JPH0244511B2 - TAINETSUSEIARUKARIKINZOKUPUROTEAAZEOYOBISONOSEIZOHO - Google Patents
TAINETSUSEIARUKARIKINZOKUPUROTEAAZEOYOBISONOSEIZOHOInfo
- Publication number
- JPH0244511B2 JPH0244511B2 JP14556482A JP14556482A JPH0244511B2 JP H0244511 B2 JPH0244511 B2 JP H0244511B2 JP 14556482 A JP14556482 A JP 14556482A JP 14556482 A JP14556482 A JP 14556482A JP H0244511 B2 JPH0244511 B2 JP H0244511B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- minutes
- residual activity
- substrate
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 108091005804 Peptidases Proteins 0.000 claims description 42
- 239000004365 Protease Substances 0.000 claims description 41
- 229910052783 alkali metal Inorganic materials 0.000 claims description 24
- 150000001340 alkali metals Chemical class 0.000 claims description 24
- 240000001080 Grifola frondosa Species 0.000 claims description 17
- 235000007710 Grifola frondosa Nutrition 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 16
- 235000018102 proteins Nutrition 0.000 claims description 13
- 102000004169 proteins and genes Human genes 0.000 claims description 13
- 108090000623 proteins and genes Proteins 0.000 claims description 13
- 238000002523 gelfiltration Methods 0.000 claims description 12
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 10
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 10
- 239000011701 zinc Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- SYZJDGAOLGLIDX-UHFFFAOYSA-N 1-hydroxyazocane Chemical compound ON1CCCCCCC1 SYZJDGAOLGLIDX-UHFFFAOYSA-N 0.000 claims description 7
- 108010076119 Caseins Proteins 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 108010041102 azocasein Proteins 0.000 claims description 7
- 239000005018 casein Substances 0.000 claims description 7
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims description 7
- 235000021240 caseins Nutrition 0.000 claims description 7
- 102000009027 Albumins Human genes 0.000 claims description 6
- 108010088751 Albumins Proteins 0.000 claims description 6
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 claims description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 5
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 5
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 5
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 5
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 5
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 5
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 5
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 5
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 5
- 239000004474 valine Substances 0.000 claims description 5
- 230000001580 bacterial effect Effects 0.000 claims description 4
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 3
- 102000016942 Elastin Human genes 0.000 claims description 3
- 108010014258 Elastin Proteins 0.000 claims description 3
- 108010024636 Glutathione Proteins 0.000 claims description 3
- 102000004877 Insulin Human genes 0.000 claims description 3
- 108090001061 Insulin Proteins 0.000 claims description 3
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 claims description 3
- 239000012190 activator Substances 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 3
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 claims description 3
- 229920002549 elastin Polymers 0.000 claims description 3
- 230000002255 enzymatic effect Effects 0.000 claims description 3
- 238000001502 gel electrophoresis Methods 0.000 claims description 3
- 229960003180 glutathione Drugs 0.000 claims description 3
- 239000003112 inhibitor Substances 0.000 claims description 3
- 230000005764 inhibitory process Effects 0.000 claims description 3
- 229940125396 insulin Drugs 0.000 claims description 3
- 239000012266 salt solution Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 2
- 239000002253 acid Substances 0.000 claims 2
- 102000035195 Peptidases Human genes 0.000 description 40
- 230000007935 neutral effect Effects 0.000 description 21
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 14
- 108010006035 Metalloproteases Proteins 0.000 description 10
- 102000005741 Metalloproteases Human genes 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 238000010828 elution Methods 0.000 description 9
- 229920005654 Sephadex Polymers 0.000 description 8
- 239000012507 Sephadex™ Substances 0.000 description 8
- 239000008351 acetate buffer Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 7
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 7
- 235000011130 ammonium sulphate Nutrition 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 239000001103 potassium chloride Substances 0.000 description 7
- 235000011164 potassium chloride Nutrition 0.000 description 7
- 244000063299 Bacillus subtilis Species 0.000 description 5
- 235000014469 Bacillus subtilis Nutrition 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000003998 snake venom Substances 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 241000233866 Fungi Species 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000271897 Viperidae Species 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 241000209524 Araceae Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 241000131386 Aspergillus sojae Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000271532 Crotalus Species 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 241001576503 Mellea Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 108090001109 Thermolysin Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- -1 malt extract Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Landscapes
- Enzymes And Modification Thereof (AREA)
Description
【発明の詳細な説明】
本発明は食菌から得られるアルカリ金属プロテ
アーゼ及びその製造法に関し、更に詳しくは、真
正担子菌の一種で、サルノコシカケ科マイタケ属
に属するマイタケ〔Grifola frondosa(Fr.)S.
