JPH0239597B2 - KAGAKUDOMETSUKIEKINOPHSOKUTEIHOHO - Google Patents
KAGAKUDOMETSUKIEKINOPHSOKUTEIHOHOInfo
- Publication number
- JPH0239597B2 JPH0239597B2 JP7903883A JP7903883A JPH0239597B2 JP H0239597 B2 JPH0239597 B2 JP H0239597B2 JP 7903883 A JP7903883 A JP 7903883A JP 7903883 A JP7903883 A JP 7903883A JP H0239597 B2 JPH0239597 B2 JP H0239597B2
- Authority
- JP
- Japan
- Prior art keywords
- plating solution
- absorbance
- copper
- ion concentration
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007747 plating Methods 0.000 claims description 160
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 116
- 229910052802 copper Inorganic materials 0.000 claims description 116
- 239000010949 copper Substances 0.000 claims description 116
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 112
- 229910001431 copper ion Inorganic materials 0.000 claims description 112
- 239000000126 substance Substances 0.000 claims description 108
- 238000002835 absorbance Methods 0.000 claims description 86
- 238000011481 absorbance measurement Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 21
- 239000008139 complexing agent Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 11
- 239000003638 chemical reducing agent Substances 0.000 claims description 10
- 150000002171 ethylene diamines Chemical class 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 9
- 238000001139 pH measurement Methods 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 131
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 38
- 239000002253 acid Substances 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 238000011088 calibration curve Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 5
- 239000012670 alkaline solution Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 1
- -1 EDTA/4Na Chemical class 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229940079895 copper edta Drugs 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- BDXBEDXBWNPQNP-UHFFFAOYSA-L copper;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate;hydron Chemical compound [Cu+2].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O BDXBEDXBWNPQNP-UHFFFAOYSA-L 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1675—Process conditions
- C23C18/1683—Control of electrolyte composition, e.g. measurement, adjustment
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
Description
【発明の詳細な説明】
本発明は化学銅めつき液のPH測定方法に関し、
更に詳述すると、銅イオンと、銅イオンの錯化剤
としてエチレンジアミン類と、還元剤とを含むPH
9以上のアルカリ性化学銅めつき液のPHを間接的
に測定する方法に関する。[Detailed Description of the Invention] The present invention relates to a method for measuring the pH of a chemical copper plating solution,
More specifically, PH containing copper ions, ethylenediamines as a complexing agent for the copper ions, and a reducing agent.
This invention relates to a method for indirectly measuring the pH of an alkaline chemical copper plating solution of 9 or higher.
従来より、プリント基板の製造などに化学銅め
つき液が広く使用されているが、プリント基板を
製造する場合などにおいて化学銅めつき液の管理
の良否が直接製品の品質に影響を及ぼすため、液
管理をできるだけ厳密に行なうことが要求され
る。化学銅めつき液の管理上、重要な管理項目は
銅イオン濃度、還元剤(ホルマリン)濃度、液の
PH(又はアルカリ度)などであり、これらが所定
の管理濃度範囲からはずれた場合、特に管理下限
値以下に濃度が低下した場合、銅の析出速度が低
下したり、得られる化学銅めつき皮膜の物性が変
化する等の問題が生じる。 Conventionally, chemical copper plating solutions have been widely used in the production of printed circuit boards, etc., but the quality of the chemical copper plating solution directly affects the quality of the product. It is required to manage the liquid as strictly as possible. Important control items for chemical copper plating solutions include copper ion concentration, reducing agent (formalin) concentration, and liquid
PH (or alkalinity), etc., and if these deviate from the specified controlled concentration range, especially if the concentration falls below the lower control limit, the copper precipitation rate may decrease or the resulting chemical copper plating film may decrease. Problems such as changes in physical properties occur.
このため、従来より種々の化学銅めつき液の自
動管理方法或いは装置が提案されているが、従来
の化学銅めつき液の自動管理方法或いは装置はい
ずれもPH又はアルカリ度の測定にガラス電極を用
いたPH計を使用している。しかし、一般に化学銅
めつき液は高アルカリ溶液であるため、ガラス電
極を用いたPH計によるPH又はアルカリ度の連続測
定は信頼性或いは再現性の点で必ずしも十分でな
く、またPH計の劣化も激しく、保守、点検が面倒
である等の問題がある。 For this reason, various methods and devices for automatically managing chemical copper plating solutions have been proposed, but none of the conventional methods and devices for automatically managing chemical copper plating solutions use glass electrodes to measure pH or alkalinity. A PH meter is used. However, since chemical copper plating solutions are generally highly alkaline solutions, continuous measurement of PH or alkalinity using a PH meter using a glass electrode is not always reliable or reproducible, and the PH meter may deteriorate. There are also problems such as severe maintenance and inspection.
本発明は上記事情に鑑みなされたもので、化学
銅めつき液のPH又はアルカリ度を簡単かつ確実に
測定管理することができる化学銅めつき液のPH測
定方法を提供することを目的とする。 The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a method for measuring the PH of a chemical copper plating solution that can easily and reliably measure and manage the PH or alkalinity of the chemical copper plating solution. .
即ち、本発明者らの検討によれば、アルカリ性
の化学銅めつき液は多くはエチレンジアミン類を
錯化剤として用いている。このエチレンジアミン
類を錯化剤とするアルカリ性化学銅めつき液のPH
は通常9以上の高PHであるが、かかる化学銅めつ
き液においては、銅濃度が一定の場合、PH9以上
の高PHにおいて化学銅めつき液の吸光度値(波長
680〜800nm)とPH値又はアルカリ度とに相関関
係(吸光度を縦軸、PH値を横軸とするグラフにお
いてほぼ直線関係)があり、従つて化学銅めつき
液の吸光度をPH9以上の高PHにおいて測定するこ
とによりPH又はアルカリ度を的確に検知し得るこ
とを見い出した。従つて、まずエチレンジアミン
類を錯化剤とするPH9以上のアルカリ性化学銅め
つき液のPH値をPH9以上において種々変化させた
場合の極めつき液の吸光度を種々の銅イオン濃度
で測定して、種々の銅イオン濃度でのPH値と吸光
度との関係を予め求め、そしてPHもしくはアルカ
リ度を測定すべきエチレンジアミン類を錯化剤と
する化学銅めつき液の吸光度値を測定すると共
に、この化学銅めつき液の銅イオン濃度を測定す
ることにより、これら吸光度測定結果と銅イオン
濃度測定結果に基づき、化学銅めつき液のPH値も
しくはアルカリ度を求めることができることを知
見した。またこの場合、上述したように銅濃度が
一定の場合、吸光度値とPH値とに相関関係がある
ので、所定の銅イオン濃度においてPH値と吸光度
との関係を予め求め、そしてPH測定に際してはま
ず化学銅めつき液の銅イオン濃度を測定し、その
測定結果に基づき該めつき液の銅イオン濃度が前
記所定銅イオン濃度になるように銅イオンを補給
した後、該補給によつて前記所定銅イオン濃度に
戻された化学銅めつき液の吸光度を測定し、この
吸光度測定結果と前記所定銅イオン濃度における
PH値と吸光度との関係からPHを求めることがで
き、この方法によれば種々の銅イオン濃度におい
てPH値と吸光度との関係を求めておく必要がな
く、更に簡易にPH測定を行なうことができること
を知見し、本発明をなすに至つたものである。 That is, according to the studies of the present inventors, most alkaline chemical copper plating solutions use ethylenediamines as a complexing agent. PH of alkaline chemical copper plating solution using ethylenediamine as a complexing agent
Usually has a high PH of 9 or higher, but when the copper concentration is constant, the absorbance value (wavelength) of the chemical copper plating solution at a high PH of 9 or higher is
680 to 800 nm) and PH value or alkalinity (almost a linear relationship in a graph with absorbance as the vertical axis and PH value as the horizontal axis). We have discovered that pH or alkalinity can be accurately detected by measuring at pH. Therefore, first, we measured the absorbance of the plating solution at various copper ion concentrations when the PH value of an alkaline chemical copper plating solution with a pH of 9 or higher using ethylenediamine as a complexing agent was varied at a pH of 9 or higher. The relationship between PH value and absorbance at various copper ion concentrations is determined in advance, and the absorbance value of a chemical copper plating solution using ethylenediamine as a complexing agent is determined, and the pH or alkalinity is measured. By measuring the copper ion concentration of the copper plating solution, we found that it is possible to determine the PH value or alkalinity of the chemical copper plating solution based on the absorbance measurement results and the copper ion concentration measurement results. In this case, as mentioned above, when the copper concentration is constant, there is a correlation between the absorbance value and the PH value, so the relationship between the PH value and the absorbance at a given copper ion concentration is determined in advance, and when measuring the PH value, First, the copper ion concentration of the chemical copper plating solution is measured, and based on the measurement results, copper ions are replenished so that the copper ion concentration of the plating solution becomes the predetermined copper ion concentration. The absorbance of the chemical copper plating solution that has been returned to a predetermined copper ion concentration is measured, and this absorbance measurement result is compared with the above-described copper ion concentration at the predetermined copper ion concentration.
