Nothing Special   »   [go: up one dir, main page]

JPH0239592Y2 - - Google Patents

Info

Publication number
JPH0239592Y2
JPH0239592Y2 JP1982057363U JP5736382U JPH0239592Y2 JP H0239592 Y2 JPH0239592 Y2 JP H0239592Y2 JP 1982057363 U JP1982057363 U JP 1982057363U JP 5736382 U JP5736382 U JP 5736382U JP H0239592 Y2 JPH0239592 Y2 JP H0239592Y2
Authority
JP
Japan
Prior art keywords
pump
gear pump
pressure
worm
viscosity fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982057363U
Other languages
Japanese (ja)
Other versions
JPS58161678U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5736382U priority Critical patent/JPS58161678U/en
Publication of JPS58161678U publication Critical patent/JPS58161678U/en
Application granted granted Critical
Publication of JPH0239592Y2 publication Critical patent/JPH0239592Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)

Description

【考案の詳細な説明】 この考案は、未加硫ゴム液やグリスなどの高粘
度流体を吐出ノズルより常時一定流量連続して吐
出させるための定流量吐出装置に関する。
[Detailed Description of the Invention] This invention relates to a constant flow discharge device for continuously discharging high viscosity fluid such as unvulcanized rubber liquid or grease from a discharge nozzle at a constant flow rate.

上記の高粘度流体に比べて比較的粘度の低い例
えばホツトメルト熱可塑性接着剤のような低粘度
流体にあつては歯車ポンプによつて常時一定流量
連続して吐出させることが可能であるが上述のよ
うな高粘度流体にあつてはその粘性抵抗のために
歯車ポンプで圧送することは不可能であり、一般
に空気圧または油圧を駆動源としたプランジヤー
ポンプあるいはピストンポンプと呼ばれている往
復動ポンプによつてのみ可能である。
In the case of low-viscosity fluids such as hot-melt thermoplastic adhesives, which have a relatively low viscosity compared to the high-viscosity fluids mentioned above, it is possible to continuously discharge them at a constant flow rate using a gear pump. Due to its viscous resistance, it is impossible to pump high-viscosity fluids with gear pumps, so reciprocating pumps, generally called plunger pumps or piston pumps, are driven by pneumatic or hydraulic pressure. This is possible only by

そして従来のこの種往復動ポンプを用いた流体
吐出装置は第1図に示す構造からなつている。即
ち、槽1に充填される高粘度流体mは圧縮空気供
給源2からの圧縮空気によつて作動する周知の往
復動エアーポンプ(プランジヤーポンプ)Pによ
つて、圧送流路3を通つて吐出ノズル4より吐出
させて高粘度流体を被加工物に所定の厚さに塗付
させるようにしている。ところで、圧送流路3を
通つて送られる高粘度流体mには、往復動エアー
ポンプPの脈動圧が負荷し、該エアーポンプPで
圧送される流体mはA1に示すように送り容積量
が脈状に増域し、これがために吐出ノズル4から
連続して吐出される高粘度流体mもA2に示すよ
うにその吐出容積量が経時的に増減し、被加工面
に対する塗付厚を一定厚に維持することが困難で
あつた。この塗付厚のバラツキを解消するために
作業者がその熟練技術でもつてその吐出量の経時
的増域にあわせて塗付速度を調整するようにして
いるが、これら塗付作業を自動化またはロボツト
化するためには上述の送り容積量を常時一定に維
持するようにしなければならない。なお第1図に
おいて図中5は往復動エアーポンプPのピスト
ン、6は圧送流路3の途中に設けたアキユムレー
タ、7は切換弁である。
A conventional fluid discharge device using this type of reciprocating pump has a structure shown in FIG. That is, the high viscosity fluid m filled in the tank 1 is fed through a pressure channel 3 by a well-known reciprocating air pump (plunger pump) P operated by compressed air from a compressed air supply source 2. The high viscosity fluid is discharged from the discharge nozzle 4 to coat the workpiece to a predetermined thickness. By the way, the pulsating pressure of the reciprocating air pump P is loaded on the high viscosity fluid m sent through the pressure feeding channel 3, and the fluid m pumped by the air pump P has a feeding volume as shown in A1 . As a result, the discharge volume of the high-viscosity fluid m continuously discharged from the discharge nozzle 4 increases and decreases over time as shown in A2 , and the coating thickness on the workpiece surface increases. It was difficult to maintain a constant thickness. In order to eliminate this variation in coating thickness, workers use their skill to adjust the coating speed according to the increase in the discharge amount over time, but these coating operations can be automated or robotized. In order to achieve this, the above-mentioned feed volume must be kept constant at all times. In FIG. 1, 5 is a piston of a reciprocating air pump P, 6 is an accumulator provided in the middle of the pressure passage 3, and 7 is a switching valve.