F.Gray〕の子実体又はその倍養菌体から抽出し
て得られるアルカリ金属プロテアーゼに関するも
のである。
従来、触媒作用を発現するために亜鉛を必須成
分とする金属プロテアーゼとしては、微生物で
は、枯草菌、バチルス・スブチリス(Bacillus
subtilis)、バチルス・テルモプロテオリチウス
(Bacillus thermoproteolytieus)などの培養液
中の中性金属プロテアーゼ、コウジ菌、アスペル
ギルス・オリザエ(Aspergillus oryzae)、アス
ペルギルス・ソジヤエ(Aspergillus sojae)な
どの培地から得られる二種の中性金属プロテアー
ゼ、ナラタケ(Arimillaria mellea)子実体に
存在する低分子の中性金属プロテアーゼがあり、
また動物では、ハブ、マムシ、ガラガラヘビの蛇
毒成分であるアルカリ金属プロテアーゼとウサギ
の腎臓やウシの下垂体から得られる中性金属プロ
テアーゼが知られている。これら金属プロテアー
ゼには分子量14000〜90000の範囲で多種類のもの
があり、亜鉛原子以外にカルシウム原子を含むも
のもある。多くの中性金属プロテアーゼは至適PH
が6〜7の範囲にあるが、蛇毒のアルカリ金属プ
ロテアーゼにあつては、その至適PHが8〜9の弱
アルカリ側にある。また、これらの中性及びアル
カリ金属プロテアーゼは、ナラタケ子実体の中性
金属プロテアーゼがN末端側にリジン残基を有す
るペプチド結合、−X−CO−NH−Lys−を優先
的に分解する特異性を示す以外に、N末端側のア
ミノ酸がロイシン、フエニルアラニンあるいはバ
リンであるペプチド結合、−N−CO−NH−Leu
−、−X−CO−NH−Phe−、−X−CO−NH−
Val−を主に分解する特異性もあることが知られ
ている(Xはアミノ酸残基を表わす)。
本発明の目的は、従来の研究によつて明らかに
された細菌、糸状菌、蛇毒又は哺乳動物の臓器由
来の中性又はアルカリ金属プロテアーゼと比べ
て、その性質及び特異性を異にする新規な耐熱性
アルカリ金属プロテアーゼを提供することであ
る。
本発明者らは、マイタケ子実体の抽出液に含ま
れるタンパク分解酵素を総合的に研究した結果、
分子量が22000で、タンパク1分子当たりに1原
子の亜鉛を含有し、カゼイン又はアゾコールの分
解に対する至適PHが9〜10にあり、ロイシン、フ
エニルアラニン、バリン又はリジン残基のN末端
側のペプチド結合を特異的に加水分解するエンド
ペプチターゼ活性を示すアルカリ金属プロテアー
ゼを見出し、本発明を完成するに至つた。
即ち、本発明の耐熱性金属プロテアーゼは、次
の酵素化学的性質をするものである。
分子量:約22000(ゲルろ過法、SDSゲル電気泳動
法)
約21300(アミノ酸分析)
安定なPHの範囲:3〜10(4℃に24時間保つたと
きの活性残存率100%のPH範囲)
温度安定性:60℃(PH7.0で60分間熱処理した際
の活性残存率100%の温度)70℃(PH7.0で60分
間熱処理した際の活性残存率70%の温度)
作用至適PH:9〜10(基質:カゼイン、アゾコー
ル、アルブミン)
作用至適温度:70℃(アゾカゼインを基質として
用い、PH9で10分間反応したときの温度)
等電点:7.5
含有金属:タンパク1分子当り亜鉛1原子
賦活剤:特に必要としない。
阻害剤:エチレンジアミンテトラアセテート
(EDTA)、1,10−フエナントロリン、α,
α′−ジピリジル、ジチオスレイトール、β−メ
ルカプトエタノール、グルタチオン(還元型)。
EDTAによる阻害は、Zn2+、Mn2+又はCo2+
を添加すると活性が回復する。
基質特異性:カゼイン、アゾカゼイン、アゾコー
ル、コンゴーレツドエラスチン、アルブミン、
インシユリン、ポリリジンなどのタンパク質又
はペプチドにおけるロイシン、フエニルアラニ
ン、バリン及びリジン残基のN末端側ペプチド
結合を特異的に加水分解する。
また、その製造法は、マイタケ子実体又はその
菌体からPH3〜10の塩溶液を用いて抽出を行な
い、得られた抽出液を精製することを特徴とす
る。
本発明において用いるマイタケは自家で、酵母
エキス、麦芽エキス、ブドウ糖を含む通常の培地
(PH5〜6)を用いて20〜25℃で培養したマイタ
ケの菌体を用いてもよいが、市販されている子実
体を用いてもよい。
以下、詳細に本発明プロテアーゼの製造法につ
いて述べる。まず、マイタケ実子体を細断したも
の、または培養して得た菌体から中性塩溶液とと
もに、ブレンダーで処理した後、直ちに遠心分離
して抽出液を得る。抽出に用いる溶液のPH範囲は
3〜10でよく、また塩濃度は0.05Mから0.5Mの
範囲である。これらの処理及び以後の処理は、4
℃以下の低温で実施することが望ましい。
このようにして得られた抽出液に硫酸アンモニ
ウムを加え、30%飽和で生じた沈殿を除去し、更
の硫酸アンモニウムを加えて、80%飽和で生じた
沈殿を分取する。
次に、得られた沈殿を溶解し、透析あるいはセ
フアデツクスG−25(商品名)等のゲルろ過剤の
