Nothing Special   »   [go: up one dir, main page]

JPH0232856Y2 - - Google Patents

Info

Publication number
JPH0232856Y2
JPH0232856Y2 JP10297184U JP10297184U JPH0232856Y2 JP H0232856 Y2 JPH0232856 Y2 JP H0232856Y2 JP 10297184 U JP10297184 U JP 10297184U JP 10297184 U JP10297184 U JP 10297184U JP H0232856 Y2 JPH0232856 Y2 JP H0232856Y2
Authority
JP
Japan
Prior art keywords
intake
intake passage
exhaust gas
cylinder
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10297184U
Other languages
Japanese (ja)
Other versions
JPS6117465U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10297184U priority Critical patent/JPS6117465U/en
Publication of JPS6117465U publication Critical patent/JPS6117465U/en
Application granted granted Critical
Publication of JPH0232856Y2 publication Critical patent/JPH0232856Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、エンジンの排気の一部を吸気系に還
流して排気中のNOXを低減するための排気還流
システムにおける制御装置に関するものである。
[Detailed description of the invention] (Field of industrial application) The present invention relates to a control device for an exhaust gas recirculation system that recirculates a portion of engine exhaust gas to the intake system to reduce NOx in the exhaust gas. be.

(従来技術) 従来より、この種のエンジンの排気還流システ
ムとして、例えば特開昭57−143126号公報等に開
示されているように、吸気弁直上流の吸気通路
を、エンジンが高速高回転領域に移行するのに伴
つて開度が増大する絞り弁を配設した主吸気通路
と、該主吸気通路よりも小さい通路面積を有し、
シリンダ内に吸気のスワールを生成するための軽
負荷用の副吸気通路とに分け、上記副吸気通路に
排気還流通路の下流端を開口して、エンジンの低
速低負荷時には、排気の一部を排気還流通路から
副吸気通路を経て燃焼室内に流入させるようにし
たものが知られている。
(Prior Art) Conventionally, as an exhaust recirculation system for this type of engine, as disclosed in Japanese Patent Application Laid-Open No. 57-143126, etc., the intake passage immediately upstream of the intake valve is connected to a main intake passage provided with a throttle valve whose opening degree increases as the main intake passage moves to the main intake passage;
The exhaust gas recirculation passage is separated into a sub-intake passage for light loads to generate intake swirl inside the cylinder, and the downstream end of the exhaust recirculation passage is opened in the sub-intake passage, so that when the engine is running at low speed and under low load, part of the exhaust gas is It is known that the exhaust gas is caused to flow from the recirculation passage into the combustion chamber via the sub-intake passage.

(考案が解決しようとする問題点) ところが、上記従来のものでは、副吸気通路を
流れる流速の速い混合気に還流排気を混入させる
ため、該還流排気の混合気へのミキシングを良好
に行い得るものの、シリンダヘツド内の冷却水通
路との干渉を避ける等のレイアウト上の制約か
ら、排気還流通路下流端の排気導出口を副吸気通
路において吸気弁から比較的離れた上流位置に限
定する必要があり、その分、還流排気が実質的に
燃焼室に流入するまでに時間がかかる。それ故、
下記のような場合に問題が生じる。すなわち、排
気を燃焼室内に供給する排気還流時期をシリンダ
の吸気行程の所定時期に設定して、還流排気を燃
焼室内の燃焼温度の高くなる領域に集中的に偏在
分布させることにより、最少限の排気還流量にて
NOXを効果的に低減する場合には、上記排気還
流時期の制御を正確に行い得ない虞れがある。
(Problem to be Solved by the Invention) However, in the above-mentioned conventional method, since the recirculated exhaust gas is mixed into the air-fuel mixture flowing at a high flow rate through the sub-intake passage, the recirculated exhaust gas cannot be mixed well with the air-fuel mixture. However, due to layout constraints such as avoiding interference with the cooling water passage in the cylinder head, it is necessary to limit the exhaust outlet at the downstream end of the exhaust recirculation passage to an upstream position relatively far from the intake valve in the auxiliary intake passage. Therefore, it takes time for the recirculated exhaust gas to substantially flow into the combustion chamber. Therefore,
Problems arise in the following cases. In other words, by setting the exhaust gas recirculation timing for supplying exhaust gas into the combustion chamber at a predetermined timing of the intake stroke of the cylinder, and distributing the recirculated exhaust gas unevenly and concentrated in the region where the combustion temperature is high in the combustion chamber, At exhaust gas recirculation amount
In order to effectively reduce NOx , there is a possibility that the above-mentioned exhaust gas recirculation timing cannot be controlled accurately.

