JPH02305351A - Cogeneration system - Google Patents
Cogeneration systemInfo
- Publication number
- JPH02305351A JPH02305351A JP1124002A JP12400289A JPH02305351A JP H02305351 A JPH02305351 A JP H02305351A JP 1124002 A JP1124002 A JP 1124002A JP 12400289 A JP12400289 A JP 12400289A JP H02305351 A JPH02305351 A JP H02305351A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- pressure
- turbine
- absorption
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 claims abstract description 58
- 239000002918 waste heat Substances 0.000 claims description 20
- 239000002699 waste material Substances 0.000 claims 1
- 239000000446 fuel Substances 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- 230000006837 decompression Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 239000000567 combustion gas Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
この発明は電力と熱出力を同時に取り出すコージェネレ
ーションシステムにおいて、電力と熱出力の構成比を需
要に合せて柔軟に変更できるようにするシステムに関す
るものである。The present invention relates to a system that allows the composition ratio of electric power and thermal output to be flexibly changed according to demand in a cogeneration system that extracts electric power and thermal output at the same time.
第4図は例えば「冷凍」第62巻第713号「空調・給
湯システム計画JP235〜240(冷凍協会1987
年3月発行)に示された、従来のコージェネレーション
システムを示す系統図である。図において、1は吸入空
気を圧縮するコン、プレソサ、2は圧縮空気と燃料とを
混合して燃焼させる燃焼器、3は燃焼器2から出る高圧
燃焼ガスが膨張する発電機駆動源となるガスタービン、
4・は発電機、5は空気吸入管、6は高圧燃焼ガス配管
、7はコンプレッサ1とガスタービン3および発電機4
を接続する回転軸、8は低圧燃焼ガス配管、9は排熱ボ
イラ、15は減圧弁、17は中圧蒸気管、22は吸収冷
凍機、23は吸収冷凍機22から冷水を取り出すための
冷水取り出し配管、24は吸収冷凍機22から排熱ボイ
ラ9に凝縮水を戻すための循環ポンプ、28は水配管、
33は蒸気取り出し用減圧弁である。
次に動作について説明する。空気吸入管5より吸入され
た空気は、コンプレッサ1で圧縮され燃焼器2に入る。
ここで燃料が混合されて燃焼し、燃焼ガスは高圧燃焼ガ
ス配管6を通りガスタービン3を回転させる。このため
、回転軸7によってガスタービン3と直結された発電機
4が回転し電力を得る。ガスタービン3を出た燃焼ガス
は、低圧燃焼ガス配管8を通り排熱ボイラ9に入る。排
熱ボイラ9内で燃焼ガスの熱により蒸気を発生させ、温
度の低下した排ガスは大気中に排気される。
排熱ボイラ9で発生した蒸気は吸収冷凍機22に入り、
その駆動熱源として働く。吸収冷凍機22内で熱交換し
凝縮した水は、ポンプ24により水配管28を通して再
び排熱ボイラ9へ送られる。
冷水出力が冷水取り出し配管23から得られる。
また、排熱ボイラ9から蒸気取り出し用減圧弁33を経
て蒸気出力を得る。Figure 4 shows, for example, "Refrigeration", Vol. 62, No. 713, "Air Conditioning/Hot Water Supply System Planning JP 235-240 (Refrigeration Association 1987)".
FIG. 2 is a system diagram showing a conventional cogeneration system shown in the publication published in March 2013. In the figure, 1 is a compressor that compresses intake air, 2 is a combustor that mixes compressed air and fuel and combusts it, and 3 is a gas that serves as a generator driving source in which the high-pressure combustion gas discharged from combustor 2 expands. turbine,
4 is a generator, 5 is an air intake pipe, 6 is a high-pressure combustion gas pipe, 7 is a compressor 1, a gas turbine 3, and a generator 4
8 is a low pressure combustion gas pipe, 9 is an exhaust heat boiler, 15 is a pressure reducing valve, 17 is a medium pressure steam pipe, 22 is an absorption refrigerator, and 23 is a cold water for taking out cold water from the absorption refrigerator 22. An extraction pipe, 24 is a circulation pump for returning condensed water from the absorption refrigerator 22 to the waste heat boiler 9, 28 is a water pipe,
33 is a pressure reducing valve for steam extraction. Next, the operation will be explained. Air taken in through the air suction pipe 5 is compressed by the compressor 1 and enters the combustor 2. Here, the fuel is mixed and combusted, and the combustion gas passes through the high-pressure combustion gas pipe 6 and rotates the gas turbine 3. Therefore, the generator 4, which is directly connected to the gas turbine 3 through the rotating shaft 7, rotates and obtains electric power. Combustion gas leaving the gas turbine 3 passes through a low-pressure combustion gas pipe 8 and enters an exhaust heat boiler 9. Steam is generated in the waste heat boiler 9 by the heat of the combustion gas, and the reduced temperature exhaust gas is exhausted into the atmosphere. The steam generated in the waste heat boiler 9 enters the absorption refrigerator 22,
It acts as the driving heat source. The water that has undergone heat exchange and condensed in the absorption refrigerator 22 is sent to the waste heat boiler 9 again through the water pipe 28 by the pump 24. Chilled water output is obtained from cold water outlet piping 23. In addition, steam output is obtained from the waste heat boiler 9 via a pressure reducing valve 33 for steam extraction.
