Nothing Special   »   [go: up one dir, main page]

JPH0239577B2 - CHOSOSEIALGOKIN - Google Patents

CHOSOSEIALGOKIN

Info

Publication number
JPH0239577B2
JPH0239577B2 JP3048983A JP3048983A JPH0239577B2 JP H0239577 B2 JPH0239577 B2 JP H0239577B2 JP 3048983 A JP3048983 A JP 3048983A JP 3048983 A JP3048983 A JP 3048983A JP H0239577 B2 JPH0239577 B2 JP H0239577B2
Authority
JP
Japan
Prior art keywords
alloy
superplastic
eutectic
alloys
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3048983A
Other languages
Japanese (ja)
Other versions
JPS59157254A (en
Inventor
Hideo Watanabe
Koichi Oohori
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP3048983A priority Critical patent/JPH0239577B2/en
Publication of JPS59157254A publication Critical patent/JPS59157254A/en
Publication of JPH0239577B2 publication Critical patent/JPH0239577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、従来Al−Si共晶超塑性合金に比
して一段とすぐれた超塑性特性を有するAl合金
に関するものである。 一般に、超塑性Al合金とは、通常400〜600℃
の範囲内の選定された温度で、所定の加工速度で
高温引張変形を施した場合に、少なくとも300%
以上の伸びを示す合金をいい、この超塑性合金に
よれば、プラスチツク成形の場合と同様に、例え
ば板材を空気圧にてブロー成形することによつ
て、形状が複雑なものや、大型のものを一体成形
できることから、建材パネルや航空機部品などの
製造に近年用いられるようになつている。 現在、超塑性Al合金には各種の成分系のもの
が提案され、一部は実用に供されているが、その
1つにAl−12.6%Si共晶合金がある。 このAl−Si共晶合金においては、共晶Si量が
増加するほど、形成される再結晶粒の大きさが小
さくなり、この結果結晶粒界の移動およびすべり
が容易に起るようになつて大きな伸びを示すよう
になることが知られているが、大きな伸びを示す
といつても高々300%程度(変形温度:550℃、初
期ひずみ速度:1.1×10-3/sec)にすぎず、この
程度の伸びでは苛酷な条件下での加工には十分対
処することができない。 そこで、本発明者等は、上記の従来Al−Si共
晶合金に着目し、このAl−Si共晶合金のもつ超
塑性特性をさらに一段と向上せしめるべく研究を
行なつた結果、この従来Al−Si共晶合金に、合
金成分として、Sb:0.05〜1%およびSr:0.01〜
0.5%のいずれか、または両方を含有させると、
共晶Siがより一層微細化すると共に、結晶粒界の
移動およびすべりが促進されるようになつて、一
段とすぐれた超塑性特性を示すようになり、しか
もAl−Si合金ではSi含有量が12.6%未満、すなわ
ち亜共晶の場合にはほとんど超塑性特性を示さな
いものが、上記のようにSbおよび/またはSrを
含有させると、Si含有量が比較的低い場合でもす
ぐれた超塑性を示すようになり、さらに、これに
加えて同じく合金成分としてMg:0.1〜2%を含
有させると、さらに一段の超塑性特性の向上をは
かることができるようになるという知見を得たの
である。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、重量%で、 Si:4〜13%を含有し、 Sb:0.05〜1%、 Sr:0.01〜0.5%、 のうちの1種または2種を含有し、さらに必要に
応じて、 Mg:0.1〜2%、 を含有し、残りがAlと不可避不純物からなる組
成を有する超塑性Al合金に特徴を有するもので
ある。 なお、この発明のAl合金においては、不可避
不純物として、Fe、Mn、Cr、Ti、およびBなど
を含有する場合があるが、その含有量が、それぞ
れFe:0.5%以下、Mn:0.2%以下、Cr:0.2%以
下、Ti:0.3%以下、B:0.1%以下であれば、合
金特性が何ら損なわれるものではない。 つぎに、この発明のAl合金において、成分組
成範囲を上記の通りに限定した理由を説明する。 (a) Si Si成分には、素地中に共晶Siとして分散晶出
し、結晶粒を微細化して合金に超塑性を付与す
る作用があるが、その含有量が4%未満では、
所望の超塑性特性を確保することができず、一
方13%を越えて含有させると、初晶Siが晶出す
るようになり、この結果超塑性特性が急激に劣
化するようになることから、その含有量を4〜
13%と定めた。 (b) SbおよびSr これらの成分には、上記のように共晶Siを微
細化し、かつ結晶粒界の移動およびすべりを促
進し、もつて超塑性特性を一段と向上せしめる
と共に、比較的Si含有量の低い場合において
も、すぐれた超塑性特性を確保せしめる作用が
あるが、その含有量がそれぞれSb:0.05%未満
およびSr:0.01%未満では前記作用に所望の効
果が得られず、一方Sbにあつては、11%を越
えて含有させると、SbAlの金属間化合物が形
成されるようになつて超塑性特性が急激に劣化
し、また、Srにあつては、0.5%を越えると、
圧延加工性が劣化し、圧延板の両側端部に割れ
が発生し易くなることから、その含有量を、そ
れぞれSb:0.05〜1%、Sr:0.01〜0.5%と定
めた。 (c) Mg Mg成分には、その一部がSiと結合して
Mg2Siの金属間化合物を形成し、共晶Siとの共
存において、より一層超塑性特性を向上させ、
また、このようにMg2Siには、共晶Siと同等の
作用、すなわち結晶粒を微細化し、かつ結晶粒
界の移動およびすべりを促進して超塑性特性を
向上せしめる作用があるので、実質的に共晶Si
が少ない場合にも、Mgの含有によつてすぐれ
た超塑性が確保でき、さらにMg成分には、一
部が素地に固溶して再結晶化を促進する作用が
あるので、かかる点からも超塑性の向上をはか
ることができることから、特に一段とすぐれた
超塑性特性を必要とする場合に含有されるが、
その含有量が0.1%未満では前記作用に所望の
効果が得られず、一方2%を越えて含有させる
と、Srの場合と同様に圧延加工性が劣化する
ようになることから、その含有量を0.1〜2%
と定めた。 つぎに、この発明のAl合金を実施例により具
体的に説明する。 実施例 通常の溶解鋳造法により、それぞれ第1表に示
される成分組成をもつた本発明Al合金1〜14お
よび比較Al合金1〜4を調製し、鋳造して鋳塊
とした後、この鋳塊に、温度:530℃に16時間保
持の均質化処理を施し、ついで熱間圧延にて板
厚:8mmの熱延板とし、引続いて冷間圧延にて板
厚:1.6mmの冷延板とした。 つぎに、この結果得られた本発明Al合金1〜
14および比較Al合金1〜4の冷延板について、
超塑性特性を評価する目的で、変形温度:530℃、
変形温度までの昇温時間:10分、初期ひずみ速
度:1.7×10-3/secの条件で高温引張変形試験を
行ない、全伸びを測定した。この測定結果を第
The present invention relates to an Al alloy that has superior superplastic properties to conventional Al-Si eutectic superplastic alloys. In general, superplastic Al alloys are usually heated at temperatures of 400 to 600℃.
at least 300% when subjected to hot tensile deformation at a specified processing speed at a selected temperature within the range of
This superplastic alloy can be used to form objects with complex shapes or large objects, for example, by blow forming plate materials using air pressure, just as in the case of plastic forming. Because it can be molded in one piece, it has recently come to be used in the manufacture of building panels and aircraft parts. Currently, various component systems have been proposed for superplastic Al alloys, some of which are in practical use, one of which is an Al-12.6%Si eutectic alloy. In this Al-Si eutectic alloy, as the amount of eutectic Si increases, the size of the recrystallized grains that are formed becomes smaller, and as a result, movement and sliding of grain boundaries easily occur. It is known that large elongation can be exhibited, but even when it shows large elongation, it is only about 300% at most (deformation temperature: 550°C, initial strain rate: 1.1 × 10 -3 /sec). This level of elongation is not sufficient for processing under severe conditions. Therefore, the present inventors focused on the conventional Al-Si eutectic alloy and conducted research to further improve the superplastic properties of this Al-Si eutectic alloy. Si eutectic alloy contains Sb: 0.05~1% and Sr: 0.01~ as alloy components.
