Nothing Special   »   [go: up one dir, main page]

JPH0231401A - Rare-earth magnet alloy powder, manufacture thereof and macromolecular composite type rate-earth magnet using this alloy powder - Google Patents

Rare-earth magnet alloy powder, manufacture thereof and macromolecular composite type rate-earth magnet using this alloy powder

Info

Publication number
JPH0231401A
JPH0231401A JP63180385A JP18038588A JPH0231401A JP H0231401 A JPH0231401 A JP H0231401A JP 63180385 A JP63180385 A JP 63180385A JP 18038588 A JP18038588 A JP 18038588A JP H0231401 A JPH0231401 A JP H0231401A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
earth magnet
rare earth
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63180385A
Other languages
Japanese (ja)
Other versions
JP3028337B2 (en
Inventor
Tsutomu Otsuka
努 大塚
Hiroshi Momotani
浩 百谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63180385A priority Critical patent/JP3028337B2/en
Publication of JPH0231401A publication Critical patent/JPH0231401A/en
Application granted granted Critical
Publication of JP3028337B2 publication Critical patent/JP3028337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the powder, to be used for rare-earth plastic magnet, having high magnetic field orientational property, high coercive force and excellent oxidation- resisting property by a method wherein an organic electroplated layer is provided on the surface of the alloy powder, having an intermetallic compound consisting of a rare-earth element containing Y, a transition metal and B, as the main phase. CONSTITUTION:An organic electroplated layer is provided on the surface of R-T-B alloy powder, having an R2T14B (R is the rare-earth element containing Y, and T is a transition metal) intermitallic compound, as the main phase. Said organic electroplated layer contains a metal layer containing at least a kind of R-T and R-T-B, and also at least a kind of Ni, Al, Cu, Zn, Co, Fe, Mo and Ti. After R-T and R-T-B alloy, having R-metal or R-rich phase as the main phase, has been organically electroplated on the R-T-B powder having Nd2Fe14B phase as the main phase, a metal or an alloy having resistance to oxidation such as Ni, Cu, Al and the like is plated in addition to the above-mentioned plating. As a result, the powder for plastic magnet having excellent magnet characteristics and corrosion resistance can be manufactured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、Nd*Fe+<Bで代表されるR,T14B
金属間化合物を主相とするR−T−B系永久磁石合金粉
末に係わるものであり、特に粉末とその製造方法とそれ
を用いた高分子複合型希土類磁石に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to R, T14B represented by Nd*Fe+<B.
The present invention relates to an RTB permanent magnet alloy powder containing an intermetallic compound as a main phase, and particularly relates to the powder, its manufacturing method, and a polymer composite rare earth magnet using the powder.

〈従来の技術〉 近年、従来より高性能磁石としてSm−Co系磁石より
も高い磁石特性を有するNd −Fe −B磁石が開発
され、その用途も拡大しつつある。このNd−Fe−B
系永久磁石は大別すると、焼結体磁石と、プラスチック
磁石(プラツクとも呼ばれる)の2種類がある。
<Prior Art> In recent years, Nd-Fe-B magnets having higher magnetic properties than Sm-Co magnets have been developed as high-performance magnets, and their applications are expanding. This Nd-Fe-B
Broadly speaking, there are two types of permanent magnets: sintered magnets and plastic magnets (also called plastic magnets).

この中で焼結磁石は、その製法、組成等もほぼ確立され
、高い磁石特性を有する製品が工業ラインで製造され、
ユーザーに提供されている。
Among these, the manufacturing method and composition of sintered magnets have almost been established, and products with high magnetic properties are manufactured on industrial lines.
provided to the user.

しかしながら、プラツクの分野においては、現在のとこ
ろ磁石特性も低く、またその製造工程についても確立さ
れていないのが現状である。それ故ユーザーが満足いく
ような高い磁石特性を有するプラツクの製品は、提供さ
れていない。
However, in the field of plastics, the magnetic properties are currently poor and the manufacturing process has not yet been established. Therefore, a plastic product with high magnetic properties that satisfies users has not been provided.

現在、Nd −Fe −B系プラマグ用合金粉末として
は、合金溶湯急冷による液体急冷合金粉末(第1の合金
粉末と呼ぶ)、この液体急冷合金粉末を熱間加工した粉
末(第2の合金粉末と呼ぶ)、焼結体又はインゴットを
粉砕した粉末(第3の合金粉末と呼ぶ)の3種類が提案
されている。
Currently, Nd-Fe-B alloy powders for plastic mags include liquid quenched alloy powder obtained by quenching molten alloy (referred to as first alloy powder), and powder obtained by hot processing this liquid quenched alloy powder (second alloy powder). Three types have been proposed: a powder obtained by crushing a sintered body or an ingot (referred to as a third alloy powder);

しかしながら、第1の合金粉末は高いHcは有するもの
の粉末が等方的であるため、磁場配向ができず、Sm−
Co系よりも高い(B H) iaxを有する1ラマグ
を製造することができない、またさらにこの欠点を改良
し、粉末に異方性をもたせるために開発されたのが第2
の液体急冷合金粉末を熱間加工させた第2の合金粉末で
ある。この方法は、等方的である液体急冷合金粉末を熱
間加工することにより、ある一種の集合組織をもたせ、
形状異方性化をねらったものである。この方法によりあ
る程度の磁場配向の効果が生じBrも向上するもののそ
の効果は小さく、さらにHcの低下を生ずる。しかも、
工程が複雑で多大のコストアップとなるため工業上好ま
しくない、第3の方法である焼結体、インゴットの粉砕
粉末を使用する方法は、従来のSm−Co系プラマグの
製法をNd−Fe−Bにそのまま応用したものである。
However, although the first alloy powder has a high Hc, since the powder is isotropic, magnetic field orientation is not possible, and Sm-
It is not possible to produce 1-Ramag with a higher (B H) iax than the Co-based powder, and the second one was developed to further improve this drawback and give the powder anisotropy.
This is the second alloy powder obtained by hot working the liquid quenched alloy powder. This method involves hot working an isotropic liquid quenched alloy powder to give it a certain type of texture.
The aim is to make the shape anisotropic. Although this method produces a certain degree of magnetic field orientation effect and improves Br, the effect is small and further causes a decrease in Hc. Moreover,
The third method, which is industrially undesirable due to its complicated process and large cost increase, is the method of using pulverized powder of sintered bodies or ingots, which replaces the conventional manufacturing method of Sm-Co plastic mag with Nd-Fe- This is applied directly to B.