【発明が解決しようとする課題】
従来のコージェネレーションシステムは以上のように構
成されているので、吸収冷凍機の冷水出力または排熱ボ
イラからの蒸気出力を増加させようとすると、熱源であ
る排熱の熱量を増やすために燃焼ガスを増加させる必要
があり、供給電力と熱出力とを同時に増加させるなど負
荷の変化に柔軟に対処するどとが困難であるという問題
点があった。
この発明は上記のような問題点を解決するためになされ
たもので、供給電力量と熱出力とを独立して制御できる
ようにしたコージェネレーションシステムを得ることを
目的とする。[Problems to be Solved by the Invention] Since the conventional cogeneration system is configured as described above, when trying to increase the chilled water output of the absorption chiller or the steam output from the waste heat boiler, the In order to increase the amount of heat, it is necessary to increase the amount of combustion gas, and this poses a problem in that it is difficult to flexibly deal with changes in load, such as by simultaneously increasing power supply and heat output. This invention was made to solve the above-mentioned problems, and aims to provide a cogeneration system that can independently control the amount of electric power supplied and the heat output.
この発明に係るコージェネレーションシステムは、発電
機駆動源よりの排熱を使って排熱ボイラで発生させた蒸
気が分配入力されることにより供給電力調整用発電機を
駆動するスチームタービンと、このスチームタービンの
排蒸気を入力すると共に、必要に応して上記排熱ボイラ
よりの蒸気を入力して排蒸気より圧力の高い蒸気を発生
させる第2種吸収し−1〜ポンプと、この第2種吸収ヒ
ートポンプの一部を排熱ボイラ出口蒸気と必要に応じて
合流入力させる吸収冷凍機とを備えたものである。A cogeneration system according to the present invention includes a steam turbine that drives a power supply adjustment generator by distributing and inputting steam generated in a waste heat boiler using waste heat from a generator drive source, and a steam turbine that drives a power supply adjustment generator. A type 2 absorption pump that inputs exhaust steam from the turbine and, if necessary, inputs steam from the exhaust heat boiler to generate steam with a higher pressure than the exhaust steam; It is equipped with an absorption refrigerator which inputs a part of the absorption heat pump into the exhaust heat boiler outlet steam as necessary.
この発明におけるコージェネレーションシステムでは、
スチームタービンへ流入する蒸気量を変えて供給電力量
を制御し、スチームタービンの排蒸気を第2種吸収ヒー
トポンプに入力して排蒸気より高圧の蒸気を得、またそ
の一部を吸収冷凍機に入力して、スチームタービン発電
機の発電量増加とともに減少する吸収冷凍機への熱源入
力を補うことができる。In the cogeneration system in this invention,
The amount of electricity supplied is controlled by changing the amount of steam flowing into the steam turbine, and the exhaust steam from the steam turbine is input to a second-class absorption heat pump to obtain steam at a higher pressure than the exhaust steam, and a part of it is sent to an absorption chiller. It is possible to supplement the heat source input to the absorption chiller, which decreases as the amount of power generated by the steam turbine generator increases.