カラムを用いて、硫酸アンモニウムを除去すると
ともに、PHを5に調整した後、陽イオン交換体、
例えばカルボキシメチルセルロースのカラムに負
荷し、カラムの緩衝化に用いたPH5の溶離液(緩
衝液)中の中性塩の濃度を直線的に高めながら溶
出を行なつて、溶出液中にアルカリ金属プロテア
ーゼ画分を得る。この場合、中性塩の濃度を段階
的に高めて、特性の中性塩濃度で酵素を集中的に
溶出する方法も有効である。この画分の中性塩を
除いた後、再度、同様にしてSP−セフアデツク
ス(商品名)を用いて処理する。溶離液(緩衝
液)のPHは弱酸性であればよいが、その濃度は50
mM以下であることが望ましい。添加して酵素の
溶出に用する中性塩は特に制約されるものではな
いが、塩化ナトリウム又は塩化カリウムが適当で
ある。溶出に際して、中性塩の濃度は0から
1.0Mまで直線的に高められるか、又は0.3M、
0.5M更に0.7Mと段階的に高められる。
次いで、イオン交換クロマトグラフイーで得ら
れた画分についてゲルろ過を行ない、更に精製を
進める。この精製段階に用いるゲルろ過剤として
は、セフアデツクスG−100(商品名)あるいはセ
ルロフアインGC−200−m(商品名)が適当であ
る。ゲルろ過は50mM以下の濃度で中性の溶離液
を用いるが、0.5M以下の中性塩が存在している
ことが望ましい。
ゲルろ過後、溶出したアルカリ金属プロテアー
ゼの画分を集め、脱塩濃縮して精製標品を得る。
上記の精製過程で、マイタケのアルカリ金属プロ
テアーゼは60%の高収量で230倍に精製すること
ができる。
以上のように、本発名のアルカリ金属プロテア
ーゼは、マイタケ子実体は菌糸に大量に存在し、
容易に抽出することが可能であり、硫酸アンモニ
ウムによる分別、カルボキシメチルセルロースや
SP−セフアデツクスなどの陽イオン交換体によ
るカラムクロマトグラフイー及びセフアデツクス
G−100などのゲルろ過剤によるゲルろ過により
高い収量で純粋な酵素タンパク質にまで精製する
ことが可能である。
マイタケのアルカリ金属プロテアーゼの特徴及
び従来報告されている亜鉛含有金属プロテアーゼ
との間の性質及び特異性等における相違は、次の
通りである。
1 マイタケのアルカリ金属プロテアーゼの分子
量は約22000で、枯草菌の中性金属プロテアー
ゼ(分子量:40000)、コウジキンの二種の細胞
外中性金属プロテアーゼ(分子量:17000及び
42000)、ナラタケ子実体中性金属プロテアーゼ
(分子量:13500)及び哺乳動物臓器由来の中性
金属プロテアーゼ(分子量:90000)とは明ら
かに異なつている。
2 マイタケのアルカリ金属プロテアーゼは、作
用至適PHが9〜10で、分子量が23000〜24000、
作用至適PHが8.5〜9.5である蛇毒起原の金属プ
ロテアーゼと分子量、作用至適PH及び基質特異
性において類似しているが、PH安定性(蛇毒の
酵素:PH5〜10)及び熱安定性(PH8.5、60℃、
5分間熱処理で完全に失活)で比べると、明ら
かに異なつている。
3 マイタケのアルカリ金属プロテアーゼが示す
極めて高い熱安定性は枯草菌、特にBacillus
thermoproteolytieusの中性金属プロテアーゼ、
Thermolysinに匹敵するものであり、本酵素の
顕著な性質となつている。
マイタケの細胞内アルカリ金属プロテアーゼ
は、安定な性質及び限定された特異性を利用し
て、70℃までの種々の温度及びPH5〜10までの広
い範囲のPHでタンパク質やペプチドに作用させ、
その構造の解析や修飾に有用であるばかりでな
く、生理活性を有するタンパク質又はペプチドな
どの修飾や加工あるいは食品の処理や安定性の増
加に利用することが可能である。また、その安定
性を利用して不溶化した酵素を用いれば、種々の
温度及びPHでタンパク質を分解処理することも可
能である。この際、反応はEDTAを加えて停止
したり、また適量のZn2+やMn2+を添加すること
により再び開始できる利点がある。
次に、実施例によつて本発明を更に詳細に説明
するが、本発明はその要旨を越えない限り、これ
らによつて限定されるものではない。
実施例
水洗した新鮮な市販のマイタケ子実体(生産
量、1500g)を3倍重量の20mMトリス塩酸緩衝
液(PH7.2)とともに、ブレンダーで破砕し、菌
体からアルカリ金属プロテアーゼを抽出した。細
胞等の不溶の残基は13000×g、30分間、遠心分
離して除き上清を集めた。上集(約6)に固形
硫酸アンモニウムの粉末をよく撹拌しながら徐徐
に加え、30%飽和にした。4℃で3時間放置した
後、生じた沈殿を13000×g、30分間、遠心分離
して除いた。次いで、上清に固形の硫酸アンモニ
ウムを添加し、80%飽和にした後、4℃で20時間
放置した。沈殿は13000×g、30分間、遠心分離
して集め、少量の20mM酢酸緩衝液(PH5.0)に
溶解してから、セフアデツクスG−25のカラム
(5×38cm)に通過させて硫酸アンモニウムを除
去した。プロテアーゼ活性を有する画分を集め、
予め20mM酢酸緩衝液(PH5.0)で平衡化したカ
ルボキシメチルセルロース(ワツトマン社、CM
−32)のカラム(3.5×25cm)に吸着させた。プ
ロテアーゼの溶離は全量3の20mM酢酸緩衝液
(PH5.0)中に溶解した塩化カリウムの濃度を0か
ら1.0Mまで直線的に増加させる濃度勾配により
行つた。プロテアーゼ活性画分は0.7M〜0.8Mの
塩化カリウムで溶出された。プロテアーゼ活性画
分を集め、これを20mM酢酸緩衝液(PH5.0)で
平衡化させたセフアデツクスG−25のカラムを通
過させて脱塩した。
なお、この段階で、カルボキシメチルセルロー
スのカラムにアルカリ金属プロテアーゼを吸着さ
せ、まず、500mlの0.3M塩化カリウムを含む20m
M酢酸緩衝液(PH5.0)でカラムを洗いタンパク
質を溶出させた後、0.3Mから1.0までの塩化カリ
ウムの直線濃度勾配を用いてプロテアーゼを溶出
する方法、又は、20mM酢酸緩衝液(PH5.0)中
の塩化カリウムの濃度を0.3M、0.6M、0.8Mと段
階的に増加させ酵素を溶出させる方法がマイタケ
アルカリ金属プロテアーゼ分離精製に有効であ
る。
次に、脱塩したプロテアーゼ画分は、20mM酢
酸緩衝液(PH5.0)で緩衝化したSP−セフアデツ
クスのカラム(2.0×13cm)に吸着させ、全容量
500mlの20mM酢酸緩衝液(PH5.0)中の塩化カリ
ウムの濃度を0から0.8Mまで直線的に増加させ
る濃度勾配溶出によつて溶離した。プロテアーゼ
活性は、0.4〜0.5Mの酸化カリウムで溶出したプ
ロテアーゼ活性画分を集、Diaflowメンブレン
DM−10を用いて限外濃縮した後、20mMトリス
塩酸緩衝液(PH7.2)で平衝化したセフアデツク
スG−100のカラム(2.4×100cm)を用いてゲル
ろ過した。このゲルろ過により、アゾカゼインに
対する活性溶出曲線とタンパク質の溶出曲線が完
全に一致したアルカリ金属プロテアーゼの溶出パ
ターンが得られた。活性画分を集め、Diaflowメ
ンブレンDM−10で最外濃縮後、凍結乾操し、−
80℃で凍結保存した。なお、集めた活性画分を10
mM炭酸水素アンモニウムで平衡化したセフアデ
ツクスG−25カラムを用いて脱塩した後、凍結乾
燥してもよい。
上記の精製方法により、マイタケ子実体のアル
カリ金属プロテアーゼは粗抽出液から230倍に精
製され、その収率は60%であつた。
精製した酵素の純度は、ポリアクリルアミドゲ
ル電気泳動(10%ゲル、PH4.3)及びSDSポリア
クリルアミドスラブ電気泳動(Gradient Gel8〜
15%、又は12.5%ゲル)で精製したアルカリ金属
プロテアーゼを検出した結果、Coomassie
Brilliant Blue染色でいずれの場合も単一のタン
パク染色バンドが検出できた。 DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alkali metal protease obtained from edible fungi and a method for producing the same, and more specifically, to a method for producing the alkali metal protease obtained from edible fungi, and more particularly to Grifola frondosa (Fr. .
The present invention relates to an alkali metal protease extracted from the fruiting body of F. Gray or its cultured cells. Conventionally, metalloproteases that require zinc as an essential component in order to exhibit catalytic activity include microorganisms such as Bacillus subtilis and Bacillus subtilis.
Neutral metalloproteases in the culture medium of Bacillus subtilis), Bacillus thermoproteolytieus , etc., and two types obtained from the culture medium of Aspergillus aspergillus, Aspergillus oryzae , Aspergillus sojae , etc. There is a low-molecular neutral metalloprotease present in the fruiting body of Arimillaria mellea .