しかしながらこの方法では磁場配向によるBrの向上は
可能であるが、Nd −Fe −B粉末は粉砕により著
しいHcの劣化を生ずるため、プラマグ用の粉末として
は、適用できない、この原因は、粉砕時に生ずる粉末表
面の加工変質層に起因するHcの低下やまた最大の原因
である粉砕された粉末がHd −Fe −Bの保磁力の
発生に不可欠なネオジウム富裕(N a rich)相
でかならずしもくるまれているとは限らないためである
However, although it is possible to improve Br by magnetic field orientation with this method, Nd-Fe-B powder causes a significant deterioration of Hc by pulverization, so it cannot be applied as a powder for plastic mags.The reason for this is the The decrease in Hc is due to the process-altered layer on the powder surface, and the main cause is that the crushed powder is necessarily wrapped in a neodymium-rich phase, which is essential for the generation of coercive force of Hd-Fe-B. This is because there is no guarantee that there will be any.

即ち、本系磁石は、磁性相であるNd1Fe+*B相が
N d rich相にくるまれている時、このNdri
ch相に磁壁の移動がトラップされているため高保磁力
を発生すると考られる。従って、磁性相が粉末表面に露
出した場合、この場所より磁壁が自由に反転するため、
保磁力は著しく劣化する。ましてや、このNd2Fe+
iB相のみでは磁石とはなり得ないのである。
In other words, in the present magnet, when the magnetic phase Nd1Fe+*B phase is wrapped in the Ndrich phase, this Ndri
It is thought that a high coercive force is generated because the movement of the domain wall is trapped in the ch phase. Therefore, when the magnetic phase is exposed on the powder surface, the domain wall is freely reversed from this location, so
Coercive force deteriorates significantly. Moreover, this Nd2Fe+
The iB phase alone cannot function as a magnet.

また、本系磁石粉末は、大気中で極めて活性である希土
類元素や、Feを主成分としているため、酸化しやすい
Moreover, since the present magnet powder mainly contains rare earth elements and Fe, which are extremely active in the atmosphere, it is easily oxidized.

また、特に射出成形時には、高分子の粘性を下げ成形性
を良好にするため、200℃前後に昇温するが、この時
にも高温酸化の影響を受は磁石特性が劣化するという欠
点も有していた。
In addition, especially during injection molding, the temperature is raised to around 200°C to lower the viscosity of the polymer and improve moldability, but this also has the disadvantage that magnetic properties deteriorate due to the effects of high-temperature oxidation. was.

更に、成形した後においても、プラマグ表面に粉末表面
が露出している部分がある為に、使用中においても、こ
の部分より酸化が進行するため、予め粉末表面に各種化
学処理を施すことにより、耐酸化性をもなせようとして
いるが、まだ充分とは言い難く、成形したプラツクの表
面にさらに耐酸化性を目的とした樹脂コーティングを施
しているのが実状であり、コストアップとなっていた。
Furthermore, even after molding, there are parts of the plastic mag surface where the powder surface is exposed, so oxidation progresses from these parts even during use, so by applying various chemical treatments to the powder surface in advance, Efforts have been made to make the plastic oxidation resistant, but this is still far from sufficient, and the reality is that a resin coating is applied to the surface of the molded plastic for oxidation resistance, increasing costs. .

[発明が解決しようとする課題] 即ち、以上述べたような点より、いずれもNd・Fe−
B系のプラツク用粉末として適していなかった。
[Problem to be solved by the invention] That is, from the points mentioned above, both Nd and Fe-
It was not suitable as a B-series plastic powder.

又本系合金は、その組成としてNd、Feといっな大気
中で酸化し易い元素を含有しているなめその合金、合金
粉末、焼結体は大気中の湿気等により酸化し錆を発生す
る。
In addition, the composition of this alloy contains elements that are easily oxidized in the atmosphere, such as Nd and Fe, and the alloy, alloy powder, and sintered body will oxidize and rust due to moisture in the atmosphere. .

それ故、これら合金粉末の取り扱いは困難であり、ボン
ド磁石作製時の加熱硬化等の工程において、磁石粉末の
酸化による特性劣化を生ずる。またさらにボンド磁石化
した後においても、表面に粉末が露出しているため、こ
こより酸化が進行し、磁石特性を劣化させるばかりでな
く、さらにこの酸化物による周辺部品への汚染や、極度
の酸化進行によるボンド磁石の破壊すら生ずることもあ
った。
Therefore, it is difficult to handle these alloy powders, and the characteristics deteriorate due to oxidation of the magnet powder during processes such as heat hardening when manufacturing bonded magnets. Furthermore, even after being made into a bonded magnet, since the powder is exposed on the surface, oxidation progresses from there, not only degrading the magnetic properties but also causing contamination of surrounding parts and extreme In some cases, the bonded magnet was even destroyed due to the progress of oxidation.

この対策として、粉末をTiカップリングやシランカッ
プリング剤といった処理を施こしているものの全くとい
っていいほどその効果がないのが実状である。さらにボ
ンド磁石を作成した後、その表面に耐酸化性の樹脂コー
トをする方法もとられているが、射出成形等で成形され
る複雑な形状や細長い円筒状のものでは、完全にはコー
ティングできない場合もあり、その対策としては適して
いない。
As a countermeasure to this problem, powders are treated with Ti coupling or silane coupling agents, but the reality is that these treatments are almost completely ineffective. Another method is to coat the surface of the bonded magnet with an oxidation-resistant resin after creating it, but it is not possible to completely coat the complex shape or elongated cylindrical shape formed by injection molding etc. In some cases, this method is not suitable as a countermeasure.

本発明の技術課題は、 (1) N d 2 F 614B相がN d ric
h層により包まれた粉末を作製することにより、磁場配
向の効果を大きくし高Br及び高+Hcの粉末を作製す
る。
The technical problems of the present invention are as follows: (1) N d 2 F 614B phase is N d ric
By producing a powder surrounded by an h layer, the effect of magnetic field orientation is increased and a powder with high Br and high +Hc is produced.