PH can be determined from the relationship between PH value and absorbance. With this method, there is no need to determine the relationship between PH value and absorbance at various copper ion concentrations, and PH measurement can be performed more easily. We have discovered that this can be done, and have come up with the present invention.
それ故、本発明によれば、かかる測定法により
求められたPH値もしくはアルカリ度を予め設定し
たPH値もしくはアルカリ度と比較することによ
り、化学銅めつき液のPH値もしくはアルカリ度が
予め設定したたPH値もしくはアルカリ度以下であ
るか否かを判断することができ、この際予め設定
したPH値もしくはアルカリ度以下である場合に信
号を発するようにすることによつて、PH値もしく
はアルカリ度を該設定PH値もしくはアルカリ度に
調整すべき時期を検知し、そしてPH値もしくはア
ルカリ度を調整するためにPH調整剤を補給するこ
とができるので、化学銅めつき液のPHもしくはア
ルカリ度を確実に管理することができる。 Therefore, according to the present invention, the PH value or alkalinity of the chemical copper plating solution is preset by comparing the PH value or alkalinity determined by such a measuring method with a preset PH value or alkalinity. It is possible to judge whether or not the PH value or alkalinity is below the preset PH value or alkalinity. It is possible to detect when the temperature should be adjusted to the set PH value or alkalinity, and then replenish the PH adjuster to adjust the PH value or alkalinity, so the PH or alkalinity of the chemical copper plating solution can be managed reliably.
従つて、本発明は、
銅イオンと、銅イオンの錯化剤としてエチレン
ジアミン類と、還元剤とを含むPH9以上のアルカ
リ性化学銅めつき液のPHを測定する方法におい
て、この化学銅めつき液のPH値をPH9以上におい
て種々変化させた場合における該めつき液の吸光
度を680〜800nmの波長で種々の銅イオン濃度で
測定することにより、種々の銅イオン濃度でのPH
値と吸光度との関係を予め求める一方、PHを測定
すべきPH9以上のアルカリ性化学銅めつき液の銅
イオン濃度を測定すると共に、該化学銅めつき液
の吸光度を前記波長で測定し、この吸光度測定結
果を、該化学銅めつき液の銅イオン濃度を測定す
ることによつて求められた銅イオン濃度における
前記PH値と吸光度との関係から該化学銅めつき液
のPHを求めることを特徴とする化学銅めつき液の
PH測定方法、及び、
銅イオンと、銅イオンの錯化剤としてエチレン
ジアミン類と、還元剤とを含むPH9以上のアルカ
リ性化学銅めつき液のPHを測定する方法におい
て、この化学銅めつき液のPH値をPH9以上におい
て種々変化させた場合における該めつき液の吸光
度を680〜800nmの波長で所定の銅イオン濃度で
測定することにより、該所定銅イオン濃度でのPH
値と吸光度との関係を予め求める一方、PHを測定
すべきPH9以上のアルカリ性化学銅めつき液の銅
イオン濃度を測定し、その測定結果に基づき該め
つき液の銅イオン濃度が前記所定銅イオン濃度に
なるように銅イオンを補給した後、該補給によつ
て前記所定銅イオン濃度に戻された化学銅めつき
液の吸光度を前記波長で測定し、この吸光度測定
結果を、前記所定銅イオン濃度におけるPH値と吸
光度との関係に照らして、該化学銅めつき液のPH
を求めることを特徴とする化学銅めつき液のPH測
定方法。を提供する。 Therefore, the present invention provides a method for measuring the pH of an alkaline chemical copper plating solution with a pH of 9 or higher, which contains copper ions, ethylenediamines as a complexing agent for the copper ions, and a reducing agent. By measuring the absorbance of the plating solution at various copper ion concentrations at a wavelength of 680 to 800 nm when the PH value of the plating solution was varied at pH 9 or higher, the PH value at various copper ion concentrations was determined.
While determining the relationship between the value and absorbance in advance, measure the copper ion concentration of an alkaline chemical copper plating solution with a pH of 9 or higher whose pH is to be measured, and measure the absorbance of the chemical copper plating solution at the above wavelength. The PH of the chemical copper plating solution is determined from the relationship between the absorbance and the PH value at the copper ion concentration determined by measuring the copper ion concentration of the chemical copper plating solution using the absorbance measurement results. Characteristics of chemical copper plating liquid
PH measurement method and method for measuring the PH of an alkaline chemical copper plating solution with a pH of 9 or higher containing copper ions, ethylenediamines as a complexing agent for the copper ions, and a reducing agent. By measuring the absorbance of the plating solution at a wavelength of 680 to 800 nm and at a predetermined copper ion concentration when the PH value is variously changed at pH 9 or higher, the PH at the predetermined copper ion concentration can be determined.
While determining the relationship between the value and the absorbance in advance, the copper ion concentration of the alkaline chemical copper plating solution with a pH of 9 or higher whose pH is to be measured is measured, and based on the measurement results, the copper ion concentration of the plating solution is determined to be the specified copper After replenishing copper ions to the ion concentration, the absorbance of the chemical copper plating solution, which has been returned to the predetermined copper ion concentration by the replenishment, is measured at the wavelength, and the absorbance measurement result is In light of the relationship between PH value and absorbance at ion concentration, the PH of the chemical copper plating solution
A method for measuring the pH of a chemical copper plating solution, which is characterized by determining the PH of a chemical copper plating solution. I will provide a.
以下、本発明につき図面を参照して更に詳しく
説明する。 Hereinafter, the present invention will be explained in more detail with reference to the drawings.
本発明において、管理の対象となる化学銅めつ
き液は銅イオン、エチレンジアミン類、例えばエ
チレンジアミン四酢酸、テトラヒドロキシプロピ
ルエチレンジアミン、N−ヒドロキシエチルエチ
レンジアミントリ酢酸、これらの塩、それにホル
マリン等の還元剤を含有するアルカリタイプのも
のである。この場合、化学銅めつき液中には前記
成分に加えて更に他の成分、例えばエチレンジア
ミン類以外の錯化剤、安定剤などが含有されてい
ても差支えない。 In the present invention, the chemical copper plating solution to be controlled contains copper ions, ethylenediamines such as ethylenediaminetetraacetic acid, tetrahydroxypropylethylenediamine, N-hydroxyethylethylenediaminetriacetic acid, salts thereof, and reducing agents such as formalin. It is an alkaline type containing. In this case, the chemical copper plating solution may contain other components, such as complexing agents and stabilizers other than ethylenediamines, in addition to the above components.