この考案は、上述の難点を解消して吐出ノズル
より経時的に一定の容積量の高粘度流体を吐出さ
せるようにし、もつて塗付厚のバラツキの発生を
解消するものである。
This invention solves the above-mentioned difficulties and allows a constant volume of high-viscosity fluid to be discharged from a discharge nozzle over time, thereby eliminating variations in coating thickness.

第2図はこの考案の一実施例を示すもので、圧
送流路3の途中に、電動機等の駆動源Mに直接ま
たは間接につながれた駆動軸14側のウオーム8
とこれに噛み合う被動軸13側のウオームホイー
ル9とからセルフロツク機構15を介して伝動さ
れるギヤポンプ、トロコイドポンプ等の歯車ポン
プ10を介装してなることを特徴とするものであ
る。なお、図中11はギヤボツクス、12はポン
プケーシングでそれぞれ模式的に示す。なおまた
第1図に示す構造と同一構成要素はこれに同一符
号を付してその説明を省略する。この作動原理を
説明すると、往復動エアーポンプPの180〜300
Kg/cm2のポンプ脈動圧によつて高粘度流体mは
A1に示すように送り容積量の経時的増減をとも
ないながら歯車ポンプ10に送り込まれる。この
際歯車ポンプ10は、第3図に示すようにポンプ
脈動圧P1によつて歯車モータとして作用し、該
ポンプ10とウオームホイール9とを連結する被
動軸13を回転させようとする力が負荷する。と
ころが、被動軸13はこれに取付けられているセ
ルフロツク機構15のウオームホイール9が駆動
軸14側のウオーム8に噛み合つているために該
ウオーム8によつてセルフロツクされる。
FIG. 2 shows an embodiment of this invention, in which a worm 8 on the drive shaft 14 side, which is directly or indirectly connected to a drive source M such as an electric motor, is placed in the middle of the pressure flow path 3.
A gear pump 10 such as a gear pump or a trochoid pump is interposed, which is transmitted via a self-locking mechanism 15 from a worm wheel 9 on the driven shaft 13 side that meshes with the worm wheel 9. In addition, in the figure, 11 is a gearbox, and 12 is a pump casing, which are each schematically shown. Furthermore, the same components as those in the structure shown in FIG. 1 are denoted by the same reference numerals, and the explanation thereof will be omitted. To explain this operating principle, the reciprocating air pump P has a 180 to 300
With the pump pulsating pressure of Kg/ cm2 , the high viscosity fluid m is
As shown in A 1 , it is sent to the gear pump 10 with the amount of feed volume increasing and decreasing over time. At this time, the gear pump 10 acts as a gear motor due to the pump pulsating pressure P 1 as shown in FIG. load. However, since the worm wheel 9 of the self-locking mechanism 15 attached to the driven shaft 13 is engaged with the worm 8 on the drive shaft 14 side, the driven shaft 13 is self-locked by the worm 8.

一方ウオーム8の駆動軸14には直接または変
速機等を介して間接に駆動源Mにつながれてお
り、セルフロツク機構15を形成するウオーム8
及びウオームホイール9は駆動源Mの回転角のみ
回転が許される。故に駆動源Mによつて設定され
た回転数にしたがつて歯車ポンプ10はその回転
が許され、前記往復動エアーポンプPの脈動圧送
圧力によつて歯車ポンプ10が回転されようとす
るのを制動し、駆動源Mの定速回転数、即ち歯車
ポンプ10の回転数にしたがつて前記脈動圧送圧
力に影響されずに高粘度流体を一定の圧送圧力
P2によつて一定容積送りすることになり、吐出
ノズル4からはBに示すように常時一定の高粘度
流体mを連続して吐出することになる。
On the other hand, the drive shaft 14 of the worm 8 is connected directly or indirectly to a drive source M via a transmission or the like, and the worm 8 forms a self-locking mechanism 15.
The worm wheel 9 is allowed to rotate only by the rotation angle of the drive source M. Therefore, the gear pump 10 is allowed to rotate according to the rotation speed set by the drive source M, and the gear pump 10 is prevented from being rotated by the pulsating pressure of the reciprocating air pump P. The high viscosity fluid is pumped at a constant pressure without being affected by the pulsating pumping pressure according to the constant rotational speed of the driving source M, that is, the rotational speed of the gear pump 10.
A constant volume is fed by P2 , and a constant high viscosity fluid m is continuously discharged from the discharge nozzle 4 as shown in B.