(2)さらにこの粉末の表面に、Ni、Cu等の有機電
解めっき層を形成させることにより耐酸化性を持たせる
(2) Furthermore, oxidation resistance is imparted by forming an organic electrolytic plating layer of Ni, Cu, etc. on the surface of this powder.

以上2点を有a電解めっき法で達成させることにより、
高い磁場配向性を有し、しかも高保磁力を有しさらに耐
酸化性に優れた希土類プラマグ用粉末及びその製造方法
を低コストにて提供することにある。
By achieving the above two points using the a-containing electrolytic plating method,
It is an object of the present invention to provide a rare earth plastic magnet powder having high magnetic field orientation, high coercive force, and excellent oxidation resistance, and a method for producing the same at low cost.

また本発明のもう1つの技術課題はこれらボンド磁石用
粉末に耐食性に優れた金属又は合金を有a電解めっきに
よるめっきコーティングを施すことにより、耐食性に優
れたボンド磁石用R−T・B系合金粉末及びその製造方
法を提供す゛ることにある。
Another technical problem of the present invention is to coat these powders for bonded magnets with metals or alloys that have excellent corrosion resistance by electrolytic plating. The purpose of the present invention is to provide a powder and a method for producing the same.

更に本発明のさらにもう1つの技術課題は、これらのR
−T−B系合金粉末を用いた高分子複合型希土類磁石を
提供することにある。
Yet another technical problem of the present invention is to solve these R
An object of the present invention is to provide a polymer composite rare earth magnet using -T-B alloy powder.

し課題を解決するための手段] 本発明によれば.Rt T14B (但し.RはYを含
む希土類元素、Tは遷移金属を表わす、)金属間化合物
を主相とするR−T−B系合金粉末表面に有機電解めっ
き層を有することを特徴とする希土類磁石合金粉末が得
られる。
Means for Solving the Problem] According to the present invention. Rt T14B (R represents a rare earth element containing Y, T represents a transition metal) Characterized by having an organic electrolytic plating layer on the surface of the R-T-B alloy powder whose main phase is an intermetallic compound. A rare earth magnet alloy powder is obtained.

本発明によれば、上記希土類磁石合金粉末において、上
記有機電解めっき層は.R,R−T.R−T−Bの少く
とも1種を含むことを特徴とする希土類磁石合金粉末が
得られる。
According to the present invention, in the rare earth magnet alloy powder, the organic electrolytic plating layer is. R, R-T. A rare earth magnet alloy powder containing at least one type of R-T-B is obtained.

また、本発明によれば、上記希土類磁石合金粉末におい
て、上記有機電解めっき層はNi、AJ。
Further, according to the present invention, in the rare earth magnet alloy powder, the organic electrolytic plating layer is made of Ni or AJ.

Cu、Zn、Co、Fe、Mo、Tiのうち少くとも1
種からなる金属層(合金層も含む)を含むことを特徴と
する希土類磁石合金粉末が得られる。
At least one of Cu, Zn, Co, Fe, Mo, and Ti
A rare earth magnet alloy powder is obtained which is characterized by containing a metal layer (including an alloy layer) consisting of seeds.

本発明によれば.R,T14B (但し.RはYを含む
希土類元素、Tは遷移金属を表わす。)金属間化合物を
主相とするR−T−B系合金粉末表面に.R,R−T.
R−T−Bの少くとも1種よりなる第1の有機電解めっ
き層を電着する第1のめっき工程を含むことを特徴とす
る希土類磁石合金粉末の製造方法が得られる。
According to the invention. R, T14B (However, R represents a rare earth element containing Y, and T represents a transition metal.) On the surface of R-T-B alloy powder whose main phase is an intermetallic compound. R, R-T.
A method for producing rare earth magnet alloy powder is obtained, which includes a first plating step of electrodepositing a first organic electrolytic plating layer made of at least one type of R-T-B.

本発明によれば、上記希土類磁石合金粉末の製造方法に
おいて、上記第1の有機電解めっき層表面に、Ni、A
J! 、Cu、Zn、Co、Fe。
According to the present invention, in the method for producing rare earth magnet alloy powder, Ni, A
J! , Cu, Zn, Co, Fe.

Mo、Tiのうち少くとも1種よりなる金属(合金を含
む)の第2の有機電解めっき層を電着する第2のめっき
工程を含むことを特徴とする希土類磁石合金粉末の製造
方法が得られる。
A method for producing a rare earth magnet alloy powder is provided, which comprises a second plating step of electrodepositing a second organic electrolytic plating layer of a metal (including alloy) made of at least one of Mo and Ti. It will be done.

ここで、本発明の希土類磁石合金粉末の製造方法におい
て、第2のめっき工程後工程として、400〜1000
℃で熱処理する熱処理工程を含むことが望ましい。
Here, in the method for producing rare earth magnet alloy powder of the present invention, as a step after the second plating step, 400 to 1000
It is desirable to include a heat treatment step of heat treatment at °C.

本発明によれば、上記希土類磁石合金粉末を高分子樹脂
を用いて成形してなる高分子複合型希土類磁石が得られ
る。
According to the present invention, a polymer composite rare earth magnet is obtained by molding the rare earth magnet alloy powder using a polymer resin.

ここで本発明において高分子樹脂を用いて成形するとは
、原料粉末に高分子を混合して、圧縮成形、押出成形又
は射出成形して成形体を得ること、又は、原料粉末から
圧縮成形した成形体に、高分子樹脂を塗布又は含浸する
ことを含む。
Here, in the present invention, molding using a polymer resin means mixing a polymer into raw material powder and obtaining a molded product by compression molding, extrusion molding, or injection molding, or molding by compression molding from raw material powder. It involves applying or impregnating the body with a polymeric resin.

Nd −Fe −B系1ラマグ用粉末としては前述した
如く、液体急冷合金粉末の高保磁力の特性を利用したも
のと、Nd−Fe−B焼結体又はインゴットの粉砕粉末
の高い磁場配向を利用したものが、提案されていたが、
いずれも、その磁場配向性による高Brと高い保磁力の
焼結体Nd−Fe・B磁石の有する特性の両者を生かす
ことは、できない。
As mentioned above, the Nd-Fe-B type 1 Ramag powder utilizes the high coercive force characteristics of the liquid rapidly solidified alloy powder, and the high magnetic field orientation of the crushed powder of the Nd-Fe-B sintered body or ingot. It was proposed that
In either case, it is not possible to take advantage of both the characteristics of the sintered Nd-Fe/B magnet, which has high Br and high coercive force due to its magnetic field orientation.