本発明は、上述したタイプの化学銅めつき液の
PHもしくはアルカリ度を連続的もしくは間欠的に
検知するものであるが、この場合PHの検知は化学
銅めつき液の吸光度を測定することにより行なう
ものである。即ち、本発明者らの知見によれば、
EDTA・4Na等のエチレンジアミン類の過剰存
在下において銅イオン等の金属イオンがエチレン
ジアミン類と錯化しているアルカリ溶液において
は、その金属イオン濃度が一定であると吸光度値
とPH値もしくはアルカリ度とがほぼ直線関係にあ
り、従つてこのアルカリ溶液の金属イオン濃度と
吸光度値がわかれば、PHもしくはアルカリ度を正
確に知ることができるので、本発明においては、
まず化学銅めつき液の吸光度を測定することによ
り、化学銅めつき液のPH値もしくはアルカリ度を
検知するようにしたものである。 The present invention provides a chemical copper plating solution of the type described above.
PH or alkalinity is detected continuously or intermittently, and in this case, PH is detected by measuring the absorbance of a chemical copper plating solution. That is, according to the findings of the present inventors,
In an alkaline solution in which metal ions such as copper ions are complexed with ethylenediamines in the presence of an excess of ethylenediamines such as EDTA/4Na, if the metal ion concentration is constant, the absorbance value and PH value or alkalinity will change. There is an almost linear relationship, so if you know the metal ion concentration and absorbance value of this alkaline solution, you can accurately know the PH or alkalinity, so in the present invention,
First, the PH value or alkalinity of the chemical copper plating solution is detected by measuring the absorbance of the chemical copper plating solution.
ここで、吸光度測定によるPHもしくはアルカリ
度の検知は、PH9以上のアルカリ溶液であること
が必要であるが、エチレンジアミン類を錯化剤と
する化学銅めつき液は通常PH9以上のアルカリ溶
液であるから、PHもしくはアルカリ度検知のため
の吸光度測定は化学銅めつき液をそのまま使用し
て行なうことができる。 Here, to detect PH or alkalinity by absorbance measurement, it is necessary to use an alkaline solution with a pH of 9 or higher, but chemical copper plating solutions that use ethylenediamine as a complexing agent are usually alkaline solutions with a PH of 9 or higher. Therefore, absorbance measurement for pH or alkalinity detection can be performed using chemical copper plating solution as is.
第1,2図はこれを示したもので、図中1は化
学銅めつき液2が入れられた化学銅めつき槽、3
はポンプ4が介装されたパイプで、その一端は化
学銅めつき液2中に浸漬されていると共に、他端
は吸光度測定装置5に接続されているものであ
る。この例によれば、連続的又は所定時間毎にポ
ンプ4が作動して槽1中の化学銅めつき液2がパ
イプ3内に流入し、次いで吸光度測定装置5のフ
ローセルを流れ、化学銅めつき液2の吸光度が測
定されるものである。なお、吸光度が測定された
めつき液はパイプ6を通つて槽1に返送するよう
にしてもよく、パイプ7を通つて系外に廃棄処理
するようにしてもよい。 Figures 1 and 2 show this, where 1 is a chemical copper plating tank containing chemical copper plating solution 2, and 3 is a chemical copper plating tank containing chemical copper plating solution 2.
is a pipe in which a pump 4 is interposed, one end of which is immersed in a chemical copper plating solution 2, and the other end connected to an absorbance measuring device 5. According to this example, the pump 4 is operated continuously or at predetermined time intervals, and the chemical copper plating solution 2 in the tank 1 flows into the pipe 3, and then flows through the flow cell of the absorbance measuring device 5, and the chemical copper plating solution 2 flows into the pipe 3. The absorbance of the soaking liquid 2 is measured. The tamping liquid whose absorbance has been measured may be returned to the tank 1 through the pipe 6, or may be disposed of outside the system through the pipe 7.
ここで、前記化学銅めつき液2の吸光度を測定
する場合、その測定波長は680〜800nmの範囲の
所定波長とする。 Here, when measuring the absorbance of the chemical copper plating solution 2, the measurement wavelength is a predetermined wavelength in the range of 680 to 800 nm.
このようにして得られた吸光度測定結果は、制
御装置8において予じめ設定された設定値と比較
され、前記吸光度測定結果より検知される化学銅
めつき液のPHもしくはアルカリ度が予じめ設定さ
れたPHもしくはアルカリ度以下である場合、信号
Aが発せられるものであるが、この場合前記吸光
度測定結果より化学銅めつき液のPHもしくはアル
カリ度を検知するためには、この化学銅めつき液
の銅イオン濃度がが検知されていなければならな
い。このため、本発明は、更にこの化学銅めつき
液の銅イオン濃度を検知する必要がある。 The absorbance measurement result obtained in this way is compared with a preset value in the control device 8, and the PH or alkalinity of the chemical copper plating solution detected from the absorbance measurement result is determined in advance. If the pH or alkalinity is below the set value, signal A is emitted. In this case, in order to detect the pH or alkalinity of the chemical copper plating solution from the absorbance measurement result, The copper ion concentration of the soaking solution must be detected. Therefore, in the present invention, it is necessary to further detect the copper ion concentration of this chemical copper plating solution.
この場合、化学銅めつき液の銅イオン濃度を検
知する方法には特に制限はなく、また銅イオン濃
度の絶対値を知る直線検知法によつてもよく、間
接検知法によつてもよい。この間接検知法の一例
を挙げると、の化学銅めつき液においては、使用
初期の銅イオン濃度を一定にした場合、一定面積
の被めつき物を一定時間めつきしたときの銅の析
出量はほぼ一定であり、換言すればめつき液中の
銅イオン濃度は常にほぼ同じ濃度にまで低下する
から、一定面積の被めつき物をめつきするような
場合であれば、めつき時間により銅イオン濃度を
検知することができる。従つて、所定めつき時間
毎に化学銅めつき液の吸光度を測定すれば、この
吸光度測定時における銅イオン濃度は常にほぼ同
じであるから、単に吸光度測定結果を予じめ設定
された設定値と比較することにより、化学銅めつ
き液のPHもしくはアルカリ度が所定のPHもしくは
アルカリ度以下であるか否かを検知できる。また
この場合、一定時間めつき後の銅イオン濃度の低
下量はほぼ同じであるから、それに応じて一定量
の銅イオンを補給し、元の銅イオン濃度にまで戻
すような場合は、銅イオンを補給した後吸光度を
測定するようにしてもよい(この場合も銅イオン
濃度はほぼ一定である)。従つて、この場合は銅
イオン濃度検知手段としてタイマーを用いること
ができ、例えばこのタイマーにより第1,2図に
示したポンプ4を作動させることができる。ま
た、被めつき物の面積が変るような場合は、被め
つき物の面積×めつき時間により銅イオン濃度を
検知するようにしてもよい。 In this case, the method of detecting the copper ion concentration of the chemical copper plating solution is not particularly limited, and may be a linear detection method that determines the absolute value of the copper ion concentration, or an indirect detection method. To give an example of this indirect detection method, when using a chemical copper plating solution with a constant copper ion concentration at the initial stage of use, the amount of copper deposited when a fixed area of a plated object is plated for a fixed period of time. In other words, the copper ion concentration in the plating solution always decreases to approximately the same concentration, so when plating a fixed area of an object, the plating time will vary depending on the plating time. Copper ion concentration can be detected. Therefore, if the absorbance of the chemical copper plating solution is measured at predetermined intervals, the copper ion concentration at the time of absorbance measurement will always be approximately the same, so the absorbance measurement result can simply be set to a preset value. By comparing with , it is possible to detect whether the PH or alkalinity of the chemical copper plating solution is below a predetermined PH or alkalinity. In addition, in this case, the amount of decrease in copper ion concentration after plating for a certain period of time is almost the same, so if a certain amount of copper ions is replenished accordingly and the copper ion concentration is returned to the original concentration, copper ion The absorbance may be measured after replenishing the copper ion concentration (also in this case, the copper ion concentration is approximately constant). Therefore, in this case, a timer can be used as the copper ion concentration detection means, and for example, the pump 4 shown in FIGS. 1 and 2 can be operated by this timer. Furthermore, when the area of the plated object changes, the copper ion concentration may be detected by multiplying the area of the plated object by the plating time.