When containing 0.5% of either or both,
As the eutectic Si becomes even finer, the movement and sliding of grain boundaries is promoted, and it exhibits even better superplastic properties.Moreover, the Al-Si alloy has a Si content of 12.6 %, that is, when it is hypoeutectic, it shows almost no superplastic properties, but when it contains Sb and/or Sr as described above, it shows excellent superplasticity even when the Si content is relatively low. Furthermore, they found that by adding 0.1 to 2% Mg as an alloying component in addition to this, it is possible to further improve the superplastic properties. Therefore, this invention was made based on the above knowledge, and contains Si: 4 to 13%, Sb: 0.05 to 1%, Sr: 0.01 to 0.5%, in terms of weight%. It is characterized by a superplastic Al alloy having a composition containing one or two of the following, and, if necessary, Mg: 0.1 to 2%, with the remainder consisting of Al and unavoidable impurities. Note that the Al alloy of the present invention may contain Fe, Mn, Cr, Ti, B, etc. as unavoidable impurities, but the content thereof is 0.5% or less for Fe and 0.2% or less for Mn, respectively. , Cr: 0.2% or less, Ti: 0.3% or less, and B: 0.1% or less, the alloy properties are not impaired in any way. Next, the reason why the composition range of the Al alloy of the present invention is limited as described above will be explained. (a) Si The Si component has the effect of dispersing and crystallizing as eutectic Si in the matrix, refining the crystal grains, and imparting superplasticity to the alloy, but if its content is less than 4%,
The desired superplastic properties cannot be secured, and if the content exceeds 13%, primary Si crystallizes, resulting in a rapid deterioration of the superplastic properties. Its content is 4~
It was set at 13%. (b) Sb and Sr As mentioned above, these components refine the eutectic Si, promote the movement and sliding of grain boundaries, and further improve the superplastic properties. Even when the amount of Sb is low, it has the effect of ensuring excellent superplastic properties, but if the content is less than 0.05% of Sb and less than 0.01% of Sr, the desired effect cannot be obtained; If the content exceeds 11%, SbAl intermetallic compounds will be formed and the superplastic properties will deteriorate rapidly, and if the Sr content exceeds 0.5%,
Since rolling workability deteriorates and cracks are likely to occur at both side ends of the rolled plate, the contents were determined to be Sb: 0.05-1% and Sr: 0.01-0.5%, respectively. (c) Mg Mg component has a part bonded to Si.
Forms an intermetallic compound of Mg 2 Si, further improving superplastic properties in coexistence with eutectic Si,
In addition, Mg 2 Si has the same effect as eutectic Si, that is, it refines crystal grains and promotes movement and sliding of grain boundaries, improving superplastic properties. Eutectic Si
Even when there is a small amount of Mg, excellent superplasticity can be ensured by containing Mg. Furthermore, the Mg component has the effect of partially dissolving in the matrix and promoting recrystallization, so from this point of view as well. Since it can improve superplasticity, it is included especially when even better superplasticity properties are required.
If the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 2%, rolling workability will deteriorate as in the case of Sr. 0.1~2%
It was determined that Next, the Al alloy of the present invention will be specifically explained using examples. Example Al alloys 1 to 14 of the present invention and comparative Al alloys 1 to 4 having the compositions shown in Table 1 were prepared by a normal melting and casting method, and after being cast into an ingot, the ingots were The ingot was subjected to homogenization treatment at a temperature of 530°C for 16 hours, then hot-rolled into a hot-rolled plate with a thickness of 8mm, and then cold-rolled with a thickness of 1.6mm. It was made into a board. Next, the resulting Al alloys of the present invention 1~
14 and the cold rolled sheets of comparative Al alloys 1 to 4,
For the purpose of evaluating superplastic properties, deformation temperature: 530℃,
A high temperature tensile deformation test was conducted under the conditions of heating time to deformation temperature: 10 minutes, initial strain rate: 1.7×10 -3 /sec, and total elongation was measured. This measurement result is

【表】 (*印:本発明範囲外)
1表に合せて示した。 第1表に示される結果から、本発明Al合金1
〜14は、いずれも340%以上のすぐれた超塑性特
性を有し、特に従来Al−Si共晶合金に相当する
比較Al合金3と、これとほぼSi含有量が同じ本
発明Al合金3との比較から、SbおよびSrの含有
によつて超塑性特性が一段と向上するようになる
ことが明らかである。また、比較Al合金1、2、
および4に見られるように、SiおよSbの含有量
がそれぞれこの発明の範囲から外れた場合には所
望の超塑性を示さないことが明らかである。 上述のように、この発明のAl合金は、従来超
塑性合金として知られているAl−Si共晶合金に
比して一段とすぐれた超塑性特性を有するのであ
る。
[Table] (*marked: outside the scope of the present invention)
It is shown in Table 1. From the results shown in Table 1, the present invention Al alloy 1
-14 all have excellent superplastic properties of 340% or more, especially comparative Al alloy 3, which corresponds to the conventional Al-Si eutectic alloy, and inventive Al alloy 3, which has almost the same Si content. It is clear from the comparison that the inclusion of Sb and Sr further improves the superplastic properties. In addition, comparative Al alloys 1, 2,
As seen in Figures 4 and 4, it is clear that the desired superplasticity will not be exhibited if the Si and Sb contents are outside the range of the present invention. As mentioned above, the Al alloy of the present invention has superplastic properties that are far superior to Al-Si eutectic alloys, which are conventionally known as superplastic alloys.

Claims (1)

【特許請求の範囲】 1 Si:4〜13%を含有し、 Sb:0.05〜1%、 Sr:0.01〜0.5%、 のうちの1種または2種を含有し、残りがAlと
不可避不純物からなる組成(以上重量%)を有す
ることを特徴とする超塑性Al合金。 2 Si:4〜13%を含有し、 Sb:0.05〜1%、 Sr:0.01〜0.5%、 のうちの1種または2種を含有し、さらに、 Mg:0.1〜2%、 を含有し、残りがAlと不可避不純物からなる組
成(以上重量%)を有することを特徴とする超塑
性Al合金。
[Claims] 1 Contains 4 to 13% of Si, 0.05 to 1% of Sb, 0.01 to 0.5% of Sr, and one or two of the following, with the remainder being Al and unavoidable impurities. A superplastic Al alloy characterized by having a composition (the above weight %). 2 Contains Si: 4 to 13%, Sb: 0.05 to 1%, Sr: 0.01 to 0.5%, and one or two of the following, and further contains Mg: 0.1 to 2%, 1. A superplastic Al alloy characterized by having a composition (by weight %) in which the remainder consists of Al and unavoidable impurities.
JP3048983A 1983-02-25 1983-02-25 CHOSOSEIALGOKIN Expired - Lifetime JPH0239577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3048983A JPH0239577B2 (en) 1983-02-25 1983-02-25 CHOSOSEIALGOKIN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048983A JPH0239577B2 (en) 1983-02-25 1983-02-25 CHOSOSEIALGOKIN

Publications (2)

Publication Number Publication Date
JPS59157254A JPS59157254A (en) 1984-09-06
JPH0239577B2 true JPH0239577B2 (en) 1990-09-06

Family

ID=12305244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048983A Expired - Lifetime JPH0239577B2 (en) 1983-02-25 1983-02-25 CHOSOSEIALGOKIN

Country Status (1)

Country Link
JP (1) JPH0239577B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695809B (en) * 2014-11-24 2018-08-14 华为技术有限公司 A kind of aluminum alloy materials, aluminium alloy molded part and preparation method thereof
FR3044326B1 (en) * 2015-12-01 2017-12-01 Constellium Neuf-Brisach HIGH-RIGIDITY THIN SHEET FOR AUTOMOTIVE BODYWORK

Also Published As

Publication number Publication date
JPS59157254A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
US9193134B2 (en) Automobile body part
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH027386B2 (en)
JP2997145B2 (en) Method for producing aluminum alloy sheet having delayed aging at room temperature
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPH0447019B2 (en)
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH0239577B2 (en) CHOSOSEIALGOKIN
JPS6154853B2 (en)
JPS6410584B2 (en)
JPH0320455B2 (en)
JPH0469220B2 (en)
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JPH0547616B2 (en)
JP3248263B2 (en) Al-Mn alloy for cryogenic forming
JPH06240395A (en) Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it
JPS6296643A (en) Superplastic aluminum alloy
JPS594494B2 (en) Medium-strength aluminum alloy with excellent extrudability
JPS5932538B2 (en) Medium strength AI alloy for extrusion with excellent toughness and press hardenability
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPH09209068A (en) High strength aluminum alloy excellent in hardenability
JPH0633179A (en) Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production
JPS63179043A (en) Aluminum alloy for forming
JPH0794701B2 (en) Manufacturing method of aluminum alloy soft material for welded structure