In animals, alkali metal proteases, which are components of snake venom in snake vipers, pit vipers, and rattlesnakes, and neutral metal proteases obtained from rabbit kidneys and bovine pituitary glands are known. There are many types of these metalloproteases with molecular weights ranging from 14,000 to 90,000, and some contain calcium atoms in addition to zinc atoms. Most neutral metalloproteases have an optimal pH
is in the range of 6 to 7, but the optimum pH of snake venom alkali metal protease is on the weakly alkaline side of 8 to 9. In addition, these neutral and alkali metal proteases have the specificity that the neutral metal proteases in the fruiting body of Aracea mushroom preferentially decompose the peptide bond, -X-CO-NH-Lys-, which has a lysine residue on the N-terminal side. In addition to peptide bonds where the N-terminal amino acid is leucine, phenylalanine, or valine, -N-CO-NH-Leu
-, -X-CO-NH-Phe-, -X-CO-NH-
It is known that it has the specificity of mainly decomposing Val- (X represents an amino acid residue). The purpose of the present invention is to develop novel proteases with different properties and specificities compared to neutral or alkali metal proteases derived from bacteria, fungi, snake venom, or mammalian organs that have been revealed through previous research. An object of the present invention is to provide a thermostable alkali metal protease. As a result of comprehensive research on proteolytic enzymes contained in the extract of maitake fruiting bodies, the present inventors found that
It has a molecular weight of 22,000, contains one atom of zinc per protein molecule, has an optimal pH of 9 to 10 for the decomposition of casein or azocol, and has a leucine, phenylalanine, valine, or lysine residue on the N-terminal side. We have discovered an alkali metal protease that exhibits endopeptidase activity that specifically hydrolyzes peptide bonds, and have completed the present invention. That is, the thermostable metalloprotease of the present invention has the following enzymatic chemical properties. Molecular weight: Approximately 22,000 (gel filtration method, SDS gel electrophoresis method) Approximately 21,300 (amino acid analysis) Stable PH range: 3 to 10 (PH range with 100% residual activity when kept at 4℃ for 24 hours) Temperature Stability: 60℃ (Temperature at which 100% residual activity occurs when heat treated at PH7.0 for 60 minutes) 70℃ (Temperature at which 70% residual activity occurs when heat treated at PH7.0 for 60 minutes) Optimum pH for action: 9-10 (Substrate: casein, azocol, albumin) Optimum temperature for action: 70℃ (Temperature when reacting for 10 minutes at PH9 using azocasein as a substrate) Isoelectric point: 7.5 Metals contained: 1 zinc per molecule of protein Atomic activator: Not particularly required. Inhibitor: ethylenediaminetetraacetate (EDTA), 1,10-phenanthroline, α,
α'-dipyridyl, dithiothreitol, β-mercaptoethanol, glutathione (reduced form). Inhibition by EDTA is inhibited by Zn 2+ , Mn 2+ or Co 2+
The activity is restored by adding . Substrate specificity: casein, azocasein, azocol, congolet elastin, albumin,
It specifically hydrolyzes the N-terminal peptide bonds of leucine, phenylalanine, valine, and lysine residues in proteins or peptides such as insulin and polylysine. Moreover, the manufacturing method is characterized by extracting the maitake fruiting body or its bacterial cells using a salt solution of pH 3 to 10, and purifying the obtained extract. The maitake mushrooms used in the present invention may be self-cultured maitake cells grown at 20 to 25°C in a normal medium (PH5 to 6) containing yeast extract, malt extract, and glucose, but commercially available You may also use the fruiting body. The method for producing the protease of the present invention will be described in detail below. First, shredded maitake fruit bodies or bacterial cells obtained by culturing are treated with a neutral salt solution in a blender, and then immediately centrifuged to obtain an extract. The pH range of the solution used for extraction may be from 3 to 10, and the salt concentration may be from 0.05M to 0.5M. These processes and subsequent processes are described in 4.
It is desirable to conduct the test at a low temperature below ℃. Add ammonium sulfate to the extract thus obtained, remove the precipitate formed at 30% saturation, add more ammonium sulfate, and collect the precipitate formed at 80% saturation. Next, the obtained precipitate is dissolved, and ammonium sulfate is removed using dialysis or a gel filtration agent column such as Cephadex G-25 (trade name), and the pH is adjusted to 5. ,
For example, by loading a carboxymethyl cellulose column and performing elution while linearly increasing the concentration of neutral salts in the PH5 eluent (buffer) used to buffer the column, alkali metal proteases may be present in the eluate. Obtain fractions. In this case, it is also effective to increase the concentration of the neutral salt stepwise and elute the enzyme intensively at a characteristic neutral salt concentration. After removing the neutral salt from this fraction, it is treated again in the same manner using SP-Sephadex (trade name). The pH of the eluent (buffer) should be weakly acidic, but its concentration should be 50
It is desirable that the amount is not more than mM. The neutral salt added and used for enzyme elution is not particularly limited, but sodium chloride or potassium chloride is suitable. During elution, the concentration of neutral salts varies from 0 to
Enhanced linearly up to 1.0M or 0.3M,
It will be increased step by step to 0.5M and then 0.7M. Next, the fraction obtained by ion exchange chromatography is subjected to gel filtration for further purification. As the gel filtration agent used in this purification step, Cephadex G-100 (trade name) or Cellulofine GC-200-m (trade name) is suitable. Gel filtration uses a neutral eluent with a concentration of 50mM or less, but it is desirable that a neutral salt of 0.5M or less is present. After gel filtration, the eluted alkali metal protease fractions are collected, desalted and concentrated to obtain a purified sample.
Through the above purification process, maitake alkali metal protease can be purified 230 times with a high yield of 60%. As mentioned above, the alkali metal protease of this invention exists in large quantities in the hyphae of maitake fruiting bodies.