以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例を示す系統図で、第1図におい
て、第4図と同一または均等な構成部分には同一符号を
付して重複説明を省略する。
第1図において、10はスチームタービン、11は排熱
ボイラ9とスチームタービン1oとを接続する高圧蒸気
管、12はスチームタービン1oに流れる蒸気流量を制
御する制御弁、13は回転軸、14はスチームタービン
10に回転軸13によって直結された供給電力調整用発
電機、16はスチームタービン10の排蒸気を第2種吸
収ヒートポンプ25に導く低圧蒸気管、17は制御弁1
2から分岐した蒸気を吸収冷凍機22に導く中圧蒸気管
、18は過剰な蒸気を凝縮させるための復水器、I9は
過剰な蒸気を中圧蒸気管17から復水器1Bに導く制御
弁、20は復水器18で凝縮した水を排熱ボイラ9に戻
すための水配管、21は復水器18で凝縮した水を排熱
ボイラ9へ送る循環ポンプ、25は低圧蒸気を熱源とし
てより高圧の蒸気出力を得る第2種吸収ヒートポンプ、
26は第2種吸収ヒートポンプ25からの蒸気取り出し
用配管、27は第2種吸収ヒートポンプ25で入力蒸気
を凝縮した水を復水器18に送るためのポンプ、29は
第2種吸収ヒートポンプ25に中圧蒸気管17から熱源
の蒸気を送るための制御弁、30は蒸気取り出し用配管
26に取り付けられ中圧蒸気管17へ分岐する蒸気の流
量制御弁、31は第2 一種吸収ヒートポンプ25の出
力蒸気を中圧蒸気管17に送るための蒸気管、32は制
御弁29から6一
低圧蒸気管16に流入する蒸気の圧力を中圧蒸気管17
内の圧力から低圧蒸気管16内の圧力まで低下させるた
めの減圧弁である。
2次に動作について説明する。空気吸入管5より吸入さ
れた空気は、コンプレッサ1で圧縮され燃焼器2に入る
。ここで燃料が混合されて燃焼し、燃焼ガスは高圧燃焼
ガス配管6を通りガスタービン3を回転させる。このた
め、回転軸7によってガスタービン3と直結された発電
機4が回転し電力を得る。ガスタービン3を出た燃焼ガ
スは低圧燃焼ガス配管8を通り排熱ボイラ9に入る。排
熱ボイラ9内で燃焼ガスの熱により1気を発生させ、温
度の低下した排ガスは大気中に排気される。
排熱ボイラ9で発生した蒸気は、高圧蒸気管11に取り
付けられた制御弁12を通り、中圧蒸気管17へ流れる
。この蒸気は減圧弁15により必要な圧力まで減圧され
た後、制御弁29を通って吸収冷凍機22に入り、その
駆動熱源として働く。
一方、制御弁12を通って分岐した蒸気はスチームター
ビン10に入り、回転軸13によりスチームタービン1
0と直結した供給電力調整用発電機14を回転させ発電
させる。スチームタービン10を出た蒸気は低圧蒸気管
16を通り、第2種吸収ヒートポンプ25に入り、その
駆動熱源として働く。
吸収冷凍機22、及び第2種吸収ヒートポンプ25で熱
交換して凝縮した水は、ポンプ24及びポンプ27によ
り水配管28に導かれ、水配管28を通り復水器18を
経て、再び排熱ボイラ9へと送られる。吸収冷凍機22
からは冷水用ノJ力5得られる。また、第2種吸収ヒー
トポンプ25からは蒸気出力が得られる。
また、制御弁12はスチームタービン10に流れる蒸気
流量を制御して、供給電力調整用発電機14から得られ
る電力量を制御する。制御弁12は、高圧蒸気管11か
ら減圧弁15を経て中圧蒸気管17に流れる蒸気流量に
ついては特に制御しない。
吸収冷凍機22と第2種吸収ヒートポンプ25の容量制
御は、熱源蒸気圧力が一定であれば各々に搭載された制
御機能で行うことができる。
制御弁19は、吸収冷凍a22と第2種吸収ヒートポン
プ25の熱源蒸気圧力を安定させるため、図には示して
いないが圧カセンザによる中圧蒸気管17内圧力の測定
値をもとに、復水器18へ流れる蒸気流量を制御する。
制御弁19から復水器1日に流入した過剰蒸気は復水器
18に設けられた熱交換器内を流れる冷却水によって冷
却され凝縮する。amした水は循環ポンプ21によって
吸収冷凍機22及び第2種吸収ヒートポンプ25よりの
凝縮水とともに排熱ボイラ9に戻される。
制御弁29は、電力需要が少なくスチームタービン10
に流れる蒸気流量が少量の場合に、第2種吸収ヒートポ
ンプ25の駆動熱源が不足するため、その補充用として
中圧蒸気管17から第2種吸収ヒートポンプ25に蒸気
を流し、第2種吸収ヒートポンプ25の熱源蒸気の圧力
が一定になるように蒸気流量を制御する。
また、制御弁30は、電力需要が多くスチームタービン
10に流れる蒸気流量が多い場合、吸収冷凍機22の駆
動熱源が不足するため、その補充、用として第2種吸収
ヒートポンプ25の出力蒸気を蒸気管31から吸収冷凍
機22に流し、吸収冷凍機22の熱源蒸気の圧力が一定
になるように蒸気流量を制御する。
なお、吸収冷凍4!22の冷水出力よりも第2種吸収ヒ
ートポンプ25の蒸気比ノ]が優先するならば、第2図
に示すように第2種吸収ヒートポンプ25の出力蒸気を
分岐して、吸収冷凍機22に入力する蒸気−管31を省
いた構成であってもよい。
また、スチームタービン10の出口蒸気圧力が常に吸収
冷凍機22の駆動用蒸気として十分な圧力である場合に
は、第3図に示すように排熱ホイラ9で発生した蒸気を
減圧後スチームタービン10の出口蒸気と合流させ、吸
収冷凍機22と第2種吸収ヒートポンプ25に分配する
方式であってもよい。
また、上記実施例では、ガスタービンを例に説明したが
、ガスタービンの代りにガスエンジン。
ディーゼルエンジンが用いられてもよいし、それらが複
数台使用されていてもよい。An embodiment of the present invention will be described below with reference to the drawings. 1st
FIG. 1 is a system diagram showing an embodiment of the present invention. In FIG. 1, the same or equivalent components as in FIG. In FIG. 1, 10 is a steam turbine, 11 is a high-pressure steam pipe that connects the waste heat boiler 9 and the steam turbine 1o, 12 is a control valve that controls the flow rate of steam flowing into the steam turbine 1o, 13 is a rotating shaft, and 14 is a A generator for regulating power supply directly connected to the steam turbine 10 by a rotating shaft 13; 16 a low-pressure steam pipe guiding exhaust steam from the steam turbine 10 to a second type absorption heat pump 25; 17 a control valve 1;