またそれとは別にその耐酸化性という、実装上極めて大
きな問題点をも解決されていなかった。
In addition, the oxidation resistance, which is a very serious problem in terms of implementation, has not been solved.

本発明者らは種々の検討を加えた結果、有Im電解めっ
き法を用いることによりNd2T、、B相上にNdをめ
っきすることができることを見い出し本発明に至ったも
のである。
As a result of various studies, the present inventors have discovered that Nd can be plated on the Nd2T, B phase by using an Im-containing electrolytic plating method, leading to the present invention.

更に有機溶媒を用いた有機電解めっきを用いることによ
りR−T−B系合金粉末に種々の金属又は合金がめつき
できることを発見し本発明に至りたものである。
Furthermore, the inventors discovered that various metals or alloys can be plated on R-T-B alloy powder by using organic electrolytic plating using an organic solvent, leading to the present invention.

すなわち.R−T−B系磁石合金は極めて酸化し易い合
金であるため通常の水溶液を用いたメツキでは、メツキ
工程中に合金粉末が酸化してしまうためめっきすること
が不可能であった。さらに有機溶媒中では、Ndメタル
が酸化しないことに着目し有機電解めっきによりNdメ
タル表面上へ耐酸化性めっき(Ni、Cu等)を施すこ
とにより本発明の耐酸化性に優れた磁石粉末を発明する
ことができたものである。
In other words. Since the R-T-B magnet alloy is an alloy that is extremely easily oxidized, it has been impossible to plate it by plating using a normal aqueous solution because the alloy powder will oxidize during the plating process. Furthermore, we focused on the fact that Nd metal does not oxidize in organic solvents, and by applying oxidation-resistant plating (Ni, Cu, etc.) on the Nd metal surface by organic electrolytic plating, we created the magnet powder with excellent oxidation resistance of the present invention. It is something that could have been invented.

すなわち本発明によれば、Nd1Fe+<B相を主相と
するR−T−8合金粉末にNdメタル又は主にN d 
rich相を主相とするR−T.R−T−B合金を有機
電解めっき法によりめっきすることによりNd2Fe1
4B相の有する高い一軸磁気異方性による高Br、及び
Nd2Fet4B相をRrichな相によりくるむこと
により得られる高保磁力の両特性を生かした粉末を得る
ことができるものである。
That is, according to the present invention, Nd metal or mainly N d is added to the RT-8 alloy powder whose main phase is Nd1Fe+<B phase.
RT. whose main phase is rich phase. By plating RT-B alloy by organic electrolytic plating method, Nd2Fe1
It is possible to obtain a powder that takes advantage of both the characteristics of high Br due to the high uniaxial magnetic anisotropy of the 4B phase and high coercive force obtained by wrapping the Nd2Fet4B phase in a rich phase.

またさらに、この粉末の状態では粉末表面がRrich
な相となっているため耐酸化性が悪いものの、さらに有
機電解めっき法によりNi、Cu等のめっきを施すこと
により耐酸化性をもこの粉末に付与することができるも
のである。またさらにこれら粉末を400〜1000℃
の温度にて熱処理することにより、さらに保磁力の向上
が図れなり、まためっき層間及びR−T−B粉末とめっ
き層のなじみの向上による耐食性の向上をも図ることが
できる。
Furthermore, in this powder state, the powder surface is Rrich.
Although this powder has poor oxidation resistance due to its oxidation resistance, it is possible to impart oxidation resistance to this powder by further plating with Ni, Cu, etc. using an organic electrolytic plating method. Furthermore, these powders are heated to 400 to 1000℃.
By heat-treating at a temperature of , it is possible to further improve the coercive force, and it is also possible to improve the corrosion resistance by improving the compatibility between the plating layers and between the R-T-B powder and the plating layer.

またさらに、これらめっき層を積層させることにより耐
食性を一段と向上することも可能となる。
Furthermore, by laminating these plating layers, it is possible to further improve corrosion resistance.

ここで本発明において有lit解めっき法を用いたのは
通常の水溶液によるめっきでは水によりNi−Fe−B
が酸化してしまうためである。また、熱処理温度を40
0〜1000℃としたのは、400℃より低い温度では
その効果がほとんどなく、また1000℃以上では粉末
間での焼結が生じ、凝集状態となり、さらに粉末の磁石
特性も劣化するためである。
Here, in the present invention, the lit solution plating method was used because Ni-Fe-B
This is because it becomes oxidized. In addition, the heat treatment temperature was set to 40
The reason for setting the temperature to 0 to 1000°C is that at temperatures lower than 400°C, there is almost no effect, and at temperatures above 1000°C, sintering occurs between the powders, resulting in an agglomerated state, and furthermore, the magnetic properties of the powder deteriorate. .

本発明では、このめっき液に有機溶媒を用いた有機電解
めっきを行った結果R−T−Bの粉末が酸化することな
くめっきができ、さらにこの粉末を用いたボンド磁石は
耐食性に優れ、従来まで必要としていたボンド磁石への
耐酸化性樹脂等のコーティングが不用となりコストダウ
ンも図ることができるものである。・ さらに粉末の酸化等による磁石特性の劣化も防ぐことが
でき、工業上極めて有益である。
In the present invention, as a result of organic electrolytic plating using an organic solvent in this plating solution, the R-T-B powder can be plated without oxidation, and bonded magnets using this powder have excellent corrosion resistance, and This eliminates the need to coat bonded magnets with oxidation-resistant resin, which was previously required, and can also reduce costs. - Furthermore, deterioration of magnetic properties due to powder oxidation etc. can be prevented, which is extremely useful industrially.

