PMOSFETにおいて
は曲線2bから2aに変化する。これらのことより明ら
かなように、ゲート長を縮小することにより、MOSF
ETのゲート電圧によりoffすることのできるソース
・ドレイン間電圧は小さくなる。このため、第6図に示
されるような回路構成において、バンチスルー現象が発
生して、VGS=0■においても大きな電流が流れるよ
うなMOSFETは使用できない。同様のことが2.第
5図に示すCMOSインバータ回路についても言える。
When the gate length is reduced, the curve in FIG. 8 changes from curve 1b to 1a for NMOSFET, and from curve 2b to 2a for PMOSFET. As is clear from these facts, by reducing the gate length, the MOSF
The source-drain voltage that can be turned off by the gate voltage of ET becomes smaller. Therefore, in the circuit configuration shown in FIG. 6, a MOSFET in which a bunch-through phenomenon occurs and a large current flows even when VGS=0■ cannot be used. Similar thing 2. The same can be said of the CMOS inverter circuit shown in FIG.

このため、ゲート長を縮小して、ゲート入力容量が小さ
く、かつ、電流駆動力の大きいMISFETを使用する
。ことは困難であった。
Therefore, the gate length is reduced, and a MISFET with a small gate input capacitance and a large current driving ability is used. That was difficult.

また、第4図に示すCMOS NAND回路においても
直列に接続されているNMOSFET N 3 、 N
 4のゲート幅は第3図において並列に接続されている
NMOSFETN1.N2のゲート幅より大きくする必
要があった。
Also, in the CMOS NAND circuit shown in Fig. 4, NMOSFETs N 3 and N are connected in series.
The gate width of NMOSFETN1.4 is the same as that of NMOSFETN1.4 connected in parallel in FIG. It was necessary to make the gate width larger than the gate width of N2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体集積回路装置は以上のように構成されてい
るので、高速動作する回路において直列に接続されてい
る素子においては負荷駆動力を大きくするために、ゲー
ト幅を大きくすることが必要で、このために、ゲート入
力容量が大きくなったり、回路の占有面積が大きくなる
などの問題点があった。
Conventional semiconductor integrated circuit devices are configured as described above, so it is necessary to increase the gate width of elements connected in series in high-speed operating circuits in order to increase the load driving force. This has led to problems such as an increase in gate input capacitance and an increase in the area occupied by the circuit.

この発明は上記のような問題点を解消するためになされ
たもので、高速動作できるとともに、ゲート入力容量が
小さく、かつ占有面積が小さい半導体集積回路装置を得
ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a semiconductor integrated circuit device that can operate at high speed, has a small gate input capacitance, and occupies a small area.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体集積回路は、絶縁ゲート型電界効
果トランジスタが2以上直列に接続されている場合、上
記絶縁ゲート型電界効果トランジスタのゲート長を直列
に接続されていないものと比較して短くしたことを特徴
とするものである。
In the semiconductor integrated circuit according to the present invention, when two or more insulated gate field effect transistors are connected in series, the gate length of the insulated gate field effect transistor is shorter than that of a transistor not connected in series. It is characterized by this.

〔作用〕[Effect]

この発明における直列に接続されている絶縁ゲート型電
界トランジスタ(MISFET)のゲート長は並列に接
続されているMISFETのゲート長より短く電流はよ
り大きく流れ、ゲート容量は低減する。
In the present invention, the gate length of the insulated gate field transistors (MISFETs) connected in series is shorter than the gate length of the MISFETs connected in parallel, and a larger current flows, reducing the gate capacitance.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、PIA、P2Aはゲート長を短くした
2間5FETSNl、N2はNMOSFETである。
In FIG. 1, PIA and P2A are two 5FETs SNl and N2 are NMOSFETs with shortened gate lengths.

A、Bは入力端子でXは出力端子である。この回路はX
=A+Hの論理式で表される論理動作を行うNOR回路
である。
A and B are input terminals, and X is an output terminal. This circuit is
This is a NOR circuit that performs a logical operation expressed by the logical formula =A+H.

次に動作について説明する。Next, the operation will be explained.

いま、入力AまたはBのどちらが少なくとも一方がhi
gh”であるとき、対応するPMOSFET P I 
A。
Now, at least one of inputs A or B is hi
gh”, the corresponding PMOSFET P I
A.

P2Aのいずれかがoffする。このとき、PMOSF
ETは直列に接続されているので、PMOSFETのソ
ース・ドレイン間に印加される電圧はVccより小さな
値となっているので、直列接続された回路においては、
そうでない回路に比較して、ゲート長の短いMISFE
Tを使用することができる。これにより、MISFET
の電流が大きくなるので、ゲート幅を大きくする必要が
なくなり、またゲート容量が低減されることにより高速
動作が可能となる。
Either P2A is turned off. At this time, PMOSF
Since the ETs are connected in series, the voltage applied between the source and drain of the PMOSFET is smaller than Vcc, so in a series-connected circuit,
MISFE with short gate length compared to other circuits
T can be used. This allows MISFET
Since the current increases, there is no need to increase the gate width, and the gate capacitance is reduced, allowing high-speed operation.

第2図は、本発明の別の実施例を示したものである。こ
の場合、直列接続されているMISFETはゲート長の
短いNMOSFET  N3A、 N4Aである。
FIG. 2 shows another embodiment of the invention. In this case, the MISFETs connected in series are NMOSFETs N3A and N4A with short gate lengths.

ここに、上記のNOR回路で行ったのと同様に、直列接
続されたNMOSFET  N3. N4のゲート長を
短くすることによって同一の結果を得る。
Here, the NMOSFETs N3. The same result is obtained by reducing the gate length of N4.