しかしながら、めつき液管理の点からは化学銅
めつき液の銅イオン濃度を分析により測定するこ
とがより好ましい。この場合、銅イオン濃度の定
量法は特に制限されず、例えば公知の種々の方法
が採用され得るが、吸光度測定により銅イオン濃
度を測定することが好適である。 However, from the viewpoint of plating solution management, it is more preferable to measure the copper ion concentration of the chemical copper plating solution by analysis. In this case, the method for quantifying the copper ion concentration is not particularly limited, and for example, various known methods may be employed, but it is preferable to measure the copper ion concentration by absorbance measurement.
この吸光度測定による銅イオン濃度の測定は、
化学銅めつき液に硫酸、塩酸、酢酸等の酸を加え
てPH8以下にした後、吸光度を測定するものであ
る。この場合、測定波長は適宜選定し得、例えば
680〜800nmの範囲の所定波長とすることができ
る。このようにして吸光度を測定することによ
り、所定波長において吸光度値と銅イオン濃度値
とはほぼ直線関係にあるので、得られた吸光度値
から銅イオン濃度値を検知することができるもの
である。また、このPH8以下にした化学銅めつき
液の吸光度測定に用いる装置は上述した吸光度測
定装置5と別に配設してもよく、この吸光度測定
装置5と共通にしてもよい。 Measurement of copper ion concentration by this absorbance measurement is
The absorbance is measured after adding an acid such as sulfuric acid, hydrochloric acid, or acetic acid to a chemical copper plating solution to lower the pH to 8 or less. In this case, the measurement wavelength can be selected as appropriate, e.g.
The predetermined wavelength can be in the range of 680-800 nm. By measuring the absorbance in this manner, the absorbance value and the copper ion concentration value have a substantially linear relationship at a predetermined wavelength, so the copper ion concentration value can be detected from the obtained absorbance value. Further, a device used for measuring the absorbance of the chemical copper plating solution with a pH of 8 or lower may be provided separately from the absorbance measuring device 5 described above, or may be used in common with the absorbance measuring device 5.
第1図の例は、PH8以下にした化学銅めつき液
用の吸光度測定装置9を別個に設けた例であり、
一端がめつき液2中に浸漬され、ポンプ10及び
酸添加装置11が順次介装されたパイプ12の他
端がこの吸光度測定装置9に接続されたものであ
る。そして、一方の吸光度測定装置5により化学
銅めつき液2の吸光度を測定する場合、これとほ
ぼ同じ時期にポンプ10を作動させ、めつき液2
をパイプ12に流入させると共に、酸添加装置9
より酸を添加してめつき液2をPH8以下にし、こ
の化学銅めつき液の吸光度を他方の吸光度測定装
置9により測定するものである。 The example in FIG. 1 is an example in which an absorbance measuring device 9 for a chemical copper plating solution with a pH of 8 or less is separately installed.
One end of the pipe 12 is immersed in the plating solution 2, and the other end of the pipe 12 is connected to the absorbance measuring device 9, in which a pump 10 and an acid addition device 11 are successively interposed. When the absorbance of the chemical copper plating solution 2 is to be measured using one of the absorbance measuring devices 5, the pump 10 is operated at approximately the same time as the absorbance of the plating solution 2.
is caused to flow into the pipe 12, and at the same time, the acid addition device 9
The plating solution 2 is made to have a pH of 8 or less by adding more acid, and the absorbance of this chemical copper plating solution is measured by the other absorbance measuring device 9.
なお、この吸光度測定後のめつき液はパイプ1
3を通つて系外に廃棄処理することが好ましい。 The plating solution after this absorbance measurement was transferred to pipe 1.
It is preferable that the waste be disposed of outside the system through No. 3.
また、第2図の例は吸光度測定装置を共通にし
た例で、パイプ3に酸添加装置11を付設し、PH
又はアルカリ度検知のため化学銅めつき液そのも
のの吸光度を測定する場合は酸を添加させず、こ
の吸光度測定の直後又は直前に銅イオン濃度検知
のために吸光度を測定する場合、酸添加装置11
より酸を添加し、めつき液をPH8以下にするもの
である。 In addition, the example in Figure 2 is an example in which the absorbance measurement device is shared, and an acid addition device 11 is attached to the pipe 3, and the PH
Or, when measuring the absorbance of the chemical copper plating solution itself to detect alkalinity, no acid is added, and when absorbance is measured to detect copper ion concentration immediately or immediately after this absorbance measurement, the acid addition device 11 is used.
This method adds more acid to make the plating solution pH 8 or lower.
このようにして求められたPH8以下にした化学
銅めつき液の吸光度測定結果は、前記制御装置8
において演算され、これにより化学銅めつき液の
銅イオン濃度値がわかるので、これに基づきこの
銅イオン濃度値における化学銅めつき液のPH9以
上における吸光度測定結果(化学銅めつき液それ
自体の吸光度測定結果)が演算され、設定値と比
較され、前記銅イオン濃度値とPH9以上における
化学銅めつき液の吸光度測定値から演算される化
学銅めつき液のPHもしくはアルカリ度が予じめ設
定された設定PH値もしくは設定アルカリ度以下で
ある場合、上述したように信号Aを発するもので
ある。従つて、この場合制御装置8は記憶、演
算、比較機能を有するコンピユータが有効に用い
られる。なお、めつき液のPHもしくはアルカリ度
が設定値以下の場合、上述したように信号Aが発
せざれるものであるが、更にPH値もしくはアルカ
リ度が予じめ設定したPH値又はアルカリ度以上の
場合に、信号を発し、警報を与えることもでき
る。 The absorbance measurement result of the chemical copper plating solution whose pH has been lowered to 8 or less is obtained by the control device 8.
This calculates the copper ion concentration value of the chemical copper plating solution. Based on this, the absorbance measurement result of the chemical copper plating solution at pH 9 or higher at this copper ion concentration value (the value of the chemical copper plating solution itself) is calculated. The absorbance measurement result) is calculated and compared with the set value, and the pH or alkalinity of the chemical copper plating solution is calculated in advance from the copper ion concentration value and the absorbance measurement value of the chemical copper plating solution at pH 9 or higher. When the set pH value or the set alkalinity is lower than the set value, the signal A is generated as described above. Therefore, in this case, a computer having storage, calculation, and comparison functions is effectively used as the control device 8. Note that if the pH or alkalinity of the plating solution is below the set value, signal A will not be emitted as described above, but in addition, if the pH or alkalinity is higher than the preset PH value or alkalinity. It is also possible to issue a signal and give a warning in this case.
ここで、信号Aはブザー等による警報として発
することもでき、これにより作業者が必要によつ
てめつき液にPH調整剤を加えるなどの処置を行な
うこともできるが、好ましくは信号AをPH調整剤
補給装置に伝え、PH調整剤をめつき液に自動補給
するのがよい。 Here, the signal A can be emitted as an alarm by a buzzer or the like, and the operator can take measures such as adding a PH adjuster to the plating solution if necessary, but it is preferable to set the signal A to the PH It is best to notify the adjuster replenishment device and automatically replenish the PH adjuster to the plating solution.
第1,2図の例はこれを示すもので、信号Aを
電磁バルブ14に伝えてバルブ14を所定時間開
放し、PH調整剤槽15内のPH調整剤16をパイプ
17より槽1内のめつき液2に所定量添加するよ
うにしたものである。なお、PH調整剤は化学銅め
つき液の組成によつても相違するが、通常水酸化
アルカリ、場合によつてはアンモニアを主成分と
するものである。 The example shown in Figs. 1 and 2 shows this. Signal A is transmitted to the electromagnetic valve 14 to open the valve 14 for a predetermined period of time, and the PH adjuster 16 in the PH adjuster tank 15 is pumped through the pipe 17 into the tank 1. A predetermined amount is added to the plating solution 2. Although the PH adjuster differs depending on the composition of the chemical copper plating solution, it usually contains alkali hydroxide as a main component, and in some cases, ammonia as a main component.
また、化学銅めつき液の管理の点で、PH8以下
にした化学銅めつき液の吸光度測定結果を前記制
御装置8において設定値と比較し、この吸光度測
定結果から演算される化学銅めつき液の銅イオン
濃度が予じめ設定された設定銅イオン濃度値以下
の場合、信号Bを発するようにすることが好まし
い。この信号Bも信号Aと同様にブザー等の警報
発令とすることもできるが、信号Bを銅イオン補
給装置に伝えて銅イオンを自動補給するようにす
ることが有効である。即ち、第1,2図の例に示
したように、信号Bを電磁バルブ18に伝えて銅
イオン補給剤槽19内の銅イオン補給剤20をパ
イプ21よりめつき液2に所定量添加するように
することが好適である。 In addition, in terms of managing the chemical copper plating solution, the control device 8 compares the absorbance measurement result of the chemical copper plating solution with a pH of 8 or less with the set value, and the chemical copper plating value is calculated from the absorbance measurement result. When the copper ion concentration of the liquid is less than or equal to a preset copper ion concentration value, it is preferable to emit signal B. Similar to signal A, this signal B can also be used to issue an alarm such as a buzzer, but it is effective to transmit signal B to the copper ion replenishing device to automatically replenish copper ions. That is, as shown in the example of FIGS. 1 and 2, a signal B is transmitted to the electromagnetic valve 18 to add a predetermined amount of the copper ion replenisher 20 in the copper ion replenisher tank 19 to the plating solution 2 through the pipe 21. It is preferable to do so.
なお、PH調整剤や銅イオン補給剤の補給装置は
図示のものに限らず、例えば定量ポンプ等を用い
ることもできる。 Note that the replenishing device for the PH adjuster and the copper ion replenisher is not limited to the one shown in the drawings, and a metering pump or the like may also be used, for example.
更に、本発明においては、化学銅めつき液の還
元剤(ホルマリン)濃度を管理することもでき
る。この還元剤(ホルマリン)濃度の管理は適宜
な定量法を採用して行なうことができるが、この
場合も吸光度測定法を利用してホルマリン濃度を
検知することが可能である。即ち、この方法は、
化学銅めつき液に硫酸、塩酸等の酸を加えて所定
PH、例えばPH7〜10にし、そのときの吸光度を測
定する。次に、亜硫酸ナトリウム等の亜硫酸塩の
一定量を加える。これにより、ホルマリンと亜硫
酸塩との反応によつてアルカリが生じ、化学銅め
つき液のPHが上昇するから、濃度既知の酸をこの
めつき液の吸光度が前記吸光度と一致するまで加
え、濃度既知の酸の添加量からホルマリン濃度を
演算し、定量するものである。この場合、濃度既
知の酸の添加量から検知されるホルマリン濃度が
予じめ設定した設定ホルマリン濃度以下である場
合、響報を発令し、或いはホルマリン補給装置に
指令を与えてホルマリンをめつき液に自動補給す
ることができる。 Furthermore, in the present invention, the concentration of the reducing agent (formalin) in the chemical copper plating solution can also be controlled. This reducing agent (formalin) concentration can be controlled by employing an appropriate quantitative method, but in this case as well, the formalin concentration can be detected using an absorbance measurement method. That is, this method:
Add acid such as sulfuric acid or hydrochloric acid to chemical copper plating solution
Adjust the pH to 7 to 10, for example, and measure the absorbance at that time. Next, add a certain amount of sulfite, such as sodium sulfite. As a result, alkali is generated by the reaction between formalin and sulfite, and the pH of the chemical copper plating solution increases. Therefore, add acid with a known concentration until the absorbance of the plating solution matches the absorbance. The formalin concentration is calculated and quantified from the known amount of acid added. In this case, if the formalin concentration detected from the added amount of acid whose concentration is known is less than the preset formalin concentration, an alarm is issued or a command is given to the formalin replenishing device to add formalin to the plating solution. can be automatically refilled.
また、亜硫酸塩添加前後の吸光度値を測定し、
これからコンピユータの演算によりホルマリン量
を求めることもできる。 In addition, the absorbance values were measured before and after adding sulfite,
From this, the amount of formalin can also be determined by computer calculation.
更に、銅イオンの消費量とホルマリンの消費量
とが相関し、銅イオン濃度からホルマリン濃度を
換算し得る場合、銅イオン濃度の測定によりその
結果が設定銅イオン濃度以下である場合に信号B
を発する際、同時に信号Cで発し、この信号Cの
指令によりホルマリンをめつき液に補給するよう
にすることもできる。 Furthermore, if the amount of copper ion consumption and the amount of formalin consumed are correlated and the formalin concentration can be converted from the copper ion concentration, signal B is generated when the result of measuring the copper ion concentration is less than or equal to the set copper ion concentration.
It is also possible to emit a signal C at the same time when emitting , and to supply formalin to the plating solution according to the command of this signal C.
第1,2図はこれを示したもので、信号Bの発
令と共に信号Cを発令し、この信号Cにより電磁
バルブ22を所定時間開放し、ホルマリン補給剤
槽23内のホルマリン補給剤24をパイプ25よ
り槽1内のめつき液2に所定量補給するようにし
たものである。なお、ホルマリン補給装置は図示
の例に限られないことは勿論である。 Figures 1 and 2 show this. Signal C is issued at the same time as signal B is issued, and this signal C opens the electromagnetic valve 22 for a predetermined period of time, and the formalin replenishment agent 24 in the formalin replenishment agent tank 23 is piped. 25, a predetermined amount of the plating liquid 2 in the tank 1 is replenished. Note that, of course, the formalin replenishing device is not limited to the illustrated example.
ここで、一般に化学銅めつきにおいては、めつ
きの進行により銅イオンと還元剤の濃度及びPHが
低下するため、それに応じてこれらの成分を補給
すればよいが、必要に応じて安定剤、それに汲み
出しにより消耗する錯化剤等の成分も上述した補
給剤16,20又は24のいずれかに混ぜて補給
するか、これらの補給剤16,20及び24とは
別途に適宜補給することができる。 Generally, in chemical copper plating, the concentration and pH of copper ions and reducing agents decrease as plating progresses, so these components can be replenished accordingly, but stabilizers and Components such as a complexing agent that are consumed by pumping can also be replenished by mixing them with any of the above-mentioned replenishers 16, 20, or 24, or can be appropriately replenished separately from these replenishers 16, 20, and 24.
上述した1,2図の例は制御装置8において化
学銅めつき(PH9以上)の吸光度測定結果とPH8
以下にした化学銅めつきの吸光度測定結果から化
学銅めつき液のPHもしくはアルカリ度を演算して
いるものであるが、本発明はこれに制限されるも
のではなく、例えば第3図に示す如く構成するこ
とができる。 The example in Figures 1 and 2 above shows the absorbance measurement results of chemical copper plating (PH9 or higher) in the control device 8 and the
Although the pH or alkalinity of the chemical copper plating solution is calculated from the absorbance measurement results of chemical copper plating as shown below, the present invention is not limited to this, and for example, as shown in FIG. Can be configured.