以上述べた如(Nd2Fe+d3相を主相とするR−T
−B系粉末に.Rメタル又はRrichな相を主相とす
るR−T.R−T−B合金を有機電解めっき法によりめ
っきした後、さらに有機電解法によるNi、Cu、AJ
等の耐酸化性を有する金属又は合金をめっきすることに
より、磁石特性、耐食性に優れたプラマグ用粉末が製造
でき工業上極めて有益である。
As mentioned above (RT with Nd2Fe+d3 phase as main phase)
-For B-based powder. R-T. whose main phase is R metal or Rrich phase. After plating the R-T-B alloy using an organic electrolytic plating method, Ni, Cu, and AJ are further plated using an organic electrolytic method.
By plating with metals or alloys having oxidation resistance such as, it is possible to produce powder for plastic mags with excellent magnetic properties and corrosion resistance, which is extremely useful industrially.

また、この方法では、通常の有Ill電解めっきを用い
ることによりその目的が達成されるものであるなめ、コ
ストの低減も図れ、しがも量産性の極めて高い方策であ
る。
In addition, this method achieves its purpose by using ordinary Ill-containing electrolytic plating, so it is possible to reduce costs and is also a measure with extremely high mass productivity.

〈実施例〉 本発明の実施例について説明する。<Example> Examples of the present invention will be described.

実施例−1 純度95%以上Nd、電解鉄、フェロボロンを用い、A
r中高周波加熱により31Nd−1,OB −F e 
bat  (wt%ンの組成を有するインゴットを得な
Example-1 Using Nd with a purity of 95% or more, electrolytic iron, and ferroboron, A
31Nd-1, OB -F e by medium high frequency heating
Obtain an ingot having a composition of bat (wt%).

さらにこのインゴットをAr中で高周波加熱による再溶
解をした後、同速度35m/secで回転するCu単ロ
ールに噴射し、厚さ約30μ信の合金薄帯を得た。こめ
薄帯を32メツシユ以下まで粉砕した。
Further, this ingot was remelted by high frequency heating in Ar and then injected onto a Cu single roll rotating at the same speed of 35 m/sec to obtain an alloy ribbon with a thickness of about 30 μm. The rice grains were crushed to 32 mesh or less.

この粉末を、トルエン、エタノール、グロピレンカーボ
ネイト、ジメチルホルムアミド及びNi。
This powder was mixed with toluene, ethanol, glopylene carbonate, dimethylformamide and Ni.

AJ 、Ti 、Fe、Co、Zn、Mo、Cuの各金
属塩を用いた有機電解めっき洛中にてめっき厚5〜IO
μmとなるようめっきを施しな。
Plating thickness 5 to IO using organic electrolytic plating using metal salts of AJ, Ti, Fe, Co, Zn, Mo, and Cu.
Plating should be done so that the thickness is μm.

さらにこれら粉末を用い粉末とエポキシw指の混合比が
重量比で93ニアとなるよう混合したのち、30 KO
eの磁界中で5ton/dの圧力にて圧縮成形した。さ
らに100〜120℃でlhr加熱し圧縮成形ボンド磁
石を作製した。
Furthermore, after mixing these powders so that the mixing ratio of powder and epoxy w fingers was 93 near by weight, 30 KO
Compression molding was carried out at a pressure of 5 tons/d in a magnetic field of Furthermore, it was heated at 100 to 120° C. for 1 hour to produce a compression molded bonded magnet.

また比較例としてめっきをしない粉末を上記と同様の方
法にてボンド磁石を作製した。
In addition, as a comparative example, a bonded magnet was produced using powder that was not plated in the same manner as above.

第1表に粉末にめっきした金属又は合金と磁石特性、及
び、80℃X90%R,H,試験結果を示す。
Table 1 shows the metal or alloy plated on the powder, the magnetic properties, and the 80°C x 90% R, H test results.

第1表より本発明よる有機電解めっきを施した粉末を用
いたボンド磁石は耐食性が極めて優れており、磁石特性
も優れていることがわがる。
From Table 1, it can be seen that the bonded magnet using the powder subjected to organic electrolytic plating according to the present invention has extremely excellent corrosion resistance and excellent magnetic properties.

実施例−2 純度95%以上のNd、Fe、Bを用い26.8Nd−
1,0B−Febal  (wt%)の組成を有するイ
ンゴットをAr中高周波溶解により得な。
Example-2 26.8Nd- using Nd, Fe, and B with a purity of 95% or more
An ingot having a composition of 1,0B-Febal (wt%) was obtained by high-frequency melting in Ar.

このインゴットをディスクミルで粗粉砕した後ジェット
ミルにて平均粒径20〜30μmに微粉砕した。
This ingot was coarsely pulverized with a disk mill and then finely pulverized with a jet mill to an average particle size of 20 to 30 μm.

この粉末をメタノール−塩化ネオジウム−ホウ酸の有機
溶解めっき浴中でNdメタル、90Nd10Fe、9O
Nd−9,5Fe−0,58(vt%)の3種類をアノ
ードとしためつきを施した。(3種類のめっき)この時
の膜厚は1μm程度であった。さらに続いて、それぞれ
の粉末をメタノール−酢酸Ni−ホウ酸の浴にてNiめ
つきを施した。この膜厚は5〜7μlであった。
This powder was applied to Nd metal, 90Nd10Fe, 9O in a methanol-neodymium chloride-boric acid organic solution plating bath.
Tightening was performed using three types of Nd-9,5Fe-0,58 (vt%) as anodes. (Three types of plating) The film thickness at this time was about 1 μm. Subsequently, each powder was plated with Ni in a bath of methanol-Ni acetate-boric acid. The film thickness was 5 to 7 μl.

これら粉末にエポキシ樹脂を25vo1%混合した後、
25 kOeの磁界中5ton/−の圧力で成形した。
After mixing 25vol 1% of epoxy resin with these powders,
Molding was carried out under a pressure of 5 tons/- in a magnetic field of 25 kOe.

さらに100〜120℃で1時間保持した。The temperature was further maintained at 100 to 120°C for 1 hour.

また比較例として、市販されるGM社製のMQ1タイプ
の粉末を20〜30μlに粉砕した後、上記と同様の方
法にてエポキシ樹脂を25VO1%混合して、ボンド磁
石を作製した。
As a comparative example, commercially available MQ1 type powder manufactured by GM was pulverized to 20 to 30 μl, and then 25 VO 1% of epoxy resin was mixed therein in the same manner as described above to produce a bonded magnet.

これら試料の磁石特性及び塩水噴霧試験(JIS−23
71)を72h「施した結果を第2表に示す。
Magnetic properties and salt spray test (JIS-23
71) for 72 hours and the results are shown in Table 2.