さりとて、上記の排気導出口を副吸気通路に換
えて主吸気通路に開口させたときには、該主吸気
通路はエンジンの低負荷時に絞り弁によつて閉じ
られるので、低負荷時の排気還流が不可能とな
る。しかも、還流排気は主吸気通路を流れる流速
の遅い混合気に混入されるので、やはり排気還流
のタイミングに遅れが生じることになる。
In addition, when the above-mentioned exhaust outlet is replaced with a sub-intake passage and opened into the main intake passage, the main intake passage is closed by the throttle valve when the engine is at low load, so that no exhaust gas recirculation occurs at low load. It becomes possible. Moreover, since the recirculated exhaust gas is mixed with the slow-flowing air-fuel mixture flowing through the main intake passage, there is still a delay in the timing of exhaust gas recirculation.

一方、上記従来例のように、吸気弁上流の吸気
通路がスワール生成用の副吸気通路と主吸気通路
とに分けられているものでは、副吸気通路を流れ
る流速が速いために、吸気流速のあるレベルでは
副吸気通路により生成される吸気スワールの強度
が強くなり過ぎ、混合気がシリンダ内の外周部に
偏つて旋回してシリンダの略中心部に位置する点
火栓から離れてしまい、その結果着火性が低下す
るという問題があつた。
On the other hand, in the above-mentioned conventional example in which the intake passage upstream of the intake valve is divided into a sub-intake passage for swirl generation and a main intake passage, the flow velocity in the sub-intake passage is fast, so the intake flow rate is reduced. At a certain level, the strength of the intake swirl generated by the auxiliary intake passage becomes too strong, causing the air-fuel mixture to swirl toward the outer periphery of the cylinder and away from the spark plug, which is located approximately in the center of the cylinder. There was a problem that ignitability decreased.

そこで、この吸気スワールの強度の増大による
着火性の低下を防ぐために、副吸気通路の通路面
積を大きくして吸気の流速を抑制した場合には、
逆にエンジンの極低負荷時に副吸気通路を流れる
吸気流速が低下して、十分な強度の吸気スワール
を維持することが困難となる問題が生じる。
Therefore, in order to prevent the ignitability from decreasing due to the increase in the strength of the intake swirl, if the passage area of the sub-intake passage is increased to suppress the intake air flow velocity,
Conversely, when the load of the engine is extremely low, the intake air flow velocity flowing through the sub-intake passage decreases, causing a problem that it becomes difficult to maintain an intake swirl of sufficient strength.

本考案は以上の諸点に鑑みてなされたもので、
その目的は、上記した主吸気通路に配設される絞
り弁の特定部位を切り欠いて、該切欠き部を通過
する吸気に流速と方向性を持たせ、その吸気に還
流排気を混入させるようにすることにより、還流
排気を主吸気通路を通してシリンダの燃焼室に供
給しつつ排気還流時期の遅れを防止するととも
に、燃焼室内での混合気の着火性の向上および極
低負荷時のスワール強度の確保の両立を図らんと
することにある。
This idea was made in view of the above points,
The purpose of this is to cut out a specific part of the throttle valve installed in the main intake passage mentioned above, to give the intake air that passes through the cutout a flow velocity and directionality, and to mix the recirculated exhaust gas into the intake air. By doing so, the recirculated exhaust gas is supplied to the combustion chamber of the cylinder through the main intake passage, preventing a delay in the timing of exhaust recirculation, improving the ignitability of the air-fuel mixture in the combustion chamber, and reducing the swirl strength at extremely low loads. The aim is to achieve both security and security.