即ち、第3図の例は、まずPH8以下にした化学
銅めつき液の吸光度を吸光度測定装置9にて測定
し、その測定結果を制御装置8aで設定値と比較
し、測定結果が設定値に達した場合(化学銅めつ
き液の銅イオン濃度が予じめ設定した銅イオン濃
度以下になつた場合)、信号Bを発するようにし
たものである。より具体的には、第4図に示した
ように、吸光度測定装置9において、光源26か
ら発せられた光Lがめつき液が流れるフローセル
27を透過し、このめつき液で吸収された光の変
化分がが受光素子28により検出され、この受光
素子28からの微小電流が前記制御装置8aの入
力端子29に伝えられ、増幅器30で増幅される
と共に電圧に変換され、吸光度に対応した電圧と
して電圧計31に表示される。一方、電圧設定回
路32において増幅器30のアウトプツトの電圧
と予じめ設定しておいた電圧値との比較が行なわ
れ、設定電圧に達した場合、出力端子33より信
号Bが発せられるものである。なお、前記制御装
置8aには、更に信号Bの発令回数を計数するカ
ウンタ34が設けられていると共に、この信号B
の発令回数が予じめ設定された回数に達する毎に
これを検知する回数設定回路35が設けられ、信
号Bの発令回数が一定の回数に達した場合、出力
端子36から信号Sが発せられるようになつてお
り、これにより化学銅めつき液2の老化度が検知
されるようになつている。 That is, in the example shown in FIG. 3, the absorbance of the chemical copper plating solution whose pH has been adjusted to 8 or lower is first measured using the absorbance measurement device 9, and the measurement result is compared with the set value by the control device 8a, and the measurement result is determined as the set value. When the copper ion concentration of the chemical copper plating solution reaches a predetermined value or less (when the copper ion concentration of the chemical copper plating solution becomes lower than the preset copper ion concentration), a signal B is generated. More specifically, as shown in FIG. 4, in the absorbance measuring device 9, the light L emitted from the light source 26 passes through the flow cell 27 through which the plating liquid flows, and the light absorbed by the plating liquid is measured. The amount of change is detected by the light-receiving element 28, and the minute current from the light-receiving element 28 is transmitted to the input terminal 29 of the control device 8a, where it is amplified by the amplifier 30 and converted into a voltage, which is converted into a voltage corresponding to the absorbance. It is displayed on the voltmeter 31. On the other hand, the voltage setting circuit 32 compares the output voltage of the amplifier 30 with a preset voltage value, and when the set voltage is reached, a signal B is generated from the output terminal 33. . Note that the control device 8a is further provided with a counter 34 for counting the number of times the signal B is issued.
A frequency setting circuit 35 is provided which detects each time the number of times the signal B is issued reaches a preset number, and when the number of times the signal B is issued reaches a certain number of times, the signal S is issued from the output terminal 36. This allows the degree of aging of the chemical copper plating solution 2 to be detected.
そして前記信号Bは銅イオン補給剤装置に伝達
され、銅イオン補給剤20がめつき液2に補給さ
れてめつき液2の銅イオン濃度が元の所定の濃度
にまで戻る。 The signal B is then transmitted to the copper ion replenisher device, and the copper ion replenisher 20 is replenished into the plating solution 2, so that the copper ion concentration in the plating solution 2 returns to the original predetermined concentration.
従つて、前記信号Bが発令された時点はめつき
液2の銅イオン濃度が設定銅イオン濃度とほぼ同
じであり、或いは信号Bが与えられて所定量の銅
イオンが補給された後はめつき液2の銅イオン濃
度は元の濃度に戻るので、これらのいずれにあつ
ても銅イオン濃度が明確にほぼ一定値にあるのが
検知されるものである。それ故、信号Bが発令さ
れた場合、信号Bの銅イオン補給装置への伝達を
遅延させ、銅イオンの補給を行なう前に制御装置
8aから信号Dを発してポンプ4を作動させる
か、或いは信号Bを銅イオン補給装置に与えて銅
イオンを補給した後、信号Dを発令してポンプ4
を作動させて(或いはポンプ4は常時作動状態に
おいたまま、吸光度測定装置5を信号Dによりオ
ンオフさせることもできる。)、めつき液2そのも
のの吸光度を吸光度測定装置5により測定するも
のである。場合によつては、化学銅めつき液2の
銅イオン濃度を連続的に分析する場合において、
前記制御装置8aと更に別の比較回路を設け、め
つき液2の銅イオン濃度が予じめ設定された銅イ
オン濃度値と一致した場合、信号Dを発すること
もできる。 Therefore, at the time when the signal B is issued, the copper ion concentration of the plating solution 2 is almost the same as the set copper ion concentration, or after the signal B is given and a predetermined amount of copper ions have been replenished, the plating solution 2 is Since the copper ion concentration in No. 2 returns to its original concentration, it is clearly detected that the copper ion concentration is at a substantially constant value in any of these cases. Therefore, when the signal B is issued, the transmission of the signal B to the copper ion replenishment device is delayed, and the control device 8a issues the signal D to operate the pump 4 before replenishing copper ions, or After giving signal B to the copper ion replenishing device to replenish copper ions, issue signal D to pump 4.
(Alternatively, the absorbance measuring device 5 can be turned on and off using the signal D while the pump 4 is kept in operation at all times.), and the absorbance of the plating solution 2 itself is measured by the absorbance measuring device 5. . In some cases, when continuously analyzing the copper ion concentration of chemical copper plating solution 2,
It is also possible to provide a comparison circuit separate from the control device 8a and issue a signal D when the copper ion concentration of the plating solution 2 matches a preset copper ion concentration value.
かくして測定されたPH9以上の化学銅めつき液
2の吸光度値は、制御装置8bにて予じめ設定さ
れた吸光度値(設定値)と比較され、測定吸光度
値が設定値に達した場合、信号Aが発せられ、こ
の信号AがPH調整剤16を収容する槽15に連結
されたパイプ17の電磁バルブ14に伝えられ、
このバルブ14が所定時間開いて所定量のPH調整
剤16が化学銅めつき液2に補給されるものであ
る。 The thus measured absorbance value of the chemical copper plating solution 2 with a pH of 9 or higher is compared with a preset absorbance value (set value) in the control device 8b, and when the measured absorbance value reaches the set value, A signal A is generated, and this signal A is transmitted to the electromagnetic valve 14 of the pipe 17 connected to the tank 15 containing the PH regulator 16.
When this valve 14 is opened for a predetermined period of time, a predetermined amount of PH regulator 16 is supplied to the chemical copper plating solution 2.
以上詳述したように、本発明によれば、エチレ
ンジアミン類を錯化剤とする高アルカリの化学銅
めつき液のPHもしくはアルカリ度をPH計を用いず
に簡単かつ確実に測定することができる。即ち、
PH計によるPH測定はそれ自体正確であるが、高ア
ルカリの化学銅めつき液に浸漬したままの状態で
連続使用した場合の信頼性、再現性は劣り、また
劣化も激しく、保守、点検も面倒なものである
が、本発明は化学銅めつき液のPHもしくはアルカ
リ度をガラス電極を用いたPH計で測定し、管理す
るのではなく、吸光度測定装置を用いて吸光度を
測定することにより行なうので、正確に化学銅め
つき液のPH管理を行なうことができ、またその保
守点検も簡単であり、保守点検の負担が大幅に減
少する。 As detailed above, according to the present invention, the PH or alkalinity of a highly alkaline chemical copper plating solution using ethylenediamine as a complexing agent can be easily and reliably measured without using a PH meter. . That is,
PH measurement using a PH meter is accurate in itself, but reliability and reproducibility are poor when used continuously while immersed in highly alkaline chemical copper plating solution, and deterioration is severe, making maintenance and inspection difficult. Although it is cumbersome, the present invention does not measure and manage the pH or alkalinity of a chemical copper plating solution with a PH meter using a glass electrode, but by measuring the absorbance using an absorbance measuring device. This allows accurate PH management of the chemical copper plating solution, and also makes maintenance and inspection easy, greatly reducing the burden of maintenance and inspection.
次に、実施例により本発明を更に具体的に説明
する。 Next, the present invention will be explained in more detail with reference to Examples.