また、上記実施例では、2人力のCMOS NORおよ
びNAND回路について述べたが、多入力のCMOS論
理回路についても適用できる。
Furthermore, in the above embodiments, two-man powered CMOS NOR and NAND circuits have been described, but the present invention can also be applied to multi-input CMOS logic circuits.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、絶縁ゲート型電
界効果トランジスタが2以上直列に接続されている場合
、上記絶縁ゲート型電界効果トランジスタのゲート長を
直列に接続されていないものと比較して短くしたので、
高速に動作するとともに占有面積の少ない半導体集積回
路装置を得ることができる。
As explained above, according to the present invention, when two or more insulated gate field effect transistors are connected in series, the gate length of the insulated gate field effect transistor is compared with that of one not connected in series. I made it shorter, so
A semiconductor integrated circuit device that operates at high speed and occupies a small area can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第す。 なお、図中、同一符号は同一、又は相当部分を示す。 FIG. 1 is a block diagram showing one embodiment of the present invention. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 絶縁ゲート型電界効果トランジスタを用いて構成された
半導体集積回路において、上記絶縁ゲート型電界効果ト
ランジスタが2以上直列に接続されている場合、上記絶
縁ゲート型電界効果トランジスタのゲート長を直列に接
続されていないものと比較して短くしたことを特徴とす
る半導体集積回路。
In a semiconductor integrated circuit configured using insulated gate field effect transistors, when two or more of the insulated gate field effect transistors are connected in series, the gate lengths of the insulated gate field effect transistors are A semiconductor integrated circuit characterized by being shorter than one without.
JP63199138A 1988-08-09 1988-08-09 Semiconductor integrated circuit Pending JPH0246762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63199138A JPH0246762A (en) 1988-08-09 1988-08-09 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63199138A JPH0246762A (en) 1988-08-09 1988-08-09 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0246762A true JPH0246762A (en) 1990-02-16

Family

ID=16402775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63199138A Pending JPH0246762A (en) 1988-08-09 1988-08-09 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0246762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783846A (en) * 1995-09-22 1998-07-21 Hughes Electronics Corporation Digital circuit with transistor geometry and channel stops providing camouflage against reverse engineering
US5866933A (en) * 1992-07-31 1999-02-02 Hughes Electronics Corporation Integrated circuit security system and method with implanted interconnections
US5973375A (en) * 1997-06-06 1999-10-26 Hughes Electronics Corporation Camouflaged circuit structure with step implants
US6667245B2 (en) 1999-11-10 2003-12-23 Hrl Laboratories, Llc CMOS-compatible MEM switches and method of making
US6740942B2 (en) 2001-06-15 2004-05-25 Hrl Laboratories, Llc. Permanently on transistor implemented using a double polysilicon layer CMOS process with buried contact
US6791191B2 (en) 2001-01-24 2004-09-14 Hrl Laboratories, Llc Integrated circuits protected against reverse engineering and method for fabricating the same using vias without metal terminations

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866933A (en) * 1992-07-31 1999-02-02 Hughes Electronics Corporation Integrated circuit security system and method with implanted interconnections
US6294816B1 (en) 1992-07-31 2001-09-25 Hughes Electronics Corporation Secure integrated circuit
US6613661B1 (en) 1992-07-31 2003-09-02 Hughes Electronics Corporation Process for fabricating secure integrated circuit
US5783846A (en) * 1995-09-22 1998-07-21 Hughes Electronics Corporation Digital circuit with transistor geometry and channel stops providing camouflage against reverse engineering
US5930663A (en) * 1995-09-22 1999-07-27 Hughes Electronics Corporation Digital circuit with transistor geometry and channel stops providing camouflage against reverse engineering
US6064110A (en) * 1995-09-22 2000-05-16 Hughes Electronics Corporation Digital circuit with transistor geometry and channel stops providing camouflage against reverse engineering
US5973375A (en) * 1997-06-06 1999-10-26 Hughes Electronics Corporation Camouflaged circuit structure with step implants
US6667245B2 (en) 1999-11-10 2003-12-23 Hrl Laboratories, Llc CMOS-compatible MEM switches and method of making
US6791191B2 (en) 2001-01-24 2004-09-14 Hrl Laboratories, Llc Integrated circuits protected against reverse engineering and method for fabricating the same using vias without metal terminations
US6740942B2 (en) 2001-06-15 2004-05-25 Hrl Laboratories, Llc. Permanently on transistor implemented using a double polysilicon layer CMOS process with buried contact

Similar Documents

Publication Publication Date Title
JPH0246762A (en) Semiconductor integrated circuit
KR100263785B1 (en) Cmos circuit
US5598094A (en) Current mirror
JP2001044820A (en) Level shifter circuit
KR940004967A (en) Output buffer circuit with noise reduction circuit
JP3052433B2 (en) Level shift circuit
JPH02252315A (en) Input buffer circuit for semiconductor integrated circuit
KR100314490B1 (en) Pass transistor circuit
JPS6037822A (en) Cmos logical circuit
JPS62208715A (en) Semiconductor integrated circuit
KR970004057B1 (en) Input buffer
JPH043618A (en) Input buffer circuit
JPH03195213A (en) Semiconductor analog switch
JPS62114317A (en) Schmitt trigger circuit
JPH06104732A (en) Ic output circuit
KR940000266B1 (en) Low power consuming output buffer circuit
KR0177755B1 (en) 3-state buffering circuit
KR100281146B1 (en) CMOS NAND Circuit
KR19980032265A (en) Ring Oscillator with Controllable Frequency
JPH0750562A (en) Semiconductor integrated circuit device
JPH0586865B2 (en)
JPH04104515A (en) Output circuit
JPS5922443A (en) Semiconductor input buffer device
JPS60174525A (en) Output buffer device
KR19990018735A (en) High Voltage CMOS Inverter and High Voltage CMOS NAND Circuit