第2表より本発明による粉末を用いたボンド磁石は、従
来のものに比べ磁石特性が著しく向上ししかも耐食性に
優れていることがわかる。
From Table 2, it can be seen that the bonded magnets using the powder according to the present invention have significantly improved magnetic properties compared to conventional ones, and are also excellent in corrosion resistance.

実施例−3 実施例−2で得られたNdメタル、Nd −Fe、Nd
−Fe−8のめっきとNiのめっきを施した粉末を真空
中にて、300〜1100’Cの温度で熱処理を施した
。さらにこの粉末を実施例と同様エポキシ樹脂を25v
o1%混合して25kOeの磁界中5tOn/cdの圧
力で成形じな。さらにエポキシ樹脂を硬化させるなめ、
100〜120℃の温度で保持した。
Example-3 Nd metal, Nd-Fe, Nd obtained in Example-2
-The powder coated with Fe-8 and Ni was heat treated in a vacuum at a temperature of 300 to 1100'C. Further, add 25v of epoxy resin to this powder as in the example.
Mix 1% o and mold it under a pressure of 5tOn/cd in a magnetic field of 25kOe. Furthermore, to harden the epoxy resin,
The temperature was maintained at 100-120°C.

第1図に熱処理温度、めっきしたNd −Fe・B合金
の組成を変化させた時の磁石特性を示す。
FIG. 1 shows the magnetic properties when the heat treatment temperature and the composition of the plated Nd-Fe.B alloy were varied.

第1図よりわかるように、熱処理温度が400〜100
0℃の間で、磁石特性が向上していることがわかる。ま
た、1100℃では粉末同志が結着しており、粉末では
なくなっていたなめ、試料とすることができなかった。
As can be seen from Figure 1, the heat treatment temperature was 400 to 100.
It can be seen that the magnetic properties are improved between 0°C. Moreover, at 1100° C., the powders were stuck together and were no longer powders, so they could not be used as samples.

実施例−4 実施例−2で準備した26.8Nd−1,0B−Feb
al  (wt%)の組成を有する粉末に対し、実施例
−2と同様に第−層として、Ndメタルをめっきした。
Example-4 26.8Nd-1,0B-Feb prepared in Example-2
A powder having a composition of al (wt%) was plated with Nd metal as the th layer in the same manner as in Example-2.

さらにこの粉末に対し、有機電解法によりNi、Cu、
Aj 、Zn、Co、Mo。
Furthermore, Ni, Cu, and
Aj, Zn, Co, Mo.

Tiの金属及びNi−Zn、Fe−Co、Aj−Cu、
Mo−Fe、Ti−Ajの合金めっきを施した。この時
その膜厚は5〜10μlとなるようにした。
Ti metal and Ni-Zn, Fe-Co, Aj-Cu,
Alloy plating of Mo-Fe and Ti-Aj was applied. At this time, the film thickness was set to 5 to 10 μl.

これら粉末に実施例−2と同様、エポキシ樹脂混合、磁
場中成形加熱硬化を施し、ボンド磁石を作製した。
These powders were mixed with an epoxy resin, molded and heated in a magnetic field, and cured in the same manner as in Example 2 to produce a bonded magnet.

これらボンド磁石の磁石特性を測定したところ、B r
 12. O〜12.4kg (BH)nax27〜3
08GOe、  +Hcは8.0〜10.2kOeであ
った。
When we measured the magnetic properties of these bonded magnets, we found that B r
12. O~12.4kg (BH)nax27~3
08GOe, +Hc was 8.0 to 10.2 kOe.

またこれらボンド磁石と実施例−2で用いた比較例のG
M社製のMQ−1のパウダーを用いて作製したボンド磁
石をJIS−2371に基づき塩水噴霧試験を72h「
施した。その結果を第3表に示す。
In addition, these bonded magnets and the G of the comparative example used in Example-2
A bonded magnet made using MQ-1 powder manufactured by M Company was subjected to a salt spray test for 72 hours based on JIS-2371.
provided. The results are shown in Table 3.

第3表より本発明によるボンド磁石はいずれも耐食性に
優れていることがわかる。
It can be seen from Table 3 that all bonded magnets according to the present invention have excellent corrosion resistance.

臥下弦日 第  3  表 ◎− 〇− 八 − × − 変化なし ごく微量のさびが認められる 一部さびが認められる 全面に赤さびを露出 以上Nd−Fe−Bについてのみ述べたがYを含めた希
土類元素Rと遷移金属Tを用いたR−T・B系でも同様
のことが期待できることは容易に推察できるものである
Table 3 ◎ - 〇 - 8 - × - No change A very small amount of rust is observed Some rust is observed Red rust is exposed on the entire surface Although only Nd-Fe-B was mentioned, rare earths including Y It can be easily inferred that the same thing can be expected for the RT.B system using element R and transition metal T.

さらにめっきする金属においても有機溶媒中で、めっき
が可能であり耐食性を有する金属、合金であれば何でも
よいことも容易に推察できるものである。尚、本★施例
においては、Ndメタルをめっき後、この表面“にNi
、Cu、AN 、Zn。
Furthermore, it can be easily inferred that any metal or alloy may be used as the metal to be plated as long as it can be plated in an organic solvent and has corrosion resistance. In this example, after plating Nd metal, Ni is applied to this surface.
, Cu, AN, Zn.

Co、Mo、Tiの少くとも1種よりなる金属又は合金
のめっきを施したが、本発明においてはこの金属又は合
金よりなるめっき膜は多層構造を有するものも含まれる
ことは、当業者では容易に理解できるものである。
Although plating was performed with a metal or alloy made of at least one of Co, Mo, and Ti, those skilled in the art will easily understand that in the present invention, the plating film made of this metal or alloy may have a multilayer structure. This is understandable.

〈発明の効果〉 以上述べたように本発明によれば.R2T、4B相を主
相とするR−T−8合金粉末に有a電解めっき法により
、Ni、AJ! 、Ti、Fe、Co。
<Effects of the Invention> As described above, according to the present invention. Ni, AJ! is coated on R-T-8 alloy powder with R2T and 4B phases as main phases by a method of electrolytic plating. , Ti, Fe, Co.