実施例 1
下記組成
CuSO4・5H2O 0.04モル/l
EDTA・4Na 0.08 〃
の溶液を作成し、そのPHをNaOH及びH2SO4で
種々の値に調整した。Example 1 A solution having the following composition: CuSO 4 .5H 2 O 0.04 mol/l EDTA .4Na 0.08 〃 was prepared, and its pH was adjusted to various values with NaOH and H 2 SO 4 .
次に、これらの溶液の吸光度及びPHを測定し、
第5図に示す結果を得た。 Next, measure the absorbance and pH of these solutions,
The results shown in FIG. 5 were obtained.
なお、吸光度は日立ダブルビーム分光光度計
124形を用い、波長730nm、1mmセルで行なつた。
また、PHは日立−堀場F−7形PHメータを用い
て測定した。 The absorbance was measured using a Hitachi double beam spectrophotometer.
The experiment was carried out using a model 124 with a wavelength of 730 nm and a 1 mm cell.
In addition, PH was measured using a Hitachi-Horiba F-7 PH meter.
第5図の結果より、溶液がPH9以上において吸
光度値とPH値とがほぼ直線関係にあることが認め
られた。また、PH8以下において吸光度値はほぼ
一定であり、従つてPH8以下において銅イオン濃
度を吸光度測定法により有効に定量し得ることも
認められた。 From the results shown in FIG. 5, it was confirmed that the absorbance value and the PH value were in an almost linear relationship when the pH of the solution was 9 or higher. It was also found that the absorbance value was almost constant at pH 8 or lower, and therefore, the copper ion concentration could be effectively determined by absorbance measurement at pH 8 or lower.
以上の結果に基づいて作成したPH12〜13間の吸
光度とPHとの関係を示したグラフ(PH検知用検量
線)が第6図である。 FIG. 6 is a graph (PH detection calibration curve) showing the relationship between absorbance and PH between PH12 and PH13, which was created based on the above results.
なお、第7,8図には、上記溶液において
CuSO4・5H2O濃度をそれぞれ0.02モル/l、
0.06モル/lとした溶液を用いた以外は上記と同
様にして測定した吸光度とPHとの関係を示す。 In addition, in Figures 7 and 8, in the above solution,
CuSO 4 and 5H 2 O concentrations were each 0.02 mol/l,
The relationship between absorbance and PH measured in the same manner as above except that a solution with a concentration of 0.06 mol/l was used is shown.
また、上記溶液においてCuSO4・5H2O濃度を
0.02〜0.06モル/lとし、硫酸でPHを4に調整し
た溶液の吸光度を上記と同様にして測定した結果
(銅イオン濃度検知用検量線)を第9図に示す。 In addition, the concentration of CuSO 4 5H 2 O in the above solution was
The absorbance of a solution having a pH of 0.02 to 0.06 mol/l and adjusted to 4 with sulfuric acid was measured in the same manner as above (a calibration curve for copper ion concentration detection), and the results are shown in FIG.
実施例 2
下記組成
CuSO4・5H2O 0.04モル/l
EDTA・4Na 0.08 〃
ホルマリン 0.08 〃
グリシン 0.06 〃
PH 12.5(PHメータ測定)
の化学銅めつき液の波長730nmにおける吸光度を
測定した(前記吸光度測定装置使用、1mmセル)。
その結果は吸光度0.225であり、第6図に示す検
量線からPHを求めると、PHは12.5であつた。従つ
て、吸光度測定から求めたPH値とPHメーターから
のPH値とは互に一致することが認められた。Example 2 The absorbance at a wavelength of 730 nm of a chemical copper plating solution having the following composition CuSO 4.5H 2 O 0.04 mol/l EDTA.4Na 0.08 Formalin 0.08 Glycine 0.06 PH 12.5 (measured with a PH meter) was measured (the absorbance Measurement device used, 1mm cell).
The result was an absorbance of 0.225, and the pH was determined from the calibration curve shown in Figure 6 to be 12.5. Therefore, it was confirmed that the PH value obtained from the absorbance measurement and the PH value obtained from the PH meter were in agreement with each other.
次に、前記めつき液1を用いて常法により前
処理した1dm2の銅板を70℃で1時間めつきした。
その後、このめつき液を分析量採取し、これを硫
酸でPH4に調整して吸光度を上記と同様にして測
定したところ0.38であり、第9図に示す検量線か
ら銅イオン濃度を求めると0.035モル/lであつ
た。この結果に基づき、めつき液の銅イオン濃度
が初期の0.04モル/lになるようにCuSO4・
5H2Oを加えた。次いで、このめつき液のPHをPH
メーターで測定したところ12.4であつた。また、
このめつき液の吸光度を測定したところ0.228で
あり、第6図の検量線からPHを求めると12.4で、
これは上記PHメーターによるPH値と一致した。 Next, a 1 dm 2 copper plate, which had been pretreated using the plating solution 1 in a conventional manner, was plated at 70° C. for 1 hour.
After that, an analytical amount of this plating solution was taken, the pH was adjusted to 4 with sulfuric acid, and the absorbance was measured in the same manner as above, and it was 0.38, and the copper ion concentration was determined from the calibration curve shown in Figure 9 to be 0.035. It was mol/l. Based on this result, CuSO4 .
5H2O was added. Next, adjust the pH of this plating solution to PH
When I measured it with a meter, it was 12.4. Also,
The absorbance of this plating solution was measured and found to be 0.228, and the pH determined from the calibration curve in Figure 6 was 12.4.
This coincided with the PH value measured by the PH meter above.
一方、前記めつき液1を用いて上記と同様に
してめつきを行ない(4時間)、その後このめつ
き液の吸光度をそのまま及び硫酸でPH4に調整し
たものについて測定したところ、それぞれ0.123
及び0.274であつた。PH4の吸光度から第9図の
検量線を用いて銅イオン濃度を求めると約0.02モ
ル/lであり、めつき液そのままの吸光度から第
7図の検量線を用いてPHを求めると12.0であつ
た。このめつき後のめつき液のPHはPHメーター測
定では12.0であり、従つて吸光度測定からのPH値
とPHメーターによるPH値とは互に一致した。 On the other hand, plating was carried out in the same manner as above using the plating solution 1 (for 4 hours), and then the absorbance of this plating solution was measured as it was and after adjusting the pH to 4 with sulfuric acid, and the absorbance was 0.123.
and 0.274. When the copper ion concentration is determined from the absorbance of PH4 using the calibration curve in Figure 9, it is approximately 0.02 mol/l, and when the PH is determined from the absorbance of the plating solution as it is using the calibration curve in Figure 7, it is 12.0. Ta. The pH of the plating solution after this plating was 12.0 as measured by a PH meter, and therefore the PH value from the absorbance measurement and the PH value measured by the PH meter were in agreement with each other.
第1図乃至第3図はそれぞれ本発明方法を採用
して化学銅めつきを行なうための装置の一例を示
す概略説明図、第4図は第3図の装置の銅イオン
濃度用吸光度測定装置及び制御装置のブロツク
図、第5図は銅イオン濃度0.04モル/lでの銅−
EDTA・4Naの錯化合物含有溶液の吸光度とPH
値との関係を示すグラフ、第6図乃至第8図はそ
れぞれ銅イオン濃度0.04モル/l、0.02モル/
l、0.06モル/lにおける銅−EDTA・4Na錯化
合物含有溶液のPH12〜13間の吸光度とPH値との関
係を示すグラフ(検量線)、第9図は銅−
EDTA・4Na錯化合物含有溶液のPH4における
吸光度と銅イオン濃度との関係を示すグラフ(検
量線)である。
1…化学銅めつき槽、2…化学銅めつき液、
5,9…吸光度測定装置、8,8a,8b…制御
装置、16…PH補給剤。
Figures 1 to 3 are schematic explanatory diagrams showing an example of an apparatus for chemical copper plating using the method of the present invention, respectively, and Figure 4 is an absorbance measurement device for copper ion concentration of the apparatus shown in Figure 3. and a block diagram of the control device, Fig. 5 shows the copper ion concentration at 0.04 mol/l.