18 is a condenser for condensing excess steam, and I9 is a control for guiding excess steam from intermediate pressure steam pipe 17 to condenser 1B. 20 is a water pipe for returning the water condensed in the condenser 18 to the waste heat boiler 9; 21 is a circulation pump that sends the water condensed in the condenser 18 to the waste heat boiler 9; 25 is a heat source using low-pressure steam; Type 2 absorption heat pump that obtains higher pressure steam output as
26 is a pipe for extracting steam from the second type absorption heat pump 25, 27 is a pump for sending water condensed from the input steam in the second type absorption heat pump 25 to the condenser 18, and 29 is a pipe for the second type absorption heat pump 25. A control valve for sending heat source steam from the medium-pressure steam pipe 17, 30 a steam flow rate control valve attached to the steam extraction pipe 26 and branched to the medium-pressure steam pipe 17, and 31 an output of the second type absorption heat pump 25. A steam pipe 32 is used to send steam to the medium pressure steam pipe 17 from the control valve 29 to the medium pressure steam pipe 17.
This is a pressure reducing valve for reducing the pressure inside the low pressure steam pipe 16 to the pressure inside the low pressure steam pipe 16. The second operation will be explained. Air taken in through the air suction pipe 5 is compressed by the compressor 1 and enters the combustor 2. Here, the fuel is mixed and combusted, and the combustion gas passes through the high-pressure combustion gas pipe 6 and rotates the gas turbine 3. Therefore, the generator 4, which is directly connected to the gas turbine 3 through the rotating shaft 7, rotates and obtains electric power. Combustion gas leaving the gas turbine 3 passes through a low-pressure combustion gas pipe 8 and enters an exhaust heat boiler 9. In the exhaust heat boiler 9, 1 air is generated by the heat of the combustion gas, and the exhaust gas whose temperature has decreased is exhausted into the atmosphere. Steam generated in the waste heat boiler 9 passes through a control valve 12 attached to a high pressure steam pipe 11 and flows into an intermediate pressure steam pipe 17. After this steam is reduced to a required pressure by the pressure reducing valve 15, it passes through the control valve 29 and enters the absorption refrigerator 22, where it serves as a driving heat source. On the other hand, the steam branched through the control valve 12 enters the steam turbine 10 and is transferred to the steam turbine 1 by the rotating shaft 13.