Zn、Mo、Cuの一種以上又は合金のめっき層を形成
させることによりその粉末の耐食性が著しく向上するた
め、その粉末を用いたボンド磁石も著しく耐食性の優れ
たものを製造することができ、又、製造工程中の酸化等
による磁石特性の劣化を防ぐことらでき工業上極めて有
益である。
By forming a plating layer of one or more of Zn, Mo, Cu, or an alloy, the corrosion resistance of the powder is significantly improved, so bonded magnets using the powder can also be manufactured with extremely excellent corrosion resistance. This is extremely useful industrially as it can prevent deterioration of magnetic properties due to oxidation etc. during the manufacturing process.

また本発明では、通常のめっき工程とほぼ同様の有R電
解めっきを用いているため低コストでしかも大量生産が
可能であり有益である。
Furthermore, the present invention uses R electrolytic plating, which is substantially the same as a normal plating process, so it is advantageous because it can be mass-produced at low cost.

本発明によれば.R2T14B相を主相とするR・T−
8合金粉末に.Rメタル又はR−rich相を主相とす
るR−T.R−T−B合金と有機電解めっき法によりめ
っきすることにより従来の高分子複合型磁石用希土類磁
石合金粉末に比べ著しく磁石特性の優れた高分子複合型
磁石用希土類磁石合金粉末及び高分子複合型希土類磁石
が得られるものである。
According to the invention. R・T− with R2T14B phase as the main phase
8 alloy powder. RT. whose main phase is R metal or R-rich phase. Rare earth magnet alloy powder and polymer composite for polymer composite magnets that have significantly superior magnetic properties than conventional rare earth magnet alloy powders for polymer composite magnets by plating with R-T-B alloy and organic electrolytic plating method. type rare earth magnet can be obtained.

これは従来までの粉末では、高い保磁力を得るなめには
等方性の粉末を使用せねばならずさらに高い磁気異方性
による高Brを得るためには、保磁力の極めて低い粉末
を使用さぜるをえない、といっな矛盾の挟間にあったが
、本発明により高い磁気異方性を有するR2T、、B相
粉末に高保磁力を発生させるために不可欠なRrich
相をめっきすることによりこの問題を解決でき、高特性
を享受しうるに至った。
This is because with conventional powders, in order to obtain a high coercive force, it is necessary to use an isotropic powder, and in order to obtain a high Br due to even higher magnetic anisotropy, a powder with an extremely low coercive force is used. However, in the present invention, Rrich, which is essential for generating high coercive force in R2T and B phase powders with high magnetic anisotropy, has been found to be indispensable.
By plating the phase, this problem could be solved and high properties could be enjoyed.

さらに従来R−T−B系磁石合金粉末は、酸化し易いた
め扱いづらくさらにボンド磁石化した後に耐酸化性のコ
ーティングをせねばならなかったが、本発明では上記粉
末にさらに有m電解めっきを行うことによりNi、Aj
等の耐食性に優れた合金層を形成させることが可能とな
ったため、極めて耐食性に優れ、しかも磁石特性の高い
粉末及びそれを用いた高分子複合型希土類磁石を得るこ
とができるものである。
Furthermore, conventional R-T-B magnet alloy powders were difficult to handle because they were easily oxidized and had to be coated with an oxidation-resistant coating after being made into bonded magnets. Ni, Aj by doing
Since it has become possible to form an alloy layer with excellent corrosion resistance, it is now possible to obtain a powder with extremely excellent corrosion resistance and high magnetic properties, and a polymer composite rare earth magnet using the powder.

また、本発明の希土類磁石合金粉末は通常の有機電解め
っき工程を用いればよいため低コストで製造できしかも
量産性が高いので工業上極めて有効である。
Further, the rare earth magnet alloy powder of the present invention can be produced at low cost by using a normal organic electrolytic plating process, and has high mass productivity, making it extremely effective industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る希土類磁石の熱処理温度
と各磁石特性を示す図である。 第1図 −−Δ−−9ONd−10Fe メツキ熱処I11厘(
@C)
FIG. 1 is a diagram showing the heat treatment temperature and each magnet characteristic of a rare earth magnet according to an example of the present invention. Figure 1--Δ--9ONd-10Fe Metsuki heat treatment I11 (
@C)

Claims (6)

【特許請求の範囲】[Claims] 1.R_2T_1_4B(但し、RはYを含む希土類元
素、Tは遷移金属を表わす。)金属間化合物を主相とす
るR・T・B系合金粉末表面に有機電解めっき層を有す
ることを特徴とする希土類磁石合金粉末。
1. R_2T_1_4B (R represents a rare earth element containing Y, and T represents a transition metal.) A rare earth element characterized by having an organic electrolytic plating layer on the surface of the R/T/B alloy powder whose main phase is an intermetallic compound. Magnet alloy powder.
2.上記有機電解めつき層はR,R−T,R−T−Bの
少くとも1種を含むことを特徴とする第1の請求項記載
の希土類磁石合金粉末。
2. The rare earth magnet alloy powder according to claim 1, wherein the organic electrolytic plated layer contains at least one of R, RT, and RTB.
3.上記有機電解めっき層はNi,Al,Cu,Zn,
Co,Fe,Mo,Tiのうち少くとも1種からなる金
属層(合金層も含む)を含むことを特徴とする第1の請
求項記載の希土類磁石合金粉末。
3. The organic electrolytic plating layer is made of Ni, Al, Cu, Zn,
The rare earth magnet alloy powder according to claim 1, comprising a metal layer (including an alloy layer) made of at least one of Co, Fe, Mo, and Ti.
4.R_2T_1_4B(但し、RはYを含む希土類元
素、Tは遷移金属を表わす。)金属間化合物を主相とす
るR・T・B系合金粉末表面に、R,R−T,R−T−
Bの少くとも1種よりなる第1の有機電解めっき層を電
着する第1のめっき工程を含むことを特徴とする希土類
磁石合金粉末の製造方法。
4. R_2T_1_4B (However, R represents a rare earth element containing Y, and T represents a transition metal.) R, R-T, R-T-
A method for producing rare earth magnet alloy powder, comprising a first plating step of electrodepositing a first organic electrolytic plating layer made of at least one type of B.
5.上記第1の有機電解めっき層の表面にNi,Al,
Cu,Zn,Co,Fe,Mo,Tiのうち少くとも1
種よりなる金属(合金を含む)の第2の有機電解めっき
層を電着する第2のめっき工程を含むことを特徴とする
第4の請求項記載の希土類磁石合金粉末の製造方法。
5. Ni, Al,
At least one of Cu, Zn, Co, Fe, Mo, Ti
5. The method for producing a rare earth magnet alloy powder according to claim 4, further comprising a second plating step of electrodepositing a second organic electrolytic plating layer of a metal (including an alloy) consisting of a seed.
6.第1又は第2の請求項記載の希土類磁石合金粉末を
高分子樹脂を用いて成形してなる高分子複合型希土類磁
石。
6. A polymer composite rare earth magnet formed by molding the rare earth magnet alloy powder according to claim 1 or 2 using a polymer resin.
JP63180385A 1988-07-21 1988-07-21 Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same Expired - Fee Related JP3028337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63180385A JP3028337B2 (en) 1988-07-21 1988-07-21 Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180385A JP3028337B2 (en) 1988-07-21 1988-07-21 Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same