It can be easily extracted, fractionated with ammonium sulfate, carboxymethylcellulose and
It is possible to purify the enzyme protein in a high yield to a pure enzyme protein by column chromatography using a cation exchanger such as SP-Sephadex and gel filtration using a gel filtration agent such as Sephadex G-100. The characteristics of maitake alkali metal protease and the differences in properties, specificity, etc. between it and conventionally reported zinc-containing metal proteases are as follows. 1 The molecular weight of maitake alkali metal protease is approximately 22,000, the neutral metal protease of Bacillus subtilis (molecular weight: 40,000), and the two extracellular neutral metal proteases of Kojikin (molecular weight: 17,000 and
42,000), which is clearly different from the neutral metalloprotease from the fruiting body of Araceae (molecular weight: 13,500) and the neutral metalloprotease derived from mammalian organs (molecular weight: 90,000). 2 Maitake alkali metal protease has an optimal pH of 9 to 10, a molecular weight of 23,000 to 24,000,
It is similar in molecular weight, optimum pH, and substrate specificity to metalloproteases originating from snake venom, which has an optimum pH of 8.5 to 9.5, but has poor pH stability (snake venom enzymes: PH5 to 10) and thermostability. (PH8.5, 60℃,
(completely inactivated by heat treatment for 5 minutes), there is a clear difference. 3. The extremely high thermostability of maitake alkali metal proteases has been shown to be beneficial for Bacillus subtilis, especially Bacillus.
thermoproteolytieus neutral metalloprotease,
It is comparable to Thermolysin, and is a remarkable property of this enzyme. The intracellular alkali metal protease of maitake takes advantage of its stable nature and limited specificity to act on proteins and peptides at various temperatures up to 70°C and over a wide range of pH from 5 to 10.
Not only is it useful for analyzing and modifying its structure, but it can also be used for modifying and processing physiologically active proteins or peptides, and for processing and increasing the stability of foods. Furthermore, by using an enzyme that has been made insolubilized by taking advantage of its stability, it is also possible to decompose proteins at various temperatures and pH levels. At this time, there is an advantage that the reaction can be stopped by adding EDTA or restarted by adding an appropriate amount of Zn 2+ or Mn 2+ . Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by these unless the gist of the invention is exceeded. Example Fresh, commercially available maitake fruiting bodies (production amount, 1500 g) washed with water were crushed in a blender with 3 times the weight of 20 mM Tris-HCl buffer (PH7.2), and alkali metal protease was extracted from the bacterial cells. Insoluble residues such as cells were removed by centrifugation at 13,000 xg for 30 minutes, and the supernatant was collected. Solid ammonium sulfate powder was gradually added to the supernatant (approximately 6) while stirring well to achieve 30% saturation. After being left at 4°C for 3 hours, the resulting precipitate was removed by centrifugation at 13,000 xg for 30 minutes. Next, solid ammonium sulfate was added to the supernatant to achieve 80% saturation, and the mixture was left at 4° C. for 20 hours. The precipitate was collected by centrifugation at 13,000 x g for 30 minutes, dissolved in a small amount of 20 mM acetate buffer (PH5.0), and passed through a Sephadex G-25 column (5 x 38 cm) to remove ammonium sulfate. did. Collect fractions with protease activity,
Carboxymethylcellulose (Watmann, CM) equilibrated with 20mM acetate buffer (PH5.0)
-32) column (3.5 x 25 cm). Elution of the protease was performed using a concentration gradient in which the concentration of potassium chloride dissolved in a total volume of 3 volumes of 20 mM acetate buffer (PH5.0) was linearly increased from 0 to 1.0M. The protease active fraction was eluted with 0.7M to 0.8M potassium chloride. The protease active fractions were collected and desalted by passing through a Sephadex G-25 column equilibrated with 20 mM acetate buffer (PH5.0). At this stage, the alkali metal protease was adsorbed onto a carboxymethylcellulose column, and first, 20ml of 20ml containing 500ml of 0.3M potassium chloride
Wash the column with M acetate buffer (PH5.0) to elute the protein, and then elute the protease using a linear concentration gradient of potassium chloride from 0.3M to 1.0, or use 20mM acetate buffer (PH5.0) to elute the protease. 0) is effective for separating and purifying maitake alkaline metal protease by increasing the concentration of potassium chloride in stepwise steps to 0.3M, 0.6M, and 0.8M to elute the enzyme. Next, the desalted protease fraction was adsorbed onto an SP-Sephadex column (2.0 x 13 cm) buffered with 20 mM acetate buffer (PH5.0), and the total volume was
Elution was carried out by gradient elution with linearly increasing concentrations of potassium chloride from 0 to 0.8M in 500ml of 20mM acetate buffer (PH5.0). To measure protease activity, collect the protease active fraction eluted with 0.4-0.5M potassium oxide and transfer to Diaflow membrane.
After ultraconcentration using DM-10, gel filtration was performed using a Sephadex G-100 column (2.4 x 100 cm) equilibrated with 20 mM Tris-HCl buffer (PH7.2). This gel filtration yielded an elution pattern for alkali metal protease in which the activity elution curve for azocasein and the protein elution curve completely matched. The active fractions were collected, concentrated using Diaflow membrane DM-10, and freeze-dried.