Absorbance and PH of a solution containing a complex compound of EDTA/4Na
Graphs 6 to 8 showing the relationship with copper ion concentrations are 0.04 mol/l and 0.02 mol/l, respectively.
Figure 9 is a graph (calibration curve) showing the relationship between absorbance and PH value between PH12 and 13 of a solution containing a copper-EDTA/4Na complex compound at 0.06 mol/l.
It is a graph (calibration curve) showing the relationship between the absorbance and copper ion concentration at PH4 of a solution containing an EDTA/4Na complex compound. 1...Chemical copper plating tank, 2...Chemical copper plating liquid,
5, 9... Absorbance measurement device, 8, 8a, 8b... Control device, 16... PH replenisher.
Claims (1)
ンジアミン類と、還元剤とを含むPH9以上のアル
カリ性化学銅めつき液のPHを測定する方法におい
て、この化学銅めつき液のPH値をPH9以上におい
て種々変化させた場合における該めつき液の吸光
度を680〜800nmの波長で種々の銅イオン濃度で
測定することにより、種々の銅イオン濃度でのPH
値と吸光度との関係を予め求める一方、PHを測定
すべきPH9以上のアルカリ性化学銅めつき液の銅
イオン濃度を測定すると共に、該化学銅めつき液
の吸光度を前記波長で測定し、この吸光度測定結
果を、該化学銅めつき液の銅イオン濃度を測定す
ることによつて求められた銅イオン濃度における
前記PH値と吸光度との関係から該化学銅めつき液
のPHを求めることを特徴とする化学銅めつき液の
PH測定方法。 2 銅イオンと、銅イオンの錯化剤としてエチレ
ンジアミン類と、還元剤とを含むPH9以上のアル
カリ性化学銅めつき液のPHを測定する方法におい
て、この化学銅めつき液のPH値をPH9以上におい
て種々変化させた場合における該めつき液の吸光
度を680〜800nmの波長で所定の銅イオン濃度で
測定することにより、該所定銅イオン濃度でのPH
値と吸光度との関係を予め求める一方、PHを測定
すべきPH9以上のアルカリ性化学銅めつき液の銅
イオン濃度を測定し、その測定結果に基づき該め
つき液の銅イオン濃度が前記所定銅イオン濃度に
なるように銅イオンを補給した後、該補給によつ
て前記所定銅イオン濃度に戻された化学銅めつき
液の吸光度を前記波長で測定し、この吸光度測定
結果を、前記所定銅イオン濃度におけるPH値と吸
光度との関係に照らして、該化学銅めつき液のPH
を求めることを特徴とする化学銅めつき液のPH測
定方法。[Scope of Claims] 1. A method for measuring the pH of an alkaline chemical copper plating solution with a pH of 9 or higher, which contains copper ions, ethylenediamines as a complexing agent for the copper ions, and a reducing agent. By measuring the absorbance of the plating solution at various copper ion concentrations at a wavelength of 680 to 800 nm when the PH value of the plating solution was varied at pH 9 or higher, the PH value at various copper ion concentrations was determined.
While determining the relationship between the value and absorbance in advance, measure the copper ion concentration of an alkaline chemical copper plating solution with a pH of 9 or higher whose pH is to be measured, and measure the absorbance of the chemical copper plating solution at the above wavelength. The PH of the chemical copper plating solution is calculated from the relationship between the absorbance and the PH value at the copper ion concentration determined by measuring the copper ion concentration of the chemical copper plating solution using the absorbance measurement results. Characteristics of chemical copper plating liquid
PH measurement method. 2. In the method of measuring the pH of an alkaline chemical copper plating solution with a pH of 9 or higher that contains copper ions, ethylene diamines as a complexing agent for copper ions, and a reducing agent, the PH value of this chemical copper plating solution is determined to be PH 9 or higher. By measuring the absorbance of the plating solution at a predetermined copper ion concentration at a wavelength of 680 to 800 nm, the PH at a predetermined copper ion concentration can be determined.
While determining the relationship between the value and the absorbance in advance, the copper ion concentration of the alkaline chemical copper plating solution with a pH of 9 or higher whose pH is to be measured is measured, and based on the measurement results, the copper ion concentration of the plating solution is determined to be the specified copper plating solution. After replenishing copper ions to the ion concentration, the absorbance of the chemical copper plating solution, which has been returned to the predetermined copper ion concentration by the replenishment, is measured at the wavelength, and the absorbance measurement result is In light of the relationship between PH value and absorbance at ion concentration, the PH of the chemical copper plating solution
A method for measuring the pH of a chemical copper plating solution, which is characterized by determining the PH of a chemical copper plating solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7903883A JPH0239597B2 (en) | 1983-05-06 | 1983-05-06 | KAGAKUDOMETSUKIEKINOPHSOKUTEIHOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7903883A JPH0239597B2 (en) | 1983-05-06 | 1983-05-06 | KAGAKUDOMETSUKIEKINOPHSOKUTEIHOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59219456A JPS59219456A (en) | 1984-12-10 |
JPH0239597B2 true JPH0239597B2 (en) | 1990-09-06 |
Family
ID=13678744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7903883A Expired - Lifetime JPH0239597B2 (en) | 1983-05-06 | 1983-05-06 | KAGAKUDOMETSUKIEKINOPHSOKUTEIHOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0239597B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115989341A (en) * | 2020-10-21 | 2023-04-18 | 旭化成株式会社 | Method for manufacturing structure with conductive pattern |
-
1983
- 1983-05-06 JP JP7903883A patent/JPH0239597B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS59219456A (en) | 1984-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3177338B2 (en) | Method and apparatus for holding an electroless plating solution | |
US9128493B2 (en) | Method and apparatus for plating solution analysis and control | |
JP2004534909A (en) | Method and apparatus for controlling the amount of a chemical component in an electrochemical cell | |
JP2011128455A (en) | Device for measuring concentration of carbonic acid-based salt, system for controlling alkali developing solution, and method for measuring concentration of carbonic acid-based salt | |
GB2064827A (en) | Method and apparatus for controlling electroless plating bath | |
US3951602A (en) | Spectrophotometric formaldehyde-copper monitor | |
JPH0343346B2 (en) | ||
JP2005520131A (en) | Automatic in-process specific mass spectrometry method and apparatus for characterizing components | |
JPH0239597B2 (en) | KAGAKUDOMETSUKIEKINOPHSOKUTEIHOHO | |
US4315518A (en) | Methods of and system for controlling copper concentration in a solution | |
JP2003004726A (en) | Method for measuring concentration of sulfuric acid in plating liquid | |
JPH0641764A (en) | Automatic control method for electroless plating bath | |
JP2002235194A (en) | Method for controlling treatment solution in anodic oxidation treatment for aluminum or aluminum alloy | |
US5065417A (en) | Method and apparatus for monitoring the partial density of metal and acid in pickling baths | |
US20240279814A1 (en) | Apparatus for measuring plating deposition status | |
JP3291054B2 (en) | Alkaline ion water purifier | |
Bek et al. | Kinetics of silver anodic dissolution in thiosulfate electrolytes | |
JP6763608B2 (en) | Carbon dioxide concentration display device for developer and developer management device | |
JP2018120900A (en) | Developer management device | |
JPS63195274A (en) | Method for controlling electroless plating | |
KR102502227B1 (en) | Reducing agent concentration analyzer used for plating solutions of metal compounds | |
JPH0394142A (en) | Device for measuring concentration of copper of electroless copper plating liquid | |
DeBrita et al. | Electroless Bath Automatic Analyzers from a User's Viewpoint | |
JP2626376B2 (en) | Method of measuring copper ion concentration in chemical copper plating solution | |
JP2003527477A (en) | Regular chemical replenishment system |