The power supply adjustment generator 14, which is directly connected to 0, is rotated to generate electricity. Steam leaving the steam turbine 10 passes through the low-pressure steam pipe 16 and enters the second type absorption heat pump 25, which serves as a driving heat source. The water condensed through heat exchange in the absorption refrigerator 22 and the second type absorption heat pump 25 is led to the water pipe 28 by the pump 24 and the pump 27, passes through the water pipe 28, passes through the condenser 18, and is again used as exhaust heat. It is sent to boiler 9. Absorption refrigerator 22
From this, you can get 5 J forces for cold water. In addition, steam output is obtained from the second type absorption heat pump 25. Further, the control valve 12 controls the flow rate of steam flowing into the steam turbine 10, and controls the amount of electric power obtained from the power supply adjustment generator 14. The control valve 12 does not particularly control the flow rate of steam flowing from the high pressure steam pipe 11 to the intermediate pressure steam pipe 17 via the pressure reducing valve 15. Capacity control of the absorption refrigerator 22 and the second type absorption heat pump 25 can be performed by the control functions installed in each of them if the heat source steam pressure is constant. In order to stabilize the heat source steam pressure of the absorption refrigeration a22 and the second type absorption heat pump 25, the control valve 19 controls the recovery based on the measured value of the internal pressure of the intermediate pressure steam pipe 17 by a pressure sensor (not shown in the figure). The flow rate of steam flowing to the water dispenser 18 is controlled. Excess steam flowing into the condenser 1 from the control valve 19 is cooled and condensed by cooling water flowing through a heat exchanger provided in the condenser 18. The amped water is returned to the waste heat boiler 9 by the circulation pump 21 together with condensed water from the absorption refrigerator 22 and the second type absorption heat pump 25. The control valve 29 is connected to the steam turbine 10 with low power demand.
When the flow rate of steam flowing into the second type absorption heat pump 25 is small, the driving heat source of the second type absorption heat pump 25 is insufficient, so steam is flowed from the medium pressure steam pipe 17 to the second type absorption heat pump 25 to supplement the second type absorption heat pump 25. The steam flow rate is controlled so that the pressure of the heat source steam No. 25 is constant. In addition, when the power demand is high and the flow rate of steam flowing into the steam turbine 10 is large, the drive heat source of the absorption refrigerator 22 is insufficient, so the control valve 30 supplies the output steam of the second type absorption heat pump 25 to steam for replenishment and use. The steam flows from the pipe 31 to the absorption refrigerator 22, and the flow rate of the steam is controlled so that the pressure of the heat source steam of the absorption refrigerator 22 is constant. Incidentally, if the steam ratio of the second type absorption heat pump 25 is given priority over the cold water output of the absorption refrigeration 4!22, the output steam of the second type absorption heat pump 25 is branched as shown in FIG. The structure may be such that the steam pipe 31 input to the absorption refrigerator 22 is omitted. In addition, when the steam pressure at the outlet of the steam turbine 10 is always sufficient as the steam for driving the absorption refrigerator 22, as shown in FIG. A method may also be adopted in which the steam is merged with the outlet steam and distributed to the absorption refrigerator 22 and the second type absorption heat pump 25. Furthermore, although the above embodiments have been described using a gas turbine as an example, a gas engine is used instead of the gas turbine. A diesel engine may be used, or a plurality of diesel engines may be used.
以上のように、この発明によれば、コージェネレーショ
ンシステムを発電機駆動源の排熱に使って排熱ボイラで
蒸気を発生させ、これを供給電力調整用発電機と直結し
たスチームタービンと吸収冷凍機に分配して電力と冷水
出力を得ると共に、第2種吸収ヒートポンプの熱源とし
てスチームタービンの排蒸気と排熱ボイラの発生蒸気の
両者を用い蒸気出力を得るように構成したので、熱出力
と供給電力の制御を互いにほぼ独立して行うことができ
、よって、供給電力と熱出力を柔軟に制御できる効果が
ある。As described above, according to the present invention, the cogeneration system uses the exhaust heat of the generator drive source to generate steam in the exhaust heat boiler, which is then connected to the steam turbine directly connected to the power supply adjustment generator and the absorption refrigeration system. In addition to obtaining electric power and chilled water output by distributing it to the heat pump, the structure is configured to obtain steam output by using both the steam turbine exhaust steam and the steam generated by the waste heat boiler as the heat source of the second type absorption heat pump. The power supply can be controlled almost independently of each other, and therefore the power supply and heat output can be flexibly controlled.