(問題点を解決するための手段) 上記目的を達成するために、本考案の解決手段
は、吸気弁近傍の吸気通路が、絞り弁を配設した
2次側吸気通路(従来例での主吸気通路)と、シ
リンダ内に吸気のスワールを生成するための1次
側吸気通路(同副吸気通路)とに分けられ、かつ
上記吸気通路を介してシリンダ内に排気の一部を
供給する排気供給手段を備えたエンジンにおい
て、上記絞り弁における上記1次側吸気通路によ
る吸気スワールの接線方向に対応する側部に吸気
を漏洩せしめる切欠き部を形成するとともに、該
切欠き部下流の2次側吸気通路に上記排気供給手
段の排気導出口を開口させたものである。
(Means for Solving the Problem) In order to achieve the above object, the solution of the present invention is such that the intake passage near the intake valve is a secondary intake passage in which a throttle valve is arranged (the main The exhaust gas is divided into an intake passage (intake passage) and a primary intake passage (sub-intake passage) for generating an intake swirl in the cylinder, and supplies part of the exhaust gas into the cylinder through the intake passage. In an engine equipped with a supply means, a cutout portion for leaking intake air is formed on a side of the throttle valve corresponding to a tangential direction of the intake swirl caused by the primary intake passage, and The exhaust outlet of the exhaust supply means is opened in the side intake passage.

(作用) 上記の構成により、本考案では、絞り弁開度の
小さいエンジンの低中負荷時には、吸気を主とし
て1次側吸気通路を通してシリンダ内に供給し
て、シリンダ内で吸気のスワールを生成する一
方、一部の吸気を上記絞り弁の切欠き部を通して
流速を速めつつシリンダ内に供給して、それを上
記吸気スワールにその略外方から衝突させその吸
気の衝突により上記吸気スワールの旋回半径を小
さくして、混合気をシリンダの略中心部に位置す
る点火栓近傍に寄せることにより、着火性を高め
るとともに、上記絞り弁の切欠き部を通過する高
速の吸気に排気導出口から導出された還流排気を
乗せることにより、排気還流時期の遅れを防止す
るようにしたものである。
(Function) With the above configuration, the present invention supplies intake air mainly through the primary intake passage into the cylinder and generates a swirl of intake air within the cylinder during low to medium load of the engine with a small throttle valve opening. On the other hand, a part of the intake air is supplied into the cylinder through the notch of the throttle valve while increasing the flow velocity, and collides with the intake swirl from approximately the outside thereof.The collision of the intake air causes the swirl radius of the intake swirl to increase. By making the air-fuel mixture smaller and moving it closer to the spark plug located at the approximate center of the cylinder, ignitability is improved and the high-speed intake passing through the notch in the throttle valve is guided out from the exhaust outlet. By placing the recirculated exhaust gas on top of the exhaust gas, a delay in the timing of exhaust gas recirculation is prevented.

(実施例) 以下、本考案の実施例を図面に基づいて詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本考案の第1実施例の全体構成を示
し、1はエンジンのシリンダ2上部を形成するシ
リンダヘツド、3は該シリンダヘツド1に形成さ
れた吸気ポート、4はシリンダヘツド1に吸気ポ
ート3と連通するように取り付けられた吸気マニ
ホールドであつて、この吸気マニホールド4の内
部および上記吸気ポート3は上記シリンダ2の燃
焼室内に吸気を供給する吸気通路5を構成してい
る。また、上記吸気通路5の下流端部は二又状に
分岐され、その一方は1次側吸気弁(図示せず)
により開閉される1次側開口部5aを介して、他
方は2次側吸気弁(図示せず)により開閉される
2次側開口部5bを介してそれぞれシリンダ2の
燃焼室に連通されており、上記両開口部5a,5
bはシリンダ2の一方の半円範囲内に形成されて
いる。
FIG. 1 shows the overall configuration of a first embodiment of the present invention, in which 1 is a cylinder head forming the upper part of a cylinder 2 of an engine, 3 is an intake port formed in the cylinder head 1, and 4 is an intake port formed in the cylinder head 1. An intake manifold is attached to communicate with a port 3, and the interior of this intake manifold 4 and the intake port 3 constitute an intake passage 5 that supplies intake air into the combustion chamber of the cylinder 2. The downstream end of the intake passage 5 is bifurcated, one of which is connected to a primary intake valve (not shown).
The two are connected to the combustion chamber of the cylinder 2 through a primary opening 5a opened and closed by a secondary intake valve (not shown) and a secondary opening 5b opened and closed by a secondary intake valve (not shown). , both openings 5a, 5
b is formed within one semicircular range of the cylinder 2.

また、上記シリンダヘツド1には燃焼室内の排
気を排出するための排気通路6の上流端部分を構
成する排気ポート7が形成され、上記排気通路6
の燃焼室への開口部6aはシリンダ2の他方の半
円範囲内に設けられている。8はシリンダ2の略
中心位置に設けられた点火栓である。
Further, an exhaust port 7 is formed in the cylinder head 1 and constitutes an upstream end portion of an exhaust passage 6 for discharging exhaust gas in the combustion chamber.
The opening 6a to the combustion chamber is provided within the other semicircular area of the cylinder 2. 8 is an ignition plug provided approximately at the center of the cylinder 2.

上記1次側吸気弁近傍の吸気通路5、すなわち
吸気通路5のうち、吸気ポート3において上記1
次側開口部5aへ連通する部分から吸気マニホー
ルド4内の下流端部までの範囲は1次側吸気通路
9と2次側吸気通路10とに分けられている。上
記2次側吸気通路10の途中には2次側吸気通路
10を絞り開閉する絞り弁11が配設され、該絞
り弁11はエンジンの回転数および負荷に応じて
作動する図示しないアクチユエータに駆動連結さ
れていて、エンジンが低速低負荷領域にあるとき
には開度が小さく、高速高負荷領域になるにした
がつて開度が増大するように制御される。
1 at the intake port 3 of the intake passage 5 near the primary intake valve, that is, the intake passage 5.
The range from the portion communicating with the next side opening 5a to the downstream end within the intake manifold 4 is divided into a primary side intake passage 9 and a secondary side intake passage 10. A throttle valve 11 that throttles and opens/closes the secondary intake passage 10 is disposed in the middle of the secondary intake passage 10, and the throttle valve 11 is driven by an actuator (not shown) that operates according to the engine speed and load. When the engine is in a low speed, low load region, the opening degree is small, and as the engine moves to a high speed, high load region, the opening degree is controlled to increase.

一方、上記1次側吸気通路9は上記2次側吸気
通路10の絞り弁11をバイパスするように配設
されており、その流端開口部9aは絞り弁11直
上流の吸気通路5に、下流端開口部9bは1次側
開口部5a直上流の吸気通路5にそれぞれ位置し
ている。また、1次側吸気通路9は、その通路面
積が2次側吸気通路10よりも小さく設定されて
いるとともに、図示の如く上流側から下流に向か
うにしたがつて、つまりシリンダ2に近付くにし
たがつて上記1次側開口部5aに向かうべくシリ
ンダ2の中心に対しその半径方向外側にずれるよ
うに彎曲状に形成されており、1次側吸気通路9
を流れる吸気をその流速を速めながら1次側開口
部5aを通してシリンダ2内に円周方向に流入さ
せることにより、シリンダ2内に図で時計回り方
向に旋回する吸気のスワールKを生成するように
構成されている。
On the other hand, the primary side intake passage 9 is arranged so as to bypass the throttle valve 11 of the secondary side intake passage 10, and its flow end opening 9a is connected to the intake passage 5 immediately upstream of the throttle valve 11. The downstream end openings 9b are located in the intake passage 5 immediately upstream of the primary opening 5a. Further, the passage area of the primary side intake passage 9 is set smaller than that of the secondary side intake passage 10, and as shown in the figure, as it goes from the upstream side to the downstream side, that is, it approaches the cylinder 2. It is formed in a curved shape so as to be shifted radially outward from the center of the cylinder 2 toward the primary side opening 5a, and the primary side intake passage 9
By causing the intake air flowing through the cylinder 2 to flow circumferentially into the cylinder 2 through the primary side opening 5a while increasing its flow velocity, a swirl K of intake air that swirls in the clockwise direction in the figure is generated in the cylinder 2. It is configured.

また、上記吸気通路5と排気通路6とは排気通
路6内を流れる排気の一部を吸気通路5に還流す
るための排気還流通路12によつて連通されてい
る。該排気還流通路12の途中には排気還流通路
12を絞り開閉して排気還流量を制御するダイヤ
フラム式の排気還流弁13と、エンジンの回転に
同期して排気還流通路12を開閉して排気還流時
期を制御し、かつその開閉時期を調整可能なロー
タリバルブ14とが配設されており、排気通路6
内の排気の一部を排気還流通路12および吸気通
路5を介してシリンダ2内に還流させるととも
に、その排気の還流量を排気還流弁13によつて
所定量に制御し、かつ還流時期をロータリバルブ
14によつてシリンダ2の吸気行程の所定時期に
制御するようにした排気供給手段15が構成され
ている。
Further, the intake passage 5 and the exhaust passage 6 are communicated through an exhaust gas recirculation passage 12 for recirculating a part of the exhaust gas flowing through the exhaust passage 6 to the intake passage 5. In the middle of the exhaust gas recirculation passage 12, there is a diaphragm type exhaust recirculation valve 13 that throttles and opens and closes the exhaust gas recirculation passage 12 to control the amount of exhaust gas recirculation. A rotary valve 14 that can control timing and adjust its opening/closing timing is provided, and an exhaust passage 6
A part of the exhaust gas in the cylinder 2 is recirculated into the cylinder 2 via the exhaust gas recirculation passage 12 and the intake passage 5, and the amount of the exhaust gas recirculated is controlled to a predetermined amount by the exhaust gas recirculation valve 13, and the recirculation timing is controlled by a rotary control. The exhaust gas supply means 15 is configured to be controlled by the valve 14 at a predetermined timing of the intake stroke of the cylinder 2.

さらに、上記2次側吸気通路10に配設された
絞り弁11において上記1次側吸気通路9による
吸気のスワールKの接線方向に対応する側部、つ
まり1次側吸気通路が下流方向に向かつて彎曲す
る側に対応する側部には、該側部を所定範囲だけ
切り欠いてなる切欠き部16が形成されており、
エンジンの低中負荷時、絞り弁11の開度が小さ
いときに、上記切欠き部16から吸気を漏洩せし
めてシリンダ2の燃焼室に供給するようになされ
ている。
Furthermore, in the throttle valve 11 disposed in the secondary intake passage 10, the side corresponding to the tangential direction of the swirl K of intake air by the primary intake passage 9, that is, the primary intake passage is oriented in the downstream direction. A cutout portion 16 is formed in the side portion corresponding to the previously curved side by cutting out a predetermined range of the side portion,
When the engine is under low to medium load and the opening degree of the throttle valve 11 is small, intake air is leaked from the notch 16 and supplied to the combustion chamber of the cylinder 2.

また、上記絞り弁11の切欠き部16下流の2
次側吸気通路10には上記排気供給手段15の排
気還流通路12の下流端としての排気導出口12
aが開口されている。
Further, the two downstream of the notch 16 of the throttle valve 11 are
The next intake passage 10 has an exhaust outlet 12 as a downstream end of the exhaust gas recirculation passage 12 of the exhaust supply means 15.
a is open.

従つて、上記実施例においては、絞り弁11の
開度が小さいエンジンの低中負荷時には、吸気通
路5を流れる混合気は主に1次側吸気通路9を通
つてシリンダ2の燃焼室内に流入し、この吸気の
流れによつてシリンダ2内に図で時計回り方向の
スワールKが生成される。一方、上記吸気通路5
を流れる混合気の一部は上記絞り弁11に設けら
れた切欠き部16を通り、その間に流速を速めら
れながら2次側吸気通路10を経てシリンダ2内
に供給される。
Therefore, in the above embodiment, when the throttle valve 11 has a small opening and the engine is under low to medium load, the air-fuel mixture flowing through the intake passage 5 mainly flows into the combustion chamber of the cylinder 2 through the primary intake passage 9. However, due to this flow of intake air, a swirl K is generated in the cylinder 2 in a clockwise direction in the figure. On the other hand, the intake passage 5
A part of the air-fuel mixture flowing through the throttle valve 11 passes through a notch 16 provided in the throttle valve 11, and is supplied into the cylinder 2 through the secondary intake passage 10 while being increased in flow velocity.

その際、上記切欠き部16は絞り弁11におい
て上記1次側吸気通路9によるスワールKの接線
方向に対応する側部に形成されているため、上記
切欠き部16を通過する混合気は、切欠き部16
に対応する側に位置する1次側開口部5aを経て
シリンダ2内に流入して、該シリンダ2内で上記
スワールKにその外方から大きな角度でもつて衝
突する。この切欠き部16からの混合気流との衝
突によりスワールKの旋回半径が小さくなり、混
合気はシリンダ2の略中心に位置する点火栓8近
傍に近付いて点火栓8周りの混合気の空燃比がリ
ツチ化され、よつてエンジンの着火性を向上させ
ることができる。
At this time, since the notch 16 is formed on the side of the throttle valve 11 corresponding to the tangential direction of the swirl K by the primary intake passage 9, the air-fuel mixture passing through the notch 16 is Notch part 16
It flows into the cylinder 2 through the primary side opening 5a located on the side corresponding to , and collides with the swirl K from the outside at a large angle within the cylinder 2. Due to the collision with the mixture flow from the notch 16, the turning radius of the swirl K becomes smaller, and the mixture approaches the vicinity of the ignition plug 8 located approximately at the center of the cylinder 2, causing the air-fuel ratio of the mixture around the ignition plug 8 to decrease. is enriched, thereby improving the ignitability of the engine.

また、このように絞り弁11の切欠き部16を
経由した混合気流によりスワールKの旋回軌跡が
修正されてエンジンの着火性が確保されるので、
1次側吸気通路9の通路面積を増大させることに
よりその混合気流の流速を抑制してスワール強度
を低下させる必要がなくなり、よつてエンジンの
極低負荷時のスワール強度を通常通りに良好に維
持することができる。
In addition, the mixture flow passing through the notch 16 of the throttle valve 11 corrects the swirl locus of the swirl K and ensures the ignitability of the engine.
By increasing the passage area of the primary side intake passage 9, it is no longer necessary to reduce the swirl strength by suppressing the flow velocity of the air mixture flow, thus maintaining the swirl strength as good as usual when the engine is under extremely low load. can do.

さらに、エンジンの低中負荷時には、ロータリ
バルブ14の開弁に伴い排気が排気還流通路12
下流端の排気導出口12aから2次側吸気通路1
0に導出され、該排気は上記絞り弁11の切欠き
部16を通る流速の速い混合気流に乗せられて1
次側開口部5aを経てシリンダ2内に供給される
ので、2次側吸気通路10を介して排気を燃焼室
に還流させつつ、その排気還流をエンジンの低負
荷時から行うことができるとともに、還流排気を
素速くリンダ2内に供給でき、排気還流時期を正
確に制御することができる。
Furthermore, when the engine is under low or medium load, the rotary valve 14 opens and the exhaust gas flows into the exhaust recirculation passage 12.
From the exhaust outlet 12a at the downstream end to the secondary intake passage 1
0, and the exhaust gas is carried by the high-velocity mixture flow passing through the notch 16 of the throttle valve 11 and becomes 1.
Since the exhaust gas is supplied into the cylinder 2 through the downstream opening 5a, the exhaust gas can be recirculated to the combustion chamber through the secondary intake passage 10, and the exhaust gas can be recirculated even when the engine is under low load. The recirculated exhaust gas can be quickly supplied into the cylinder 2, and the exhaust gas recirculation timing can be accurately controlled.

尚、エンジンの高負荷時には、絞り弁11の開
度が増大するので、混合気は1次側吸気通路9よ
りも主に2次側吸気通路2を流れるようになり、
該2次側吸気通路10を流れる混合気は1次側お
よび2次側の開口部5a,5bを経てシリンダ2
内に流入する。
Note that when the engine is under high load, the opening degree of the throttle valve 11 increases, so that the air-fuel mixture mainly flows through the secondary intake passage 2 rather than the primary intake passage 9.
The air-fuel mixture flowing through the secondary intake passage 10 passes through the openings 5a and 5b on the primary and secondary sides and enters the cylinder 2.
flow inside.

第2図および第3図は本考案の第2実施例を示
し(尚、第1図と同じ部分については同じ符号を
付してその詳細な説明を省略する)、燃料噴射式
エンジンにおいて、吸気通路5′のシリンダ2内
への開口部5cをシリンダ2の一方の半円範囲内
に1つだけ形成するとともに、該開口部5′cの
直上流の2次側吸気通路10に、絞り弁11の切
欠き部16と対応せしめて排気還流通路12の排
気導出口12aを開口させたものである。その他
の部分は上記第1実施例と同様に構成されてい
る。尚、第2図中、17は吸気通路5′内に上記
シリンダ2への開口部5′cに向けて燃料を噴射
する燃料噴射弁、18は吸気通路5′の開口部
5′cを開閉する吸気弁、19は排気通路6の開
口部6aを開閉する排気弁、20はシリンダ2内
を往復動するピストン、21はシリンダ2内に形
成された燃焼室である。
2 and 3 show a second embodiment of the present invention (the same parts as in FIG. 1 are given the same reference numerals and detailed explanation thereof is omitted). Only one opening 5c of the passage 5' into the cylinder 2 is formed within one semicircular area of the cylinder 2, and a throttle valve is provided in the secondary intake passage 10 immediately upstream of the opening 5'c. The exhaust outlet 12a of the exhaust gas recirculation passage 12 is opened in correspondence with the notch 16 of the exhaust gas recirculation passage 11. The other parts are constructed in the same manner as in the first embodiment. In FIG. 2, 17 is a fuel injection valve that injects fuel into the intake passage 5' toward the opening 5'c to the cylinder 2, and 18 is a valve that opens and closes the opening 5'c of the intake passage 5'. 19 is an exhaust valve that opens and closes the opening 6a of the exhaust passage 6; 20 is a piston that reciprocates within the cylinder 2; and 21 is a combustion chamber formed within the cylinder 2.

従つて、本実施例でも、上記実施例と同様の作
用効果を奏することができるのに加え、開口部
5′cの直上流の2次側吸気通路10に排気導出
口12aが開口されているため、燃料噴射弁17
から上記吸気通路5′の開口部5′cおよびその近
傍の1次側吸気通路9の下流端開口部9bに向け
て噴射された燃料を上記排気導出口12aから導
出された高温の還流排気のガス熱により加熱し
て、その気化霧化を促進することができる利点が
ある。
Therefore, in this embodiment as well, the same effects as in the above embodiment can be achieved, and in addition, the exhaust outlet 12a is opened in the secondary intake passage 10 immediately upstream of the opening 5'c. Therefore, the fuel injection valve 17
The fuel injected toward the opening 5'c of the intake passage 5' and the downstream end opening 9b of the primary intake passage 9 in the vicinity thereof is transferred to the high-temperature recirculated exhaust gas led out from the exhaust outlet 12a. It has the advantage that it can be heated with gas heat to promote its vaporization and atomization.

(考案の効果) 以上の如く、本考案によれば、吸気弁近傍の吸
気通路が、絞り弁を配設した2次側吸気通路と吸
気スワール生成用の1次側吸気通路とに分けられ
たエンジンにおいて、上記絞り弁に吸気を漏洩せ
しめる切欠き部を形成し、該切欠き部を通る流速
の速い吸気流を吸気スワールに衝突させて該吸気
スワールをシリンダ中心側に変向させるととも
に、上記吸気流に還流排気を乗せてシリンダ内に
供給するようにしたことにより、シリンダの略中
心部に位置する点火栓近傍に混合気を近付け得、
エンジンの着火性を向上させることができるとと
もに、1次側吸気通路の通路面積を小さく維持し
て極低負荷時の吸気スワールの強度を確保でき、
燃焼性を高めることができる。また、絞り弁の切
欠き部を通る流速の速い吸気に還流排気が混入す
るので、2次側吸気通路を通して排気を還流させ
つつ、エンジンの低負荷時からの排気還流を行う
ことができるとともに、排気還流のタイミングが
遅れるのを防止して、排気還流時期の正確な制御
を行うことができる。
(Effects of the invention) As described above, according to the invention, the intake passage near the intake valve is divided into the secondary intake passage in which the throttle valve is provided and the primary intake passage for generating intake swirl. In the engine, a notch is formed in the throttle valve to allow intake air to leak, and the high-velocity intake air passing through the notch collides with the intake swirl to deflect the intake swirl toward the center of the cylinder. By supplying the recirculated exhaust gas into the cylinder along with the intake air flow, the air-fuel mixture can be brought close to the spark plug located approximately in the center of the cylinder.
In addition to improving the ignition performance of the engine, the passage area of the primary intake passage can be kept small to ensure the strength of the intake swirl at extremely low loads.
Flammability can be increased. In addition, since the recirculated exhaust gas mixes with the intake air that flows at a high speed through the notch of the throttle valve, it is possible to recirculate the exhaust gas through the secondary intake passage and to recirculate the exhaust gas from when the engine is under low load. It is possible to prevent the timing of exhaust gas recirculation from being delayed and to accurately control the timing of exhaust gas recirculation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を示すもので、第1図は
第1実施例を示す横断面図、第2図は第2実施例
を示す縦断面図、第3図は同エンジンのシリンダ
ヘツドの底面図である。 2……シリンダ、5,5′……吸気通路、8…
…点火栓、9……1次側吸気通路、10……2次
側吸気通路、11……絞り弁、12……排気還流
通路、12a……排気導出口、13……排気還流
弁、14……ロータリバルブ、15……排気供給
手段、16……切欠き部。
The drawings show embodiments of the present invention. Figure 1 is a cross-sectional view of the first embodiment, Figure 2 is a longitudinal sectional view of the second embodiment, and Figure 3 is a diagram of the cylinder head of the same engine. It is a bottom view. 2...Cylinder, 5,5'...Intake passage, 8...
... Spark plug, 9 ... Primary side intake passage, 10 ... Secondary side intake passage, 11 ... Throttle valve, 12 ... Exhaust recirculation passage, 12a ... Exhaust outlet, 13 ... Exhaust recirculation valve, 14 ... Rotary valve, 15 ... Exhaust supply means, 16 ... Notch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸気弁近傍の吸気通路が、絞り弁を配設した2
次側吸気通路と、シリンダ内に吸気のスワールを
生成するための1次側吸気通路とに分けられ、か
つ上記吸気通路を介してシリンダ内に排気の一部
を供給する排気供給手段を備えたエンジンにおい
て、上記絞り弁における上記1次側吸気通路によ
る吸気スワールの接線方向に対応する側部に吸気
を漏洩せしめる切欠き部を形成するとともに、該
切欠き部下流の2次側吸気通路に上記排気供給手
段の排気導出口を開口させたことを特徴とするエ
ンジンの排気還流制御装置。
The intake passage near the intake valve is equipped with a throttle valve.
The exhaust gas supply means is divided into a next side intake passage and a first side intake passage for generating a swirl of intake air in the cylinder, and includes an exhaust gas supply means for supplying a part of the exhaust gas into the cylinder through the intake passage. In the engine, a notch portion for leaking intake air is formed in a side portion of the throttle valve corresponding to a tangential direction of the intake swirl caused by the primary side intake passage, and a notch portion for leaking intake air is formed in the secondary side intake passage downstream of the notch portion. An exhaust gas recirculation control device for an engine, characterized in that an exhaust outlet of an exhaust supply means is opened.
JP10297184U 1984-07-06 1984-07-06 Engine exhaust recirculation control device Granted JPS6117465U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10297184U JPS6117465U (en) 1984-07-06 1984-07-06 Engine exhaust recirculation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10297184U JPS6117465U (en) 1984-07-06 1984-07-06 Engine exhaust recirculation control device

Publications (2)

Publication Number Publication Date
JPS6117465U JPS6117465U (en) 1986-01-31
JPH0232856Y2 true JPH0232856Y2 (en) 1990-09-05

Family

ID=30662361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10297184U Granted JPS6117465U (en) 1984-07-06 1984-07-06 Engine exhaust recirculation control device

Country Status (1)

Country Link
JP (1) JPS6117465U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524229A (en) * 2009-04-20 2012-10-11 インターナショナル エンジン インテレクチュアル プロパティー カンパニー リミテッド ライアビリティ カンパニー Throttle valve and manufacturing method
JP2013217238A (en) * 2012-04-06 2013-10-24 Denso Corp Intake air control module

Also Published As

Publication number Publication date
JPS6117465U (en) 1986-01-31

Similar Documents

Publication Publication Date Title
US5329912A (en) Induction system for an internal combustion engine
US4413598A (en) Intake control device for automotive internal combustion engine
JP3852363B2 (en) Engine control device
JPS5950850B2 (en) Internal combustion engine intake system
JPS6052292B2 (en) Dual intake passage internal combustion engine
US4438743A (en) Internal combustion engine
JPS6011205B2 (en) internal combustion engine
US6394066B1 (en) Charge motion control valve
US8430074B2 (en) Rotatable valve in a cylinder intake duct
JPH0415937Y2 (en)
JPH0232856Y2 (en)
US5144919A (en) Two-stroke cycle reciprocating internal combustion engine for spark ignition and crankcase scavenging
US4688532A (en) Intake system for direct fuel injection diesel engine
GB2274877A (en) Fuel injected i.c. engine.
JPS61201826A (en) Intake device of internal-combustion engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP4036021B2 (en) Engine control device
JP2003502550A (en) Piston type internal combustion engine equipped with secondary air supply flow generating means
JPH0413415Y2 (en)
JP3318355B2 (en) Intake system for direct injection diesel engine
JPH06213081A (en) Exhaust gas recirculation system of engine
JP2530953Y2 (en) Diesel engine exhaust recirculation system
JPS60219415A (en) Intake device for engine
JP2962852B2 (en) Intake system for direct injection diesel engine
JPH0236905Y2 (en)