従つてこの考案によれば、駆動源によつて常時
一定回転する歯車ポンプを高粘度流体の圧送流路
途中に介装することによつて、往復動ポンプ特有
の脈動した圧送圧力に影響されることがなく高粘
度流体を吐出ノズルより吐出させることができ、
これによつて被加工面に対する塗付厚にバラツキ
が生じないため、この塗付作業の自動化またはロ
ボツト化が可能である。
Therefore, according to this invention, by interposing a gear pump that is constantly rotated at a constant rate by a driving source in the middle of a high-viscosity fluid pressure flow path, the pump is not affected by the pulsating pumping pressure peculiar to a reciprocating pump. High viscosity fluid can be discharged from the discharge nozzle without any problems.
As a result, there is no variation in the coating thickness on the surface to be processed, making it possible to automate or robotize this coating work.

しかし上記圧送経路中に、単に歯車ポンプを介
在させるだけでは、往復動ポンプによる脈動圧送
圧力が歯車ポンプの圧送回転数を越えるときは、
該圧送圧力によつて該歯車ポンプが歯車モータと
して作用し、往復動ポンプの脈動圧に同調するよ
うに歯車ポンプも脈動回転し、これがために高粘
度流体を均一に圧送することができないことにな
る。
However, simply interposing a gear pump in the above-mentioned pumping path will not work if the pulsating pumping pressure by the reciprocating pump exceeds the pumping rotation speed of the gear pump.
The pumping pressure causes the gear pump to act as a gear motor, and the gear pump also rotates pulsatingly in synchronization with the pulsating pressure of the reciprocating pump, which makes it impossible to uniformly pump the high viscosity fluid. Become.

しかるに本考案によれば、圧送経路中の歯車ポ
ンプが駆動軸側のウオームとこれに噛み合う被動
軸側のウオームホイールとからなるセルフロツク
機構を介して駆動源につながれてなるため、往復
動ポンプの脈動圧送圧力が歯車ポンプの圧送回転
数を越えるときは、セルフロツク機構のウオーム
歯車特有のセルフロツク機能が作動し、これがた
めに脈動圧送圧力に影響されることなく歯車ポン
プの常時一定の圧送圧力に合わせて高粘度流体を
送り出すことができ、それだけ圧送制御が容易で
ある。
However, according to the present invention, the gear pump in the pressure feeding path is connected to the drive source via a self-locking mechanism consisting of a worm on the drive shaft side and a worm wheel on the driven shaft side that meshes with the worm, so the pulsation of the reciprocating pump is reduced. When the pumping pressure exceeds the pumping rotation speed of the gear pump, the self-locking function unique to the worm gear of the self-locking mechanism is activated, which allows the pump to adjust to the always constant pumping pressure of the gear pump without being affected by the pulsating pumping pressure. High viscosity fluid can be sent out, and pressure feeding control is easier.

さらに付随的な効果としては前述のように歯車
ポンプには、脈動圧送圧力によつてこれを歯車モ
ータとして回転させようとする力が負荷してお
り、したがつてこの脈動する歯車ポンプを駆動源
によつて定回転数に制御するだけでよいことにな
り、この結果駆動源についてはその出力を軽減す
ることが可能である。
Furthermore, as an incidental effect, as mentioned above, the gear pump is loaded with a force that attempts to rotate it as a gear motor due to the pulsating pumping pressure, and therefore this pulsating gear pump is used as a driving source. Therefore, it is only necessary to control the rotation speed to a constant number, and as a result, it is possible to reduce the output of the drive source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの種従来例の高粘度流体圧送吐出装
置の説明図である。第2図はこの考案の一実施例
を示す説明図で、第3図はその要部説明図であ
る。 m……高粘度流体、P……往復動ポンプ、M…
…駆動源、3……圧送流路、4……吐出ノズル、
8……ウオーム、9……ウオームホイール、10
……歯車ポンプ、13……被動軸、14……駆動
軸、15……セルフロツク機構。
FIG. 1 is an explanatory diagram of a conventional high viscosity fluid pumping and discharging device of this type. FIG. 2 is an explanatory diagram showing one embodiment of this invention, and FIG. 3 is an explanatory diagram of the main part thereof. m... High viscosity fluid, P... Reciprocating pump, M...
... Drive source, 3 ... Pressure flow path, 4 ... Discharge nozzle,
8...Worm, 9...Worm wheel, 10
... Gear pump, 13 ... Driven shaft, 14 ... Drive shaft, 15 ... Self-lock mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高粘度流体を往復動ポンプによつて圧送流路を
通つて吐出ノズルより吐出させる流体吐出装置に
おいて、上記圧送流路途中に歯車ポンプが介装さ
れると共に、該歯車ポンプは駆動軸側のウオーム
とこれに噛み合う被動軸側のウオームホイールと
からなるセルフロツク機構を介して駆動源につな
がれてなる定流量吐出装置。
In a fluid discharge device in which a high viscosity fluid is discharged from a discharge nozzle through a pressure channel using a reciprocating pump, a gear pump is interposed in the middle of the pressure channel, and the gear pump is connected to a worm on the drive shaft side. A constant flow discharge device connected to a drive source via a self-locking mechanism consisting of a worm wheel on the driven shaft side that engages with the worm wheel.
JP5736382U 1982-04-19 1982-04-19 Constant flow discharge device Granted JPS58161678U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5736382U JPS58161678U (en) 1982-04-19 1982-04-19 Constant flow discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5736382U JPS58161678U (en) 1982-04-19 1982-04-19 Constant flow discharge device

Publications (2)

Publication Number Publication Date
JPS58161678U JPS58161678U (en) 1983-10-27
JPH0239592Y2 true JPH0239592Y2 (en) 1990-10-23

Family

ID=30067824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5736382U Granted JPS58161678U (en) 1982-04-19 1982-04-19 Constant flow discharge device

Country Status (1)

Country Link
JP (1) JPS58161678U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293570A (en) * 1985-06-21 1986-12-24 Ryowa Chiyouon Kogyo Kk Automatic sealer of seam for duct
JPS621512A (en) * 1985-06-28 1987-01-07 Ryuichi Tsukada Quantitative supply device of molten resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139867A (en) * 1979-04-16 1980-11-01 Nordson Corp Method and device for distributing heat sensitive liquid polymer composition
JPS57159572A (en) * 1981-02-27 1982-10-01 Nordson Corp Method and device for controlling density of bullbe of hot melt thermoplastic adhesive discharged

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139867A (en) * 1979-04-16 1980-11-01 Nordson Corp Method and device for distributing heat sensitive liquid polymer composition
JPS57159572A (en) * 1981-02-27 1982-10-01 Nordson Corp Method and device for controlling density of bullbe of hot melt thermoplastic adhesive discharged

Also Published As

Publication number Publication date
JPS58161678U (en) 1983-10-27

Similar Documents

Publication Publication Date Title
EP0326510A3 (en) Method and apparatus for applying single or multicomponent materials
JP4392474B2 (en) Material supply system
US4493286A (en) Method and apparatus for applying a multi-component adhesive
EP1154162A4 (en) Hydraulic pump control device
US20130112711A1 (en) Direct air motor driven pump to dispense valve
US5230608A (en) Positive feed system for wallboard tape applicators
EP0667451A4 (en) Hydraulic pump control device for construction machinery.
JPS6344951B2 (en)
WO2006100979A1 (en) Shot pump and variable speed type two-liquid metering and mixing apparatus
US4516700A (en) Hot melt anti-surge dispensing system
JPH0239592Y2 (en)
JP4512680B2 (en) Material supply system
US3227326A (en) Material-handling apparatus
JPH0754118B2 (en) Pumping device for compounding and feeding at least two components
EP2364952B1 (en) Fast set material proportioner
GB2150981A (en) Apparatus and method for pumping a fluid
US3172363A (en) Constant delivery positive displacement pump
EP0221852A3 (en) Device for working relatively hard building materials
US6817487B2 (en) Rotary lobe pump metering assembly
US3715177A (en) Fluid metering apparatus
JPH07116580A (en) Coating device for high viscosity liquid
CN216742181U (en) Pump head assembly and liquid transfer pump including the same
JPH01309797A (en) Slide driving device for press
US2163764A (en) Fluid pressure amplifying device
JPS6012102B2 (en) High viscosity material dispensing device