It was stored frozen at 80°C. In addition, the collected active fractions were divided into 10
It may be desalted using a Sephadex G-25 column equilibrated with mM ammonium bicarbonate and then freeze-dried. By the above purification method, the alkali metal protease of maitake fruiting body was purified 230 times from the crude extract, and the yield was 60%. The purity of the purified enzyme was determined by polyacrylamide gel electrophoresis (10% gel, PH4.3) and SDS polyacrylamide slab electrophoresis (Gradient Gel8~
Coomassie
A single protein-stained band could be detected with Brilliant Blue staining in all cases.
Claims (1)
金属プロテアーゼ。 分子量:約22000(ゲルろ過法、SDSゲル電気泳動
法) 約21300(アルノ酸分析) 安定なPHの範囲:3〜10(4℃に24時間保つたと
きの活性残存率100%のPH範囲) 温度安定性:60℃(PH7.0で60分間熱処理した際
の活性残存率100%の温度)70℃(PH7.0で60分
間熱処理した際の活性残存率70%の温度) 作用至適PH:9〜10(基質:カゼイン、アゾコー
ル、アルブミン) 作用至適温度:70℃(アゾカゼインを基質として
用い、PH9で10分間反応したときの温度) 等電点:7.5 含有金属:タンパク1分子当り亜鉛1原子 賦活剤:特に必要としない。 阻害剤:エチレンジアミンテトラアセテート
(EDTA)、1,10−フエナントロリン、α,
α′−ジピリジル、ジチオスレイトール、β−メ
ルカプトエタノール、グルタチオン(還元型)。 EDTAによる阻害は、Zn2+、Mn2+又はCo2+
を添加すると活性が回復する。 基質特異性:カゼイン、アゾカゼイン、アゾコー
ル、コンゴーレツドエラスチン、アルブミン、
インシユリン、ホリリジンなどのタンパク質又
はペプチドにおけるロイシン、フエニルアラニ
ン、バリン及びリジン残基のN末端側ペプチド
結合を特異的に加水分解する。 2 マイタケ子実体又はその菌体から、PH3〜10
の塩溶液を用いて抽出を行ない、得られた抽出液
を精製することを特徴とし、次の酵素化学的性質
を有する耐熱性アルカリ金属プロテアーゼの製造
法。 分子量:約22000(ゲルろ過法、SDSゲル電気泳動
法) 約21300(アルノ酸分析) 安定なPHの範囲:3〜10(4℃に24時間保つたと
きの活性残存率100%のPH範囲) 温度安定性:60℃(PH7.0で60分間熱処理した際
の活性残存率100%の温度)70℃(PH7.0で60分
間熱処理した際の活性残存率70%の温度) 作用至適PH:9〜10(基質:カゼイン、アゾコー
ル、アルブミン) 作用至適温度:70℃(アゾカゼインを基質として
用い、PH9で10分間反応したときの温度) 等電点:7.5 含有金属:タンパク1分子当り亜鉛1原子 賦活剤:特に必要としない。 阻害剤:エチレンジアミンテトラアセテート
(EDTA)、1,10−フエナントロリン、α,
α′−ジピリジル、ジチオスレイトール、β−メ
ルカプトエタノール、グルタチオン(還元型)。 EDTAによる阻害は、Zn2+、Mn2+又はCo2+
を添加すると活性が回復する。 基質特異性:カゼイン、アゾカゼイン、アゾコー
ル、コンゴーレツドエラスチン、アルブミン、
インシユリン、ホリリジンなどのタンパク質又
はペプチドにおけるロイシン、フエニルアラニ
ン、バリン及びリジン残基のN末端側ペプチド
結合を特異的に加水分解する。[Scope of Claims] A thermostable alkali metal protease having the following enzymatic chemical properties. Molecular weight: Approximately 22,000 (gel filtration method, SDS gel electrophoresis method) Approximately 21,300 (arnoic acid analysis) Stable PH range: 3 to 10 (PH range with 100% residual activity when kept at 4°C for 24 hours) Temperature stability: 60℃ (Temperature at which the residual activity rate is 100% when heat treated at PH7.0 for 60 minutes) 70℃ (Temperature at which the residual activity rate is 70% when heat treated at PH7.0 for 60 minutes) Optimum pH for action :9-10 (Substrate: casein, azocol, albumin) Optimum temperature for action: 70℃ (Temperature when reacting for 10 minutes at PH9 using azocasein as a substrate) Isoelectric point: 7.5 Metal content: Zinc per molecule of protein Single-atom activator: Not particularly required. Inhibitor: ethylenediaminetetraacetate (EDTA), 1,10-phenanthroline, α,
α'-dipyridyl, dithiothreitol, β-mercaptoethanol, glutathione (reduced form). Inhibition by EDTA is inhibited by Zn 2+ , Mn 2+ or Co 2+
The activity is restored by adding . Substrate specificity: casein, azocasein, azocol, congolet elastin, albumin,
It specifically hydrolyzes the N-terminal peptide bonds of leucine, phenylalanine, valine, and lysine residues in proteins or peptides such as insulin and phorilysine. 2 From maitake fruiting body or its bacterial cells, PH3-10
A method for producing a heat-stable alkali metal protease having the following enzymatic chemical properties, the method comprising performing extraction using a salt solution of and purifying the obtained extract. Molecular weight: Approximately 22,000 (gel filtration method, SDS gel electrophoresis method) Approximately 21,300 (arnoic acid analysis) Stable PH range: 3 to 10 (PH range with 100% residual activity when kept at 4°C for 24 hours) Temperature stability: 60°C (temperature at which 100% residual activity occurs when heat treated at PH7.0 for 60 minutes) 70°C (temperature at which 70% residual activity occurs when heat treated at PH7.0 for 60 minutes) Optimum pH for action :9-10 (Substrate: casein, azocol, albumin) Optimum temperature for action: 70℃ (Temperature when reacting for 10 minutes at PH9 using azocasein as a substrate) Isoelectric point: 7.5 Metal content: Zinc per molecule of protein Single-atom activator: Not particularly required. Inhibitor: ethylenediaminetetraacetate (EDTA), 1,10-phenanthroline, α,
α'-dipyridyl, dithiothreitol, β-mercaptoethanol, glutathione (reduced form). Inhibition by EDTA is inhibited by Zn 2+ , Mn 2+ or Co 2+
The activity is restored by adding . Substrate specificity: casein, azocasein, azocol, congolet elastin, albumin,
It specifically hydrolyzes the N-terminal peptide bonds of leucine, phenylalanine, valine, and lysine residues in proteins or peptides such as insulin and phorilysine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14556482A JPH0244511B2 (en) | 1982-08-24 | 1982-08-24 | TAINETSUSEIARUKARIKINZOKUPUROTEAAZEOYOBISONOSEIZOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14556482A JPH0244511B2 (en) | 1982-08-24 | 1982-08-24 | TAINETSUSEIARUKARIKINZOKUPUROTEAAZEOYOBISONOSEIZOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5934885A JPS5934885A (en) | 1984-02-25 |
JPH0244511B2 true JPH0244511B2 (en) | 1990-10-04 |
Family
ID=15388047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14556482A Expired - Lifetime JPH0244511B2 (en) | 1982-08-24 | 1982-08-24 | TAINETSUSEIARUKARIKINZOKUPUROTEAAZEOYOBISONOSEIZOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0244511B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63255713A (en) * | 1987-04-13 | 1988-10-24 | Tlv Co Ltd | Piston structure for pressure reducing valve |
EP1815007A4 (en) * | 2004-11-15 | 2011-10-19 | Univ North Dakota | A method for single oxygen atom incorporation into digested peptides using peptidases |
-
1982
- 1982-08-24 JP JP14556482A patent/JPH0244511B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS5934885A (en) | 1984-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hayashi et al. | Carboxypeptidase from yeast: large scale preparation and the application to COOH-terminal analysis of peptides and proteins | |
Nonaka et al. | Characterization of a thermostable lysine-specific metalloendopeptidase from the fruiting bodies of a basidiomycete, Grifola frondosa | |
Kaminogawa et al. | Isolation and characterization of a prolidase from Streptococcus cremoris H61 | |
Wingard et al. | Myxobacter AL-1 protease II: specific peptide bond cleavage on the amino side of lysine | |
JPH0646871A (en) | Production of protein hydrolyzate | |
Hofmann | [49] Penicillocarboxypeptidases S-1 and S-2 | |
Hajjou et al. | Purification and characterization of an aminopeptidase from tuna (Thunnus albacares) pyloric caeca | |
Roncari et al. | [43] Thermophilic aminopeptidase I | |
JPH0244511B2 (en) | TAINETSUSEIARUKARIKINZOKUPUROTEAAZEOYOBISONOSEIZOHO | |
US4035234A (en) | Process for the preparation of the kallikrein-trypsin inhibitor | |
DE68922014T2 (en) | Protease. | |
US5369016A (en) | Peptide amidase and the use thereof | |
CN113999832A (en) | Neutral protease of straw mushroom fruiting body, extraction and purification method and application thereof | |
Farr et al. | An extracellular rennin-like enzyme produced by Physarum polycephalum | |
Ozaki et al. | Purification and properties of elastolytic enzyme from Flavobacterium immotum | |
JPH0215192B2 (en) | ||
JP2590373B2 (en) | New surimi and its manufacturing method | |
Ito et al. | Novel aminopeptidase specific for glycine from Actinomucor elegans | |
JP3518868B2 (en) | Method for producing aminopeptidase and natural protein derived from Bacillus licheniformis strain | |
NO129578B (en) | ||
Khilji et al. | Purification and partial characterisation of a bovine kidney aminotripeptidase (capable of cleaving prolyl-glycylglycine) | |
Wada et al. | N‐terminal amino acid sequences of the heavy and light chains of chicken liver cathepsin L | |
FR2509139A1 (en) | MICROBIAL PROTEIN ISOLATION WITH REDUCED NUCLEIC ACID CONTENT | |
JP3516317B2 (en) | New dipeptidase | |
Ouchi | Studies on Proteolytic Enzymes of Streptomyces griseus: Part I. Separation and Purification of Peptidase and Proteinase from Culture Media of Streptomyces griseus ATCC 3463 Part. II. Some Properties of the Peptidase from Culture Media of Streptomyces griseus ATCC 3463 Part III. Some Properties of Alkaline Proteinase from Culture Media of Streptomyces griseus ATCC 3463 |