第1図はこの発明の一実施例によるコージェネレーショ
ンシステムを示す系統図、第2図と第3図はこの発明に
係るコージェネレーションシステムの他の実施例を示す
系統図、第4図は従来のコージェネレーションシステム
の一例を示す系統図である。
図において、3は発電機駆動tA(ガスタービン)、9
は排熱ボイラ、10はスチームタービン、14は供給電
力調整用発電機、22は吸収冷凍機、25は第2種吸収
ヒートポンプである。
なお、図中、同一符号は同一または相当部分を示す。Fig. 1 is a system diagram showing a cogeneration system according to an embodiment of the present invention, Figs. 2 and 3 are system diagrams showing other embodiments of the cogeneration system according to the invention, and Fig. 4 is a system diagram showing a cogeneration system according to an embodiment of the present invention. It is a system diagram showing an example of a cogeneration system. In the figure, 3 is a generator drive tA (gas turbine), 9
1 is a waste heat boiler, 10 is a steam turbine, 14 is a power supply adjustment generator, 22 is an absorption refrigerator, and 25 is a second type absorption heat pump. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.
Claims (1)
ラと、この排熱ボイラよりの蒸気が分配供給されて供給
電力調整用発電機を駆動するスチームタービンと、この
スチームタービンよりの排蒸気を入力すると共に、必要
に応じて上記排熱ボイラよりの蒸気を入力して上記排蒸
気の圧力より昇圧された蒸気出力を得る第2種吸収ヒー
トポンプと、上記排熱ボイラよりの蒸気が分配供給され
ると共に、上記第2種吸収ヒートポンプよりの蒸気出力
の一部を入力可能とした吸収冷凍機とを備えたコージェ
ネレーションシステム。A waste heat boiler that generates steam based on the waste heat of the generator drive source, a steam turbine to which the steam from the waste heat boiler is distributed and supplied to drive a power supply adjustment generator, and an exhaust heat from the steam turbine. The steam from the waste heat boiler is distributed to a second type absorption heat pump which inputs steam and, if necessary, inputs steam from the waste heat boiler to obtain a steam output whose pressure is increased from the pressure of the waste steam. A cogeneration system comprising an absorption refrigerating machine which is supplied with steam and into which a part of the steam output from the second type absorption heat pump can be input.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1124002A JPH02305351A (en) | 1989-05-17 | 1989-05-17 | Cogeneration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1124002A JPH02305351A (en) | 1989-05-17 | 1989-05-17 | Cogeneration system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02305351A true JPH02305351A (en) | 1990-12-18 |
Family
ID=14874610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1124002A Pending JPH02305351A (en) | 1989-05-17 | 1989-05-17 | Cogeneration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02305351A (en) |
-
1989
- 1989-05-17 JP JP1124002A patent/JPH02305351A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100628593B1 (en) | Combustion turbine cooling media supply system and related method | |
US6615585B2 (en) | Intake-air cooling type gas turbine power equipment and combined power plant using same | |
US6745574B1 (en) | Microturbine direct fired absorption chiller | |
US6422022B2 (en) | Apparatus and methods for supplying auxiliary steam in a combined cycle system | |
US5697207A (en) | Combined gas turbine inlet chiller, nox control device and power augmentation system and methods of operation | |
EP1091095A2 (en) | Gas turbine system and combined plant comprising the same | |
JPH08144850A (en) | Exhaust heat recovery system | |
US6286297B1 (en) | Steam cooled type combined cycle power generation plant and operation method thereof | |
JPH09217603A (en) | Driving method of power plant | |
US5873238A (en) | Startup cooling steam generator for combustion turbine | |
JP2005320938A (en) | Exhaust heat recovery device and exhaust heat recovery method | |
JPH0688538A (en) | Gas turbine plant | |
JPH0968006A (en) | Gas turbine plant | |
JPH10121912A (en) | Combustion turbine cycle system | |
CN110953069A (en) | Multi-energy coupling power generation system of gas turbine power station | |
JPH02305351A (en) | Cogeneration system | |
JP2001241304A (en) | Combined power generation system utilizing gas pressure energy | |
JP2003193910A (en) | Cogeneration system and its operation control method | |
JP3527867B2 (en) | Heat recovery power generation system and operation method thereof | |
JPH02301606A (en) | Cogeneration system | |
JP2001214758A (en) | Gas turbine combined power generation plant facility | |
JPH0693810A (en) | Combined power generating system | |
JPS63134818A (en) | Heat supply generation plant | |
JPH06562Y2 (en) | Combined system of steam and gas turbine and refrigerator | |
JPH02301651A (en) | Co-generation system |