Publications (2)

Publication Number Publication Date
JPH0231401A true JPH0231401A (en) 1990-02-01
JP3028337B2 JP3028337B2 (en) 2000-04-04

Family

ID=16082307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180385A Expired - Fee Related JP3028337B2 (en) 1988-07-21 1988-07-21 Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same

Country Status (1)

Country Link
JP (1) JP3028337B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505778A (en) * 1990-06-04 1992-10-08 ザ ダウ ケミカル カンパニー Method of manufacturing metal bonded magnets
US5302464A (en) * 1991-03-04 1994-04-12 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method of plating a bonded magnet and a bonded magnet carrying a metal coating
JP2007270303A (en) * 2006-03-31 2007-10-18 Toda Kogyo Corp Sm-Fe-N BASED MAGNETIC PARTICLE POWDER FOR BONDED MAGNET AND ITS MANUFACTURING METHOD, RESIN COMPOSITION FOR BONDED MAGNET, AND BONDED MAGNET
CN100414003C (en) * 2004-04-21 2008-08-27 浙江工业大学 Method for preparing neodymium-iron-boron magnetic powder coated with metal layer by electrochemical deposition
CN103537877A (en) * 2013-10-31 2014-01-29 江苏三科安全科技有限公司 Metal electro-deposition process of barrier anti-explosion aluminum alloy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011420B2 (en) * 2010-05-14 2012-08-29 日東電工株式会社 Permanent magnet and method for manufacturing permanent magnet
CN111916284B (en) * 2020-08-08 2022-05-24 烟台首钢磁性材料股份有限公司 Preparation method of high-coercivity sintered neodymium-iron-boron magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213208A (en) * 1986-03-14 1987-09-19 Seiko Epson Corp Manufacture of rare earth magnet
JPH01225102A (en) * 1988-03-04 1989-09-08 Nippon Steel Corp High corrosion-resistant rare earth permanent magnet, raw material powder therefor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213208A (en) * 1986-03-14 1987-09-19 Seiko Epson Corp Manufacture of rare earth magnet
JPH01225102A (en) * 1988-03-04 1989-09-08 Nippon Steel Corp High corrosion-resistant rare earth permanent magnet, raw material powder therefor and manufacture thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505778A (en) * 1990-06-04 1992-10-08 ザ ダウ ケミカル カンパニー Method of manufacturing metal bonded magnets
US5302464A (en) * 1991-03-04 1994-04-12 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method of plating a bonded magnet and a bonded magnet carrying a metal coating
CN100414003C (en) * 2004-04-21 2008-08-27 浙江工业大学 Method for preparing neodymium-iron-boron magnetic powder coated with metal layer by electrochemical deposition
JP2007270303A (en) * 2006-03-31 2007-10-18 Toda Kogyo Corp Sm-Fe-N BASED MAGNETIC PARTICLE POWDER FOR BONDED MAGNET AND ITS MANUFACTURING METHOD, RESIN COMPOSITION FOR BONDED MAGNET, AND BONDED MAGNET
JP4623308B2 (en) * 2006-03-31 2011-02-02 戸田工業株式会社 Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
CN103537877A (en) * 2013-10-31 2014-01-29 江苏三科安全科技有限公司 Metal electro-deposition process of barrier anti-explosion aluminum alloy
WO2015062163A1 (en) * 2013-10-31 2015-05-07 丁佐军 Metal electrodeposition process for isolated blast-protection aluminum alloy

Also Published As

Publication number Publication date
JP3028337B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US20150187494A1 (en) Process for preparing rare earth magnets
JP2018157197A (en) Highly thermally stable rare earth permanent magnet material, method for manufacturing the same, and magnet including the same
JPH0231401A (en) Rare-earth magnet alloy powder, manufacture thereof and macromolecular composite type rate-earth magnet using this alloy powder
JPH02298003A (en) Manufacture of rare-earth permanent magnet
EP4006931B1 (en) Manufacturing method of sintered magnet
JPH03261104A (en) Manufacture of anisotropic rare earth permanent magnet
JPH03260018A (en) Manufacture of anisotropic rare earth metal permanent magnet
JPS62229803A (en) Nd-fe-b alloy powder for plastic magnet
JPH03101102A (en) Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
JPH0380508A (en) Manufacture of rare earth element magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH02138706A (en) Anisotropic permanent magnet
JPS63146414A (en) Manufacture of bonded magnet
JPS6136361B2 (en)
JPH04346203A (en) Manufacture of rare-earth magnet powder, bond magnet, and rare-earth magnet powder
JP2000223305A (en) Rare-earth r-fe-co-b magnetic powder, its manufacturing method, and bonded magnet made of the powder
JPH03217003A (en) Manufacture of bond-type permanent magnet
JPH04218903A (en) Manufacture of anisotropic rare earth magnet or anisotropic rare earth magnet powder
JPS6136362B2 (en)
JP2003234204A (en) Anisotropic magnetic powder, method and device for manufacturing the same, and anisotropic bonded magnet using the same
JPH04209505A (en) Manufacture of rare-earth iron magnet
JPH03151602A (en) Permanent magnet and manufacture thereof
JPH0690968B2 (en) Manufacturing method of rare earth resin-bonded magnet excellent in oxidation resistance
JPH0439206B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees