Nothing Special   »   [go: up one dir, main page]

JPH0229986B2 - TASOKAGAKUBUNSEKIZAIRYO - Google Patents

TASOKAGAKUBUNSEKIZAIRYO

Info

Publication number
JPH0229986B2
JPH0229986B2 JP11554680A JP11554680A JPH0229986B2 JP H0229986 B2 JPH0229986 B2 JP H0229986B2 JP 11554680 A JP11554680 A JP 11554680A JP 11554680 A JP11554680 A JP 11554680A JP H0229986 B2 JPH0229986 B2 JP H0229986B2
Authority
JP
Japan
Prior art keywords
layer
dye
reaction
substrate
diffusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11554680A
Other languages
Japanese (ja)
Other versions
JPS5740649A (en
Inventor
Shunkai Katsuyama
Masao Kitajima
Asaji Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP11554680A priority Critical patent/JPH0229986B2/en
Priority to DE19813133218 priority patent/DE3133218A1/en
Priority to GB8125648A priority patent/GB2085159B/en
Publication of JPS5740649A publication Critical patent/JPS5740649A/en
Publication of JPH0229986B2 publication Critical patent/JPH0229986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/40Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水性液体特に生体液中の成分の定量的
分析を目的とした多層型分析材料に関する。 水、食料品及び生体液中の成分の分析には多種
多様な方法が提案されている。分析せんとする被
検物質の試料溶液中の量に比例して着色物質の生
成反応を進行させ、その色濃度を測光する方法も
よく知られた測光原理であり、溶液分析法ばかり
でなく、乾式分析法に利用されている。紙又は吸
収性の担体に、被検物質との接触により呈色する
試薬を含浸させた、いわゆるPH試験紙類似の原理
と形状をした乾式の分析用シートもその例であ
る。 乾式操作により分析できる多層型化学分析材料
も知られている。例えば特公昭49−33800号、特
開昭49−53888号、特開昭50−137192号、特開昭
51−40191号、特開昭52−3488号、特開昭53−
89796号、特開昭53−131089号などの各明細書に
記載されている例では支持体上に単層又は複層の
試薬層が設けられており、さらにその上に非繊維
質多孔性展開層が積層された構成をしている。水
性液体試料を展開層上に付着すると、水性液体試
料は、単位面積当り均一な量を維持しながら、試
薬層中に浸入し、発色反応を起こす。一定時間後
にその色濃度の変化を測定することにより、水性
液体試料中の被検物質を濃度を知ることができ
る。 本発明の目的は、被検物質の作用により親水性
バインダー中での拡散性が著しく異なるような生
成物を生ずる反応系を利用した新規な分析材料を
提供するものである。生体液例えば、血液、尿、
腸液、唾液、髄液、膵液などの中に含まれている
各種の加水分解酵素はこのような被検物質の代表
的な例である。加水分解酵素としては、多種多様
なものが知られているが、その中でも高分子量の
化合物を基質とし、加水分解反応によつて拡散性
の低分子量化合物を生成する酵素の分析に特に有
用である。これら加水分解酵素の定量的分析は、
臨床検査項目として重要であり簡便かつ正確な分
析方法開発の要求が高い。これら加水分解酵素の
具体例としては、アミラーゼ、リパーゼ、プロテ
アーゼ、各種キナーゼがあげられる。 例えば血液中に存在するアミラーゼの量の測定
は膵機能の検査手段として臨床上きわめて重要で
ある。アミラーゼは、澱粉などのアミロース結合
部分を加水分解し、低分子量の多糖類、少糖類又
は単糖を生成する性質を有する酵素である。通
常、その性質、すなわち酵素活性を測定する方法
により、存在量、試料液中の濃度の相対値を算出
する方法が一般的である。 従来公知のアミラーゼ活性の測定法は、アミラ
ーゼの基質、例えば澱粉等の基質の一定量を含有
する溶液中にアミラーゼを含む試料液を添加し、
一定条件下に一定時間反応させたのち、残存する
未反応基質あるいは加水分解によつて生成した低
分子量の反応生成物と、あらかじめ加えられてい
た高分子量基質との量比から、酵素活性を算出す
るものが通例である。 あらかじめ加えられた高分子量基質と酵素反応
の結果生成した低分子量化合物との量比の測定の
為には、何らの方法により両者を分離する必要が
ある。通例は、高分子量の基質を選択的に溶液か
ら沈澱させる作用を有する沈澱剤を反応停止後、
反応液に加え、未反応の高分子量基質を沈澱とし
て除去する方法がとられている。未反応基質のみ
を含む溶液あるいは反応生成物のみを含む溶液に
分離できればそのいずれか一方を発色反応に導く
方法により定量することは比較的容易である。こ
のような方法は正確に実行されれば精度も高く信
頼性のよい結果を与えるが、実際には、未反応基
質と反応生成物との分離操作や分離後の呈色反応
操作が複雑で、手間がかかるなどの問題があつ
て、より簡便な分析法の開発が望まれていた。 基質にあらかじめ染料を結合させておき、反応
終了後沈澱剤による分離操作のみですぐに測光分
析可能な、いわゆる色素澱粉法(Chromogenic
法)は上述した基本操作に比べ、工程が簡単であ
るので、広く実行されるようになつた。 更に、分離操作を簡単にする方法として、あら
かじめ染料を結合させた基質を微粒子として分散
し、反応終了後の反応、未反応物質の分離を更に
容易にした方法(ブルースターチ法)も公知であ
る。 特開昭53−131089号明細書に記載の方法は、こ
れらの反応系を乾式化し、同時に著しく簡単な操
作によるアミラーゼ活性の測定材料を提示したも
のである。この方法に於いては、アミラーゼの基
質例えば澱粉に染料のような予じめ検出可能な発
色団を結合させた非拡散性基質を含む試薬層と、
被検物質すなわちアミラーゼの作用により拡散性
となつた反応生成物を受容する為のレジストレー
シヨン層とを含む積層型の分析材料を用いる。前
記開示技術においては、予め検出可能な部分を結
合された非拡散性基質が、酵素の加水分解作用に
より、加水分解し、拡散性の低分子量化合物を生
成し、層中を拡散し、ついにはレジストレーシヨ
ン層に受容され固定されるので、レジストレーシ
ヨン層中に受容された染料の量に対応する色濃度
を測光定量する操作により反応生成物の量が求ま
るという原理を利用している。この方法は高分子
量の基質が、元来非拡散性であり更に、酵素反応
によつて拡散性の生成物を生ずるという反応系が
本来有する特性をたくみに利用して通常の溶液反
応に於いては避け得ない複雑な分離操作を回避し
たものであり、従来法では考えられない程の簡便
の提供を可能にしたものであつた。 しかしながら、同開示技術に於いては、非拡散
性基質に対し、染料等の検出可能な化学基をあら
かじめ結合させているので、未反応基質と反応生
成物との測光上の区別には新らたな工夫を必要と
した。前記開示技術に於いては、未反応基質と反
応生成物との区別の方法がいくつか例示されてい
る。その1つは非拡散性の未反応基質を含有する
試薬層と反応生成物を受容するレジストレーシヨ
ン層との間に酸化チタン微粉末などを含む光遮蔽
層(放射ブロツキング層)を設けて反応終了後反
射測光により反応生成物のみの測定を可能とする
ものである。また試薬層とレジストレーシヨン層
とをあらかじめ容易に分離できる形態にしてお
き、反応操作終了後両者を分離し、レジストレー
シヨン層のみについて、光学濃度を測定する方法
についても開示されている。 特開昭51−40191号明細書には前記特開昭53−
131089号明細書に開示の多層分析材料に類似の層
構成からなる多層分析材料に関する技術である
が、明細書中に明記されている如く、反応性試薬
層が被検(原文では被験)物質の存在下に拡散性
で検知可能な化学種を与える相互作用性物質から
成り、この化学種を検知する検出層を含むことを
必須の条件としている。すなわち、この技術の根
幹は反応試薬層における反応が、被検物質の作用
によつて、本来検出層で検知される手段で検知で
きない化学種を拡散性でかつ検知可能な化学種に
変換する過程を含むところにある。これに対し
て、前記特開昭53−131089号明細書の開示技術で
は、反応試薬層中にはあらかじめ検知可能な化学
種が含まれており、被検物質の作用は該化学種が
拡散性になる反応を利用している。 しかしながら特開昭51−40191号及び特開昭53
−131089号明細書に開示の検出層(あるいはレジ
ストレーシヨン層)の機能、素材に関しては全く
同一であつて、その機能は、反応試薬層で生成さ
れた拡散性で検知可能な化学種を補促又は受容
し、光学測定などによる検出を容易、確実にする
ことにあり、いわゆる媒染性のポリマー層が唯一
の具体的材料としてあげられている。これら媒染
性重合体の役割は反応試薬層中にて形成された拡
散性の検知可能化学種を効率より補促、非拡散性
にし、場合によつては媒染作用による吸光度の上
昇あるいは吸収波長のシフト(通常10nm以下)
を利用して、光学測定による定量を容易、確実な
らしめることにある。 いずれにしても上記2つの開示技術における検
出層あるいはレジストレーシヨン層は、拡散性化
学種の単なる受容を目的とした層であり、発色反
応などは含まれていない。従つて反応試薬層中に
残存あるいは生成した検知可能化学種と、検出層
あるいはレジストレーシヨン層中に捕捉あるいは
受容された化学種とを明かくに区別し定量性ある
測定結果を得る為には、両層の間には色遮蔽を目
的とした光散乱性の放射ブロツキング層を設ける
ことが必須であつた。 本発明材料においては、被検物質の作用によつ
て基質層で生成する拡散性化合物は実質的に無色
であり、拡散性化合物は色原体化合物との反応に
より色素を形成するので、被検物質の作用を受け
る前と後、基質と生成物の光学的測定に際する区
別はきわめて明確となり、特開昭51−40191号あ
るいは特開昭53−131089号明細書によつて開示さ
れた分析材料において、必要とされた基質層と生
成物とを区別する為の特別な層、放射ブロツキン
グ層あるいは基質層と検出層とを測光に先立つて
引き剥す方法などは必要としないという大きな特
徴を有している。 また媒染性ポリマーの均一塗布にはアセトン、
アルコールなど極性有機溶剤を塗布溶媒として用
いる必要がある。有機溶剤系の塗布は工程上、ゼ
ラチン、ポリアクリルアミドなどの水溶液の塗布
とは異なるので、製造設備上特別な配慮が必要と
なる。また、生産工程において有利な多層同時塗
布ができないので、生産効率上もきわめて不利に
なるが本発明材料の作成は全て水性溶液または水
性分散液塗布であり、この点、媒染ポリマーを用
いる重層フイルムに比べて有利である。 本発明は、光透過性水不透過性支持体の上に少
なくとも二つの試薬層が積層されてなる多層化学
分析材料において、前記二つの試薬層が前記支持
体から遠い側から順に(a)実質的に無色で後記する
色原体化合物と反応して色素を形成しうる色素形
成反応基を有し、被検物質の作用により前記色素
形成反応基を有し、実質的に無色の拡散性化合物
を生成しうる非拡散性基質を含んでなる基質層、
および(b)前記色素、形成反応基と反応して色素を
形成しうる色原体化合物を含んでなる呈色反応層
であることを特徴とする多層化学分析材料であ
る。 以下本発明の多層化学分析材料について具体的
にその構成および材料を説明する。 本発明の多層化学分析材料の具体的な実施態様
における層構成の例が第1図ないし第4図に示さ
れている。第1図の多層化学分析材料は光透過性
水不透過性支持体10の上に前記支持体から遠い
側から順に、実質的に無色で色原体化合物と反応
して色素を形成しうる色素形成反応基を有し、被
検物質の作用により前記色素を形成反応基を有し
実質的に無色でかつ親水性バインダーの中を水の
存在下に拡散しうる拡散性化合物を生成しうる非
拡散性基質を第一の親水性バインダーの中に含ん
でなる基質層50、前記色素を形成反応基と反応
して色素を形成しうる色原体化合物を第二の親水
性バインダーの中に含んでなる呈色反応層20が
積層されてなつている。第一、第二の親水性バイ
ンダーは互いに同じでもよく相異してもよく、い
かなる組合せであつてもよく、要するに被検物
質、非拡散性基質、拡散性化合物、色原体化合
物、形成される色素のいずれかまたはその組合せ
に応じて適当な親水性バインダーを選択すること
ができる。 第2図の多層化学分析材料は呈色反応層20と
基質層50との間に拡散防止層30が設けられた
構成の材料である。拡散防止層の機能については
後に詳しく説明されている。 第3図は本発明の材料の原理を示す為の層構成
の概念図で、光透過性水不透過性支持体10の上
に呈色反応層20、拡散防止層30、基質層50
展開層70をこの順に積層した構成よりなる。被
検物質(例、アミラーゼ)を含有する試料水溶液
の一滴が、展開層に付着されると展開層でほぼ均
一に展開されて、基質層50に浸入する。基質層
中では被検物質の作用によつて非拡散性基質から
拡散性化合物が生成し、基質層から拡散防止層3
0を通過して呈色反応層20に拡散していく。反
応生成物たる拡散性化合物には色素形成反応基が
結合しているので、呈色反応層20に到達すると
色素形成反応基と色原体化合物とが反応して色素
が形成される。被検物質が加水分解酵素の場合
は、酵素が高分子量であるので拡散防止層を透過
することが出来ず非拡散性基質と共に基質層に止
まる。結果として酵素活性に比例して色素が形成
されることになるので、生成色素量を測定するこ
とにより酵素活性を知ることができる。色素量の
測定には色素の吸収波長領域における透過又は反
射による光学的測定が適しているが、目的や必要
精度によつては目視による判定も可能である。 以下では説明を理解しやすくするために第1図
の構成の多層化学分析材料を例にとり、必要に応
じて第2図ないし第4図に示した多層化学分析材
料に設けられている追加の機能層の説明を加えな
がら、本発明を詳細に説明する。 基質層50は非拡散性基質が実質的に無色であ
るので、無色である。呈色反応層も色原体化合物
として無色の化合物を選択することにより無色と
することができる。両層ともにその層厚が最大で
約50μmであるので透明であり、従つて第1図に
示した多層化学分析材料は透明である。被検物質
を含む試料溶液(水性溶液、すなわち溶媒または
分散媒として水を含む溶液または分散液)が多層
化学分析材料の上に付着されると、被検物質の作
用により基質層の中で非拡散性基質が加水分解に
代表される化学反応を受けて無色の拡散性化合物
を生ずる。無色の拡散性化合物は基質層50の親
水性バインダーマトリクスの中と呈色反応層20
の親水性バインダーマトリクスの中を主に試料溶
液に含まれていた溶媒または分散媒としての水に
由来する水の存在下に拡散し、呈色反応層の中に
存在する色原体化合物に到達、反応して色素を形
成する。一定の条件下で一定時間反応させたの
ち、呈色反応層で生成した色素量を測光定量する
ことにより、試料溶液の中に含まれる被検物質の
量または活性値を知ることができる。 本発明の材料は前述した如く水性液体試料、特
に血液、尿、唾液、髄液、腸液、膵液などの生体
液中の加水分解酵素活性の測定に供せられるもの
である。血液中の加水分解酵素、例えばアミラー
ゼの酵素活性の測定には従来いずれの方法によつ
ても、採血全血より、遠心分離などの方法によ
り、血漿又は血清を分離し、これを試料溶液とし
て用いてきた。その理由は全血中に多量に存在す
るヘモグロビンによる測光時の干渉を排除できな
かつたことにある。 本発明の材料は、機能層の1つとして、光遮蔽
層を組み込むことにより、従来実施されてきた分
析法においては不可能であつた全血をそのまま試
料溶液とする、酵素活性の測定をも可能とするも
のである。本発明の材料は、試料溶液の付着後は
じめて呈色反応が進行する形式の分析材料である
ので、反応終了後の測光は分析材料の下面からで
もよく、又、透過測光でも反応測光でもよい。 本発明の多層化学分析材料においては呈色反応
層と基質層の間に光散乱性の高い光遮蔽層を設
け、基質層上面にある赤血球やヘモグロビンに基
ずく干渉を遮断し、透明支持体を通して呈色反応
層中の色濃度を反射測光することにより、全血を
試料溶液とする直接測定も可能となる。このよう
な場合の材料の層構成の一例を第4図に示してあ
る。光遮蔽層はそれ自身、拡散性の干渉物質およ
び/または色原体化合物の拡散防止の機能も果す
ので、特に拡散防止層を設ける必要はなくなる。
また頻頻血清中にも混入するヘモグロビン、ビリ
ルビン、乳糜(ニユウビ)は血清分析において、
干渉物質となるものであるが、本発明の材料に用
いられる拡散防止層は、これらの干渉物質の下層
への拡散を完全にブロツクするので、光遮蔽層を
設けた場合には、溶血、高ビリルビン、乳糜を含
む血清試料の分析も誤差なく実施できる。 本発明の材料に用いられる非拡散性基質とは分
析の目的となる被検物質の作用により、分子の大
きさ、形状、解離度などの物性が著しく変化し、
結果として、多層化学分析材料の親水性バインダ
ー層中での拡散性が著しく増大する物質をいう。
非拡散性基質の具体例は生体液中に含まれる各種
酵素の基質があげられる。これらのうち本発明の
多層化学分析材料が特に有効に適用できるのは、
加水分解酵素であつて、その具体例としては、プ
ロテアーゼ、アミラーゼ、リパーゼ及びペクチナ
ーゼがあげられる。これらの加水分解酵素を被検
物質とする場合、本発明に用いられる非拡散性基
質としてはそれぞれの加水分解酵素の基質、即ち
蛋白質、アミロース、グリセリドまたはペクチン
に実質的に無色の色素形成反応基を結合させたも
のが用いられる。 基質層は非拡散性基質を層状に構成したものよ
りなる。本発明の材料を塗布により形成する場合
には、基質を1種又は2種以上のポリマーからな
るバインダー溶液中に溶解又は分散した液を塗
布、乾燥して用いる。しかしながら、本発明の材
料の基質層は基質自身高分子量であるのでバイン
ダーを用いずに塗布あるいは含浸などの方法によ
つても形成することができる。例えば紙、布、多
孔質プラスチツク膜などに基質を含浸させるなど
の前処理の後、呈色反応層を含む支持体上にラミ
ネート等の手段によつて重層させることも可能で
ある。 基質に用いうる第一の親水性バインダーポリマ
ーとしては各種の親水性バインダーがある。これ
らのうち本発明の材料に用いることができるもの
として、ゼラチン、アガロース、アルギン酸ナト
リウム、カルボキシメチルセルロース、メチルセ
ルロースなどの天然親水性高分子、ポリアクリル
アミド、ポリビニルアルコール、ポリビニルピロ
リドン、ポリアクリル酸ナトリウム、ポリヒドロ
キシエチルメタクリレート、アクリル酸を含むコ
ポリマー、マレイン酸を含むコポリマーなどの親
水性合成高分子などがある。 これらのうちから、使用状況や被検物質の特
性、塗布特性などを考慮して適当なバインダーを
選択する。例えば、プロテアーゼの分析材料用バ
インダーとしてはゼラチンなどの蛋白質バインダ
ーは、全く不適当である。また、被検物質の分子
量が大きい場合には、被検物質の基質層中への拡
散が問題となり、膨潤率の大きいバインダーを用
いることが必要となる。 親水性バインダーポリマーのうちで本発明の材
料の基質層のバインダーとして特に適しているの
はアガロース、ポリアクリルアミド、ポリアクリ
ル酸ナトリウム、アクリル酸を含むコポリマーで
ある。 基質層には非拡散性基質、親水性バインダーの
他塗布性能、拡散性化合物の拡散性、反応性、保
存性などの諸性能の向上を目的として、界面活性
剤、PH調節用試薬、微粉末、酸化防止剤、その他
有機物あるいは、無機物からなる各種添加剤を加
えることができる。 基質層の層厚は特に制限はないが塗布層として
設けるためには1μm〜50μm程度、特に好ましく
は、2μm〜30μmの範囲が適当である。ただしラ
ミネートによる積層など塗布以外の方法による場
合の膜厚は、数十μmから数百μmの範囲で大きく
変化し得る。 本発明の材料の呈色反応層は拡散性化合物(反
応生成物)中の色素形成反応基と反応して色素を
形成する色原体化合物と第二の親水性バインダー
とを含む層である。基質層中の非拡散性基質と呈
色反応層中の色原体化合物とは後に詳述するよう
に各種の組み合せが可能であるが目的とする分析
材料の性能に最もよく合つた特定の組み合せを選
択する必要がある。 前述したように、本発明の材料作成の工程にお
ける呈色反応層中の色原体化合物の基質層中への
拡散は、被検物質の作用によらない呈色すなわち
「かぶり」となつて、分析性能を低下させるので、
確実に防止しなければならない。この目的の為に
は色原体化合物を耐拡散性とする為の各種の工夫
が必要である。写真化学の分野で従来からよく知
られているカプラーの耐拡散化法、すなわち長鎖
の耐拡散基をカプラーに結合させる方法や疎水性
のオイルの中にカプラーを溶解させて親水性バイ
ンダーの中に分散させる方法を適用することがで
きる。すなわち、長鎖の耐拡散基を結合させた色
原体化合物を親水性バインダーの中に分散した
層、色原体化合物を溶解含有したオイルの微粒子
を親水性バインダーの中に分散した層を呈色反応
層として用いることができる。また、色原体化合
物を固体表面に吸着などの手段により固定するこ
とで耐拡散化する方法も適用することができる。 呈色反応層に用いられる第二の親水性バインダ
ーも基質層のバインダーと同様親水性のポリマー
であり、基質層用バインダーとほぼ同じ特性のも
のが適している。第一と第二の親水性バインダー
は同じでも異なつてもよい。各種の添加剤が用い
られることは勿論である。呈色反応層の層厚は大
幅に変化し得るかつ約1μmから約50μm、好まし
くは約2μmから約30μmの範囲である。 本発明の材料の作成に利用し得る色素形成反応
基と色原体化合物との組み合せ、及び非拡散性基
質の合成方法について以下に詳述する。本明細書
では色原体化合物とは色素形成反応基との反応に
よつて色素を形成し得る化合物の全てを意味す
る。 本発明の材料に用いられる色素形成反応には写
真科学の技術分野において周知の耐拡散性カプラ
ーやオイルプロテクトカプラーに関する技術も有
効な手段である。その基本原理は、カプラーの反
応性を保ちつつ、バルキーな耐拡散性基を結合さ
せたり、疎水性を増加させたりして、水中でのカ
プラーの拡散性を少くすることにある。その具体
的な例は例えばT.H.James編「The Theory of
the Photographic Process」第4版(New
York.The Macmillan Company.1977年発行)
第335〜372ページに記載されている。またジアゾ
ニウム化合物を用いたカプリング反応について
は、J.Kosar著「Light Sensitive Systems」
(New York,John Wiley and Sons,Inc.,
1965年発行)第194〜258ページに記載されてい
る。 色素形成反応基は色原体化合物と化学反応によ
り結合することができる(その結果色素が形成さ
れる)単一の原子または複数の原子からなる原子
団を意味する。色素形成反応基と色原体化合物と
が結合するための化学反応は、いかなる反応でも
よく、結合も共有結合、イオン結合、配位結合等
いかなる結合でもよい。要は色素形成反応基と色
原体化合物とが化学反応により結合して生成した
色素が、測光する目的に合致する程度に安定に存
在する、好ましくは生成して後実質的に永久的に
安定に存在するような結合を有する色素が生成さ
れるような色素形成反応基と色原体化合物との組
合せおよび化学反応であればいかなる組合せおよ
び化反応であつても本発明に用いることができ
る。これら組み合せにおいて、色素形成反応基は
実質的に無色(可視光領域の吸収を実質的に有し
ない)の基であるが、色原体化合物は無色でもよ
いし、色素を測光する際に干渉又は防害しない色
(色素の有する可視光領域の吸収に干渉又は防害
しない可視光領域の吸収を有する)を有してもさ
しつかえない。 色素形成反応基と色原体化合物との組合せとし
て、色素を形成するカプリング反応を行う能力を
有する化合物群として公知の数多くの化合物の中
の組合せを本発明の材料に用いることができる。
その例として、前述したJames編の文献の第335
―361ページ記載されている通常のハロゲン化銀
写真系のカラー現像薬カプラーと酸化剤との組合
せ、Kosar著の文献の第194−258ページに記載さ
れているジアゾニウム塩をジアゾ成分とし各種カ
プリング試薬をカプリング成分(カプラー)とす
る組合せ、写真用増感染料に多く用いられる含窒
素ヘテロ環第四級アンモニウム塩とジアルキルア
ミノベンズアルデヒドまたは類似化合物との組み
合せ(スチリル染料が形成される)があり、これ
らの組合せは色素形成反応が速いので、本発明の
材料において好ましく用いることができる。 また感圧複写紙や感熱記録材料等に用いられて
いる各種ロイコ染料と発色促進剤の各種フエノー
ル化合物との組合せも本発明の材料に利用でき
る。 原理から明かな様に色素形成反応基とこの反応
基と反応して色素を形成する色原体化合物を上記
発色反応の組合せの各要素とを一義的に限定する
理由はない。 各要素に関して、酵素反応阻害、合成的難易化
合物の安定性等により必然的に色素形成反応基は
選択されるが、拡散性化合物(低分子化した基
質)と共に拡散する為、色素形成反応基は拡散性
である事が好しい。上記により選択された色素形
成反応基を非拡散性基質に結合させる方法は、染
料業界で広く用いられている「反応性染料」の技
術が用いられる。 染料業界では各種天然繊維に染料化合物を物理
的に吸着させる他に意図して化学結合を形成させ
より好しい染色状態を得ている。この時用いられ
る染料が反応性染料であり、K.Venkataraman
編「The Chemistry of Synthetic Dyes」第
巻(New York、Academic Press,1972年発
行)にこの反応性染料が詳しく述べられている。
特に天然高分子である多糖類のセルロースや蛋白
質繊維である羊毛、絹等の分子と染料分子を結合
する「連結基」は詳しく記載されており、これら
の技術を本発明に用いる非拡散性基質を製造する
ために用いることができる。すなわち、この連結
基を利用して色素形成反応基と非拡散性基質とを
結合し、本発明に有益な化合物を得ることができ
る。 色素形成反応基は酵素反応により低分子化され
発色反応を行う為親水性バインダー中を拡散泳動
するので可溶性基例えばスルホン基、カルボキシ
ル基、ヒドロキシル基を有する事が好しい。この
可溶性基は連結基の一部に導入されていても好し
い結果を与える。 非拡散性基質に連結基を通して結合される色素
形成反応基としては通常写真系で用いられる各種
カプラー、すなわちピラゾリン―5―オン、ナフ
トール、フエノール、アシルアセトアニリド等で
ありこれらは連結基と結合する必要があるのでア
ミノ基やヒドロキシル基等を有する必要がある。
写真業界では公知であるカプリング位に離脱基を
有する二当量カプラーもまた用いることができ
る。色原体化合物がジアゾニウム塩の場合、カプ
リング成分としては上記のカプラーのほかにアリ
ールアミン等も用いることができる。 色素形成反応基と反応して色素を形成する色原
体化合物としてジアゾ化したベンゼン、ナフタレ
ン、アントラキノン誘導体およびN,N―二置換
―p―フエニレンジアミン誘導体、ヘテロ環第四
級アンモニウム塩、アリールアルデヒド誘導体等
をあげることができる。 これらの化合物は写真業界で公知の技術である
耐拡散化技術を用いて合成されることが好まし
い。例えば長鎖の耐拡散基としてステアロイル基
のような長鎖脂肪酸誘導体や長鎖アルコール、ア
ミン鎖を結合させたり、2,4―ジ―t―ブチル
フエノキシ基の様な芳香族化合物を導入して耐拡
散性化することができる。また顔料と同様に不溶
化させて、耐拡散化させることもできる。さらに
また、シリカゲルやアルミナ等の多孔質表面活性
化合物に化合物又は物理的に吸着させて色原体化
合物を耐性にすることもできる。さらにまた、高
分子化合物に化学的または物理的に吸着させたり
高分子マトリクス中に封じ込めたりすることによ
り色原体化合物を耐拡散性にすることもできる。 色素形成反応基の具体例としては次の基があ
る。 (5―ピラゾロンは2―ピラゾリン―5―オンを
意味する。) 4,6―ビス(8―ヒドロキシ―3,6―ジスル
ホ―1―ナフチルアミノ)―s―トリアジン―2
―イル基 4―アニリノ―6―(8―ヒドロキシ―3,6―
ジスルホ―1―ナフチルアミノ)―s―トリアジ
ン―2―イル基 4―クロロ―6―(8―ヒドロキシ―3,6―ジ
スルホ―1―ナフチルアミノ)―s―トリアジン
―2―イル基 4―クロロ―6―(1―p―スルホフエニル―5
―ピラゾロン―3―イルアミノ)―s―トリアジ
ン―2―イル基 4,5―ジクロロ―6―(8―ヒドロキシ―3―
スルホ―1―ナフチルアミノ)―2―ピリミジル
基 4―クロロ―6―〔3―(1―m―スルホフエニ
ル―5―ピラゾロン―3―イルアミノ)アニリ
ノ〕―s―トリアジン―2―イル基 4―m―スルホアニリノ―6―(2―ヒドロキシ
―5―クロロアニリノ)―s―トリアジン―2―
イル基 4―(8―ヒドロキシ―3,6―ジスルホ―1―
ナフチルアミノ)―6―(1―フエニル―5―ピ
ラゾロン―3―イルアミノ)―s―トリアジン―
2―イル基 4―〔β―(N―エチル―4―トリクロロメチル
アニリノ)エトキシ〕―6―(8―ヒドロキシ―
3,6―ジスルホ―1―ナフチルアミノ)―s―
トリアジン―2―イル基 4―p―スルホアニリノ―6―(3―p―スルホ
フエニル―4,4―ジクロロ―5―ピラゾロン―
3―イルアミノ)―s―トリアジン―2―イル基 および上記の基のスルホ基のかわりに対イオンと
してアルカリ金属陽イオン(例、Li ,Na ,
K )が結合したスルホナト基(−SO3 )が結
合した基 (1,3,3―トリメチル―6―p―ホルミルフ
エニル―6―アゾニアオクチル)オキシ基に対イ
オンとして塩素陰イオンが結合した基。 色原体化合物の具体例としては次の化合物があ
る。 2―テトラデシルオキシ―5―スルホナトベンゼ
ンジアゾニウム 5―(N―オクタデシルスルフアモイル)―2―
メトキシベンゼンジアゾニウムテトラフルオロボ
レート 5―(N―オクチルスルフアモイル)―2―メト
キシベンゼンジアゾニウム1―ナフタレンスルホ
ネート 2―ドデシルオキシ―4―ニトロベンゼンジアゾ
ニウムテトラフルオロボレート 5―テトラデシルオキシカルボニル―2―メトキ
シベンゼンジアゾニウムテトラフルオロボレート 9,10―アントラキノン―1―ジアゾニウム2―
ナフタレンスルホネート 2―メチル―3―テトラデシルベンゾチアゾリウ
ム ペルクロレート 5―ドデシルオキシカルボニル―2,3,3―ト
リメチル―1―(γ―スルホナトプロピル)イン
ドレニウム 1―(2,4―ジ―t―アミルフエノキシ)―2
―オキソ―6―(4―アミノ―2―メチルフエニ
ル)―3,6―ジアザオクタン。 本発明の多層化学分析材料の光透過性水不透過
性支持体としては、ポリエチレンテレフタレー
ト、セルロースエステル(セルロースジアセテー
ト、セルローストリアセテート、セルロースアセ
テートプロピオネートなど)、ポリカルボネート、
ポリメチルメタアクリレートなどのプラスチツク
フイルム類やガラス板などで、厚さが約50μmか
ら約2mmまでの公知の透明支持体を用いることが
できる。支持体が疎水性で、試薬層の親水性バイ
ンダーとの接着が不十分の場合には支持体の表面
を親水化する処理(例、紫外線照射、電子線照
射、火焔処理、アルカリによる加水分解等)また
は支持体の表面に支持体と試薬層の親水性バイン
ダーの両者に適当な大きさの接着力を有する物質
からなる下塗層を設けたり、支持体の表面に光透
過性を著しく減少させない範囲で微細な凹凸を形
成させる(ブラシかけ、電解エツチング等)等の
公知の補助処理をほどこすことができる。 本発明の材料は支持体及び試薬層の他、必要に
応じて拡散防止、試料の均一展開光遮蔽、接着な
どを目的としたその他の機能層を積層して利用す
ることができる。 拡散防止層の機能は、被検物質による作用を受
ける前の非拡散性基質の他層への拡散を完成に防
止し、かつ拡散性となつた反応生成物(拡散性化
合物)の拡散を妨げないことにある。勿論、呈色
反応層中の色原体化合物の基質層中への拡散を防
止する機能も有する。拡散防止層に用いられる材
料は基質層にに用いられるものと同様の親水性ポ
リマー類である。これらのうち特に適当なポリマ
ーは、ゼラチン、ポリビニルアルコールであつ
て、これらは非拡散性基質と生成物(拡散性化合
物)の間の拡散性の差を明かくにするのに適した
特性を有している。拡散防止層中にも基質層に関
して述べたと同様各種の添加剤を加えることがで
きる。 多層化学分析材料の水性液体試料展開層(以
下、単に展開層という。)としては前述の特許明
細書や文献に記載されている非繊維等方的多孔質
材料を用いることができるほか、親水性化処理し
た織物を用いることができる。非繊維等方的多孔
質材料としては、ブラツシユポリマー(一般名メ
ンブランフイルター)、珪藻土または微結晶材料
(例えば微結晶セルロース)などの微多孔体を結
合剤中に均一に分散した材料、ガラスや合成高分
子物質の微小球形ビーズを相互に点接触させて結
合剤で保持した多孔質材料、TiO2またはBaSO4
等の微小粉末を均一に分散させたブラツシユポリ
マーなどがある。親水化処理した織物としては、
十分に洗浄水洗して脱脂して乾燥した織物、洗浄
水洗脱脂した後に界面活性剤、湿潤剤、親水性ポ
リマー、またはTiO2またはBaSO4微粉末を分散
した親水性ポリマーを少量含浸させた織物があ
る。親水化処理した織物を展開量として用いる技
術および織物の詳細については特開昭55−
164356)明細書に具体的に詳細に記載されてお
り、その記載に従つて本発明に適用することがで
きる。 展開層の厚さは非繊維等方的多孔質材料の場合
には厚さ約50μmから約500μm、好ましくは約
80μmから約300μmの範囲であり、親水化処理し
た織物の場合には、親水化処理し自然乾燥した後
の織物の厚さが約80μmから約1mm、好ましくは
約100μmから約400μmの範囲である。 展開層が非繊維等方的多孔質材料の場合には特
開昭49−53888号、特開昭50−137192号等の各明
細書に記載されているように基質層の上に非繊維
等方的多孔質層を形成しうる溶液または分散液を
塗布し乾燥する方法によるか、また薄層状の非繊
維等方的多孔質材料を接着する方法により展開層
を設けることができる。展開層が親水化処理した
織物からなる場合には、基質層の上に親水化処理
した織物を接着する方法により展開層を設けるこ
とができる。 非繊維等方的多孔質材料または親水化処理した
織物を基質層に接着するには、基質層の親水性バ
インダーポリマーの性質を利用して、基質層が半
乾きのとき、または乾燥した基質層の表面を水ま
たは界面活性剤を含む水で湿潤させておいて非繊
維等方的多孔質材料または親水化処理した織物を
基質層の表面に密接させ、必要に応じて適当な圧
力をかける方法を採用することができる。また非
繊維等方的多孔質材料または親水化処理した織物
を基質層に接着する別の方法として、水性液体試
料を透過しうる接着剤を用いる方法と後述する水
性液体試料を透過しうる接着層を基質層の上に設
ける方法を採用することができる。 本発明の多層分析材料には、必要に応じて、拡
散防止層を設けることができる。また本発明の多
層化学分析材料には基質層と呈色反応層の間に色
遮蔽層または光反射層を設けることができる。さ
らに展開層と基質層、または色遮蔽層または光反
射層との間に展開層を強固に接着する目的で水性
液体試料透過性の接着層を設けることができる。
色遮蔽層光反射層、接着層については前述の特許
明細書に詳細に記述されており、本発明において
もその記述に従つて設けることができる。 色遮蔽層または光反射層としては、TiO2微粉
末またはBaSO4微粉末等の白色微粉末を親水性
バインダーポリマーに分散してなる厚さ約1μmか
ら約50μm、好ましくは約2μmから約20μmの範囲
の層、アルミニウム等の白色または淡色の金属光
沢をもつ微粉末を親水性バインダーポリマーに分
散してなる厚さ約2μmから約50μm、好ましくは
約2μmから約20μmの層、アルミニウム等の白色
または淡色の金属からなる厚さ約5nmから約
100nm、好ましくは約5nmから約50nmの水性液
体試料透過性の多孔性金属薄層を設けることがで
きる。 接着層としては基質層、色遮蔽層または光反射
層などにバインダーとして用いられている水性液
体試料透過性の親水性ポリマーと同種のポリマー
からなる厚さ約0.5μmから約10μm、好ましくは
約0.7μmから約5μmの範囲の層を設けることがで
きる。親水性ポリマーからなる接着層に展開を接
着するには、親水性ポリマー水溶液を基質層、色
遮蔽層または光反射層の上に塗布し、その後半乾
きのときに、または乾燥後に接着層の表面を水ま
たは界面活性剤を含む水で湿潤させておいて、そ
の表面に非繊維等方的多孔質材料または親水化処
理した織物を接触させ、適当な圧力をかけて接着
層に一様に接層することができる。また接着層の
上に非繊維等方的多孔質層を形成しうる溶液また
は分散液を塗布することによつても展開層が強固
に接着した多層化学分析材料をうることができ
る。 本発明の材料を更に具体的、詳細に説明する為
にアミラーゼ活性測定用の多層化学分析を具体例
として以下に詳述する。本発明の材料の一実施態
様としてのアミラーゼ分析用多層化学分析材料
は、アミラーゼの基質であるアミロース結合を含
む化合物、たとえば澱粉に色素形成反応基を結合
させた非拡散性基質層と親水性バインダーとから
なる基質層、拡散防止層及び基質に結合した色素
形成反応基と反応して色素を形成する色原体化合
物と親水性バインダーとからなる呈色試薬層とを
透明なプラスチツクフイルム上に重層塗布した構
成をしている。 澱粉分子は本来非常に大きく非拡散性であつ
て、反応前には呈色層の中へ拡散することはない
ので、色素形成反応基と色原体化合物とは隔離さ
れた状態に保持されており、多層化学分析材料は
実質上無色である。 被検物質たるアミラーゼを含む試料水溶液が基
質層に付着されるとアミラーゼが水媒体と共に基
質層中に拡散、浸透する。ついでアミラーゼの加
水分解作用が進行し、澱粉分子が切断され、低分
子化されるに従い、層中の拡散性が増加し、色素
形成反応基が結合した少糖類(拡散性化合物)が
呈色反応層中に拡散した行き、そこで色原体化合
物とカプリング反応を起し、始めて色素が形成さ
れる。アミラーゼの活性は澱粉の加水分解速度に
比例し、一方、色素形成速度は呈色反応層中に拡
散した色素形成反応基が結合した少糖類の量に比
例する。従つて、一定時間内に形成された色素の
量を測光することによつて、アミラーゼの活性を
知ることができる。 以上の説明で明らかなように、本発明の材料に
於いては、色素形成反応速度を測定し、これとあ
らかじめ、既知量のアミラーゼを用いて作製した
検量線とから、被検液中のアミラーゼ活性を測定
する。この方法に於いては、被検液の適用前には
ほぼ無色であり、反応後に測光によつて得られる
光学濃度値は、酵素反応の結果形成された色素量
そのものに比例する。従来、よく知られているブ
ルースターチ法あるいは特開昭53−131089号明細
書によつて公知である乾式分析法において利用さ
れたブルースターチ類似の、予め色素を澱粉に結
合させた染料基質を用いる方法に於いて必要な未
反応基質と反応を受けた基質との測光時での完全
な分離操作は不要となる。例えば特開昭53−
131089号明細書に開示の発明においては反応前と
反応後の光学的特性は完全に又は殆んど同じであ
るので、拡散性を利用した層間の分離が必要であ
るだけでなく、非拡散性の染料基質が含まれる基
質層と高分子媒染剤を含む検出層との間に、両者
を光学的に完全に分離する為の光遮蔽層が必須で
ある。またこの方法においては、検出層側からの
反射測光を必須の条件としている。これに対して
本発明の材料においては、光遮蔽層を用いずに透
過光により測定することも可能であり、定量測定
により適した方法であることが理解される。 本発明の材料の原理に基づいた具体的な実施態
様については既に詳細に説明した。本発明の材料
に於いては、色素形成反応を利用しているので、
被検物質による反応以前には、色素形成反応基を
含む非拡散性基質と色原体化合物とは完全に分離
された状態に保たれている必要がある。重要なこ
とは、非拡散性基質と色原体化合物との完全な隔
離であり、その実現の一手段として基質自身が非
拡散性であると同時に色原体化合物自身も非拡散
性であることである。色原体化合物を非拡散性に
保つ方法としては、種々の公知の方法、原理を利
用することができる。 色原体化合物の耐拡散化に関してきわめて有効
な手段は色原体化合物をあらかじめ疎水性のオイ
ル中に溶解、又は粒子中に局在させた状態で親水
性バインダー中に分散させることである。このよ
うな粒子の製法及び実施技術の詳細は特開昭56−
8549号明細書に記載されている。また写真科学の
分野において公知の諸技術を利用できることは勿
論である。色原体化合物の溶剤として用いられる
疎水性溶剤の具備すべき特性としては、沸点が高
く、親水性バインダー中に安定な分散状態で存在
できること、疎水性であつて色原体化合物のみで
なく、生成した色素に対しても溶解あるいは親水
性が高いことなどである。 このようなオイルの具体例としては液状の可塑
剤、例えばフタル酸エステル、(例、ジブチルフ
タレート、ジシクロヘキシルフタレート、ジドデ
シルフタレート、ジオクチルフタレート)、燐酸
エステル(例、トリエチルホスフエート、トリブ
チルホスフエート、トリフエニルホスフエート)、
アジピン酸エステル(例、ジイソデシルアジペー
ト、ジオクチルアジペート)、長鎖脂肪酸アミド
(例、N,N―ジエチルドデカンアミド、N,N
―ジメチルオクタンアミド、N,N―ジエチルオ
クタンアミド)をあげることができる。溶解性や
安定性の改善の為に低沸点あるいは高沸点の有機
溶剤(例、トルエン、ベンジルアルコール、酢酸
エチル、酢酸ブチル、アセトン、メチルエチルケ
トン、アルキルナフタレン、アセトニトリル、メ
チレンクロリド)や動物油、植物油、鉱物油など
も単独、又は混合した状態で用いることができ
る。 色原体化合物含有した疎水性オイルの微粒子ま
たは色原体化合物を含有した微粒子の粒径は約
0.1μm〜約30μm、好ましくは約0.1μm〜約10μm
の範囲である。呈色反応層に色原体化合物を含有
した疎水性オイルの微粒子又は色原体化合物を含
む微粒子を分散させる。 疎水性の色原体化合物を含有した疎水性オイル
の微粒子が親水性バインダー中に分散してなる呈
色反応層は本発明の多層化学分析材料における好
ましい呈色反応層の一態様である。特に被検物質
がアミラーゼ、非拡散性基質が色素形成反応基を
有する澱粉の場合には、アミラーゼの作用により
基質層で生成する拡散性化合物は色素形成反応基
を有する少糖類であつて、少糖類の親水性により
親水性バインダー中を容易に拡散して呈色反応層
中へ到達する。呈色反応層に到達した色素形成反
応基を有する少糖類はその色素形成反応基と疎水
性オイル微粒子の色原体化合物とがカプリング反
応して色素を形成するで、呈色反応層中の色素形
成反応基を有する少糖類の濃度が色原体化合物を
含む疎水性オイル微粒子の周辺で急激に減少し、
結局呈色反応層中の色素形成反応基を有する少糖
類の濃度が減少して、色素形成反応基を有する少
糖類の濃度についてみると、基質層側から呈色反
応層にかけて濃度勾配が存在することになる。そ
こで基質層から呈色反応層への色素形成反応基を
有する少糖類の拡散がたえず促進される。従つ
て、呈色反応層での色素形成反応速度が極端に遅
くないかぎり、色素形成反応が速く、結果として
本発明の多層化学分析材料を用いてのアミラーゼ
活性定量に要する時間が速いという著しい効果が
ある。 また、呈色反応層で形成される色素が水、親水
性バインダー、疎水性オイルのいずれにも溶解し
がたい色素であるように色素形成反応基と色原体
化合物の組合せを選ぶことにより、疎水性オイル
微粒子の表面の近傍で形成された色素が疎水性オ
イル微粒子の周辺に析出するので、疎水性オイル
微粒子内の色素濃度が増大することがなく、疎水
性オイルの微粒子の表面の近傍での色素を形成す
る化学反応が促進され、結果として色素形成速度
が早いという効果が達成される。 一方、色素が疎水性オイルに溶解しやすい色素
であるように色素形成反応基と色原体化合物の組
合せを選ぶことにより、形成された色素が疎水性
オイルの微粒子の内部に濃縮されるので、呈色反
応層での色素の光学濃度が大きくなり、単位活性
値当りの光学濃度値の変化量が大きくなるので、
定量の精度が高められるという効果が達成され
る。 合成例 1 (1) 色素形成反応基(反応性カプラー)の合成 J.T.Thurtston等の方法(「J.Amer.Chem.
Soc.」,73(7),2981―2983(1951))による塩化
シアヌルと1―アミノ―8―ヒドロキシナフタ
レン―3,6―ジスルホン酸(H酸)モノナト
リウム塩(以下、H酸Na塩と記す。)からの反
応性カプラー2―〔8―ヒドロキシ―3,6―
ビス(ナトリウムスルホナト)―1―ナフチル
アミノ〕―4,6―ジクロロ―s―トリアジン
の合成 塩化シアヌル36.9gを熱アセトン150mlに溶
解し、次いで500mlの氷水に注ぎ、微細化して
懸濁液にした。次いで140gのH酸Na塩、16g
の水酸化ナトリウムを300mlの水に溶解した液
を0〜4℃の上記塩化シアヌル懸濁液に滴下し
た。次いで2N水酸化ナトリウム水溶液250mlを
滴下した。反応液を徐々に室温に戻し、1時間
撹拌した。この反応液を4のアセトンにあけ
晶析させ、析出物を取した。得られた化合物
はH酸とは異つた紫外吸収を示し、高速液体ク
ロマトグラフイーで、得られた化合物(反応性
カプラー)の含量が90%以上であることが確認
された。 (2) 色素形成反応基を有する非拡散性基質(カプ
ラー化澱粉)の合成 水2に20gの水酸化ナトリウムを溶解し、
更にコーンスターチ46gを添加し撹拌したとこ
ろ透明な糊となつた。これに上で得た反応性カ
プラー12gを加え、室温で8時間撹拌した。反
応液を稀塩酸で中和後1.5のアセトンを加え
澱粉を沈澱させた。上澄液をデカンテイシヨン
し、次いで2の蒸留水に溶解させた。溶解後
5gの塩化ナトリウムを加えアセトン1.5で
再沈澱させた。この操作を3回繰返し、原料及
び低分子量化合物を取り除いた。 得られた沈澱物がカプラー化澱粉で、この沈
澱物を凍結乾燥した。ここで得られたカプラー
化澱粉は水で膨潤させた後分散機で微粒子化す
ると容易に溶解した。また、1%水酸化ナトリ
ウム水溶液には均一溶解し、吸収スペクトルが
前記反応性カプラーと一致した。 反応性カプラーの反応仕込み比を変えて同様
に反応操作を実施したところ、反応性カプラー
が異つた割合に導入された、すなわち、反応性
カプラーの分子数対グルコース単位数の比が
1/18から1/50の範囲で種々の比をもつカプ
ラー化澱粉が得られた。 得られたカプラー化澱粉の酵素活性を検定す
るために、アミラーゼ定量用市販染料化デンプ
ン Dyamyl―L (ダイアミル―L)と類似
した方法で発色濃度を測光した。 カプラー化澱粉460mg、燐酸一カリウム140
mg、燐酸二カリウム176mgを25mlの蒸留水に溶
解してカプラー化澱粉水溶液を調製した。 発色液としては市販のFast Red B Salt
C―37125(ジアゾニウム塩含量約20%)300
mgを5gの蒸留水に溶解して用いた。 検定用アミラーゼ溶液としては唾液を0.9%
の塩化ナトリウムと7%のアルブミンとを含む
水溶液で稀釈し200ソモギ(Somogyi単位/dl
と検定された試料を用いた。 操作法 2本の試験管(A,B)にカプラー化澱粉液1
mlを各々秤り、別の2本の試験管(C,D)にダ
イアミル―L の染料化基質溶液を各々1ml秤つ
た。各試験管は37℃で3分間のプレインクベーシ
ヨンし、試験管A及びCには各々100μの検定
用アミラーゼ液を、また試験管B及びDには各々
100μの0.9%塩化ナトリウムと7%アルブミン
とを含む水溶液を添加した。 各試験管はその後37℃で10分間インクベーシヨ
ンしダイアミル―L 沈澱剤(Dyamyl―L
Precipitant)4mlを添加してアミラーゼの酵素
反応を停止させた。 ついで試験管A及びBには更に前記ジアゾニウ
ム塩の発色液を100μ加え発色させた。 全試験管を3000rpmで10分間遠心分離し、上澄
液をA,Bは波長530nmの光で、C,Dは波長
540nmの光で測光して光学濃度値を求めた。
The present invention relates to a multilayer analytical material for the purpose of quantitative analysis of components in aqueous liquids, particularly biological fluids. A wide variety of methods have been proposed for analyzing components in water, foodstuffs, and biological fluids. The method of producing a colored substance in proportion to the amount of the analyte in a sample solution and measuring its color density is also a well-known photometric principle, and is not limited to solution analysis methods. Used in dry analysis method. An example of this is a dry analysis sheet with a principle and shape similar to so-called PH test paper, in which paper or an absorbent carrier is impregnated with a reagent that changes color upon contact with a test substance. Multilayer chemical analysis materials that can be analyzed by dry processing are also known. For example, JP-A-49-33800, JP-A-49-53888, JP-A-50-137192, JP-A-Sho.
No. 51-40191, JP-A-52-3488, JP-A-53-
In the examples described in specifications such as No. 89796 and JP-A No. 53-131089, a single or multiple reagent layer is provided on a support, and a non-fibrous porous layer is further provided on the support. It has a laminated structure. When an aqueous liquid sample is deposited on the developing layer, the aqueous liquid sample permeates into the reagent layer while maintaining a uniform amount per unit area and causes a color reaction. By measuring the change in color density after a certain period of time, the concentration of the test substance in the aqueous liquid sample can be determined. An object of the present invention is to provide a novel analytical material that utilizes a reaction system that produces products whose diffusivity in a hydrophilic binder is significantly different depending on the action of the analyte. Biological fluids such as blood, urine,
Various hydrolytic enzymes contained in intestinal fluid, saliva, cerebrospinal fluid, pancreatic juice, etc. are typical examples of such test substances. Although a wide variety of hydrolases are known, this method is particularly useful for analyzing enzymes that use high-molecular-weight compounds as substrates and produce diffusible low-molecular-weight compounds through hydrolysis reactions. . Quantitative analysis of these hydrolytic enzymes
It is important as a clinical test item, and there is a high demand for the development of a simple and accurate analysis method. Specific examples of these hydrolases include amylase, lipase, protease, and various kinases. For example, measuring the amount of amylase present in blood is clinically extremely important as a means of testing pancreatic function. Amylase is an enzyme that has the property of hydrolyzing amylose binding moieties such as starch to produce low molecular weight polysaccharides, oligosaccharides, or monosaccharides. Generally, the relative value of the abundance and concentration in a sample solution is calculated by a method of measuring its properties, that is, enzyme activity. A conventionally known method for measuring amylase activity involves adding a sample solution containing amylase to a solution containing a certain amount of a substrate for amylase, such as starch.
After reacting under certain conditions for a certain period of time, the enzyme activity is calculated from the ratio of the amount of the remaining unreacted substrate or low molecular weight reaction product generated by hydrolysis to the high molecular weight substrate that was added in advance. It is customary to do so. In order to measure the quantitative ratio between the high molecular weight substrate added in advance and the low molecular weight compound produced as a result of the enzymatic reaction, it is necessary to separate the two by some method. Usually, after stopping the reaction, a precipitant that has the effect of selectively precipitating a high molecular weight substrate from the solution is added.
A method is used in which unreacted high molecular weight substrate is removed as a precipitate in addition to the reaction solution. If it can be separated into a solution containing only unreacted substrate or a solution containing only reaction products, it is relatively easy to quantify either one by a method that leads to a color reaction. If carried out correctly, this method provides highly accurate and reliable results, but in reality, the separation of unreacted substrate and reaction product and the color reaction after separation are complicated. Due to problems such as being time-consuming, there was a desire to develop a simpler analytical method. The so-called chromogenic starch method allows photometric analysis to be performed immediately by binding a dye to the substrate in advance and separating it using a precipitant after the reaction is complete.
The method (method) has become widely practiced because the process is simpler than the basic operations described above. Furthermore, as a method for simplifying the separation operation, a method (blue starch method) in which a substrate to which a dye has been bound in advance is dispersed as fine particles to further facilitate the reaction and separation of unreacted substances after the reaction is completed is also known. . The method described in JP-A No. 53-131089 dry-processes these reaction systems and at the same time provides a material for measuring amylase activity using extremely simple operations. In this method, a reagent layer comprising a non-diffusible substrate for amylase, such as starch, to which a detectable chromophore, such as a dye, has been bound;
A laminated analysis material is used that includes a registration layer for receiving the test substance, that is, a reaction product that has become diffusible due to the action of amylase. In the disclosed technology, a non-diffusible substrate to which a detectable moiety has been bonded in advance is hydrolyzed by the hydrolytic action of an enzyme to produce a diffusible low molecular weight compound, which diffuses through the layer and finally The method utilizes the principle that since the dye is received and fixed in the registration layer, the amount of the reaction product can be determined by photometrically quantifying the color density corresponding to the amount of dye received in the registration layer. This method takes advantage of the inherent characteristics of the reaction system, in which a high molecular weight substrate is inherently non-diffusible and further produces a diffusible product through an enzymatic reaction, in a normal solution reaction. This method avoided the unavoidable complicated separation operation, and made it possible to provide a level of simplicity unimaginable with conventional methods. However, in the disclosed technology, since a detectable chemical group such as a dye is bonded to a non-diffusible substrate in advance, there is no new method for photometrically distinguishing between an unreacted substrate and a reaction product. It required a lot of ingenuity. In the disclosed technology, several methods for distinguishing between unreacted substrates and reaction products are exemplified. One method is to provide a light shielding layer (radiation blocking layer) containing fine titanium oxide powder between a reagent layer containing a non-diffusible unreacted substrate and a registration layer that receives reaction products. After completion of the reaction, only the reaction products can be measured by reflection photometry. Furthermore, a method is disclosed in which a reagent layer and a registration layer are prepared in advance in a form that can be easily separated, and after the reaction operation is completed, the two are separated, and the optical density of only the registration layer is measured. The specification of JP-A-51-40191 contains the above-mentioned JP-A-53-40191.
This technology relates to a multilayer analytical material having a layer configuration similar to the multilayer analytical material disclosed in the specification of No. 131089, but as specified in the specification, the reactive reagent layer is composed of a test substance (test in the original text). The essential condition is that it consists of an interactive substance that provides a diffusible and detectable chemical species in its presence, and that it includes a detection layer that detects this chemical species. In other words, the basis of this technology is the process in which a reaction in the reaction reagent layer converts a chemical species that cannot be detected by the means normally detected in the detection layer into a diffusible and detectable chemical species through the action of the analyte. It is in a place that includes. On the other hand, in the technique disclosed in JP-A No. 53-131089, the reaction reagent layer contains a detectable chemical species in advance, and the action of the test substance is due to the fact that the chemical species is diffusible. It uses the reaction that becomes However, JP-A-51-40191 and JP-A-53
The function and material of the detection layer (or registration layer) disclosed in 131089 are exactly the same, and its function is to compensate for the diffusible and detectable chemical species generated in the reaction reagent layer. The purpose is to facilitate or accept the detection by optical measurement, etc., and a so-called mordant polymer layer is mentioned as the only specific material. The role of these mordant polymers is to enhance the efficiency of diffusible detectable chemical species formed in the reaction reagent layer, make them non-diffusive, and in some cases increase the absorbance or shift the absorption wavelength due to mordant action. Shift (usually less than 10nm)
The object of this invention is to make quantitative determination by optical measurement easy and reliable. In any case, the detection layer or registration layer in the above two disclosed techniques is a layer for the mere reception of diffusible chemical species, and does not include any coloring reaction. Therefore, in order to clearly distinguish between detectable chemical species remaining or generated in the reaction reagent layer and chemical species captured or accepted in the detection layer or registration layer, and to obtain quantitative measurement results, it is necessary to It was essential to provide a light-scattering radiation blocking layer between the two layers for the purpose of color shielding. In the material of the present invention, the diffusible compound generated in the substrate layer by the action of the analyte is substantially colorless, and the diffusible compound forms a pigment by reaction with the chromogen compound, so the analyte The distinction in optical measurement of substrate and product before and after being acted upon by a substance becomes very clear, and the analysis disclosed in JP-A No. 51-40191 or JP-A No. 53-131089 A major feature of the material is that there is no need for a special layer to distinguish between the substrate layer and the product, a radiation blocking layer, or a method for peeling off the substrate layer and detection layer prior to photometry. are doing. Also, for uniform application of mordant polymers, acetone,
It is necessary to use a polar organic solvent such as alcohol as a coating solvent. Organic solvent-based coating differs from aqueous solution coating of gelatin, polyacrylamide, etc. in terms of process, so special consideration is required in terms of manufacturing equipment. In addition, since simultaneous multilayer coating, which is advantageous in the production process, is not possible, the production of the material of the present invention is entirely done by coating an aqueous solution or aqueous dispersion, which is extremely disadvantageous in terms of production efficiency. It is advantageous in comparison. The present invention provides a multilayer chemical analysis material in which at least two reagent layers are laminated on a light-transparent water-impermeable support, in which the two reagent layers are arranged in order from the side farthest from the support (a) substantially A substantially colorless diffusible compound that is essentially colorless and has a dye-forming reactive group that can react with a chromogen compound to be described later to form a dye, and that has the dye-forming reactive group by the action of a test substance. a substrate layer comprising a non-diffusible substrate capable of producing
and (b) a coloring reaction layer comprising a chromogen compound capable of reacting with the dye and the forming reactive group to form a dye. The structure and materials of the multilayer chemical analysis material of the present invention will be specifically explained below. Examples of layer configurations in specific embodiments of the multilayer chemical analysis material of the present invention are shown in FIGS. 1 to 4. The multilayer chemical analysis material of FIG. 1 is arranged on a light-transmissive water-impermeable support 10, in order from the side farthest from the support, a substantially colorless pigment capable of reacting with a chromogen compound to form a pigment. A non-containing compound that has a reactive group that forms the dye under the action of the test substance and that is substantially colorless and that can form a diffusible compound that can diffuse through a hydrophilic binder in the presence of water. A substrate layer 50 comprising a diffusible substrate in a first hydrophilic binder and a chromogenic compound capable of reacting with said dye-forming reactive group to form a dye in a second hydrophilic binder. The color reaction layer 20 is laminated. The first and second hydrophilic binders may be the same or different from each other, and may be in any combination; An appropriate hydrophilic binder can be selected depending on the dye used or the combination thereof. The multilayer chemical analysis material shown in FIG. 2 has a structure in which a diffusion prevention layer 30 is provided between a color reaction layer 20 and a substrate layer 50. The function of the diffusion prevention layer will be explained in detail later. FIG. 3 is a conceptual diagram of the layer structure to show the principle of the material of the present invention, in which a coloring reaction layer 20, a diffusion prevention layer 30, a substrate layer 50 are formed on a light-transparent water-impermeable support 10.
It has a structure in which the development layers 70 are laminated in this order. When a drop of an aqueous sample solution containing a test substance (eg, amylase) is applied to the development layer, it is spread almost uniformly in the development layer and penetrates into the substrate layer 50 . In the substrate layer, a diffusible compound is generated from the non-diffusible substrate by the action of the test substance, and the diffusion prevention layer 3 is formed from the substrate layer.
0 and diffuses into the coloring reaction layer 20. Since a dye-forming reactive group is bonded to the diffusible compound as a reaction product, when it reaches the coloring reaction layer 20, the dye-forming reactive group and the chromogen compound react to form a dye. When the test substance is a hydrolase, the enzyme has a high molecular weight, so it cannot pass through the diffusion prevention layer and remains in the substrate layer together with the non-diffusible substrate. As a result, a pigment is formed in proportion to the enzyme activity, so the enzyme activity can be determined by measuring the amount of pigment produced. Optical measurement using transmission or reflection in the absorption wavelength region of the dye is suitable for measuring the amount of the dye, but depending on the purpose and required precision, visual determination is also possible. In order to make the explanation easier to understand, the multilayer chemical analysis material with the configuration shown in Figure 1 will be used as an example below, and additional functions provided in the multilayer chemical analysis materials shown in Figures 2 to 4 will be added as necessary. The present invention will be described in detail, including a description of the layers. Substrate layer 50 is colorless because the non-diffusible substrate is substantially colorless. The color reaction layer can also be made colorless by selecting a colorless compound as the chromogen compound. Both layers are transparent since their layer thickness is at most about 50 μm, and therefore the multilayer chemical analysis material shown in FIG. 1 is transparent. When a sample solution (aqueous solution, i.e., a solution or dispersion containing water as a solvent or dispersion medium) containing an analyte is deposited onto a multilayer chemical analysis material, non-oxidation occurs in the substrate layer due to the action of the analyte. Diffusible substrates undergo chemical reactions, typically hydrolysis, to produce colorless diffusible compounds. A colorless diffusible compound is present in the hydrophilic binder matrix of the substrate layer 50 and in the color reaction layer 20.
Diffuses through the hydrophilic binder matrix in the presence of water derived mainly from the solvent contained in the sample solution or water as a dispersion medium, and reaches the chromogen compound present in the color reaction layer. , react to form a pigment. After reacting for a certain period of time under certain conditions, the amount or activity value of the test substance contained in the sample solution can be determined by photometrically quantifying the amount of the dye produced in the color reaction layer. As mentioned above, the material of the present invention is used for measuring hydrolase activity in aqueous liquid samples, particularly biological fluids such as blood, urine, saliva, cerebrospinal fluid, intestinal fluid, and pancreatic juice. To measure the enzymatic activity of hydrolytic enzymes such as amylase in blood, conventional methods involve separating plasma or serum from collected whole blood by a method such as centrifugation, and using this as a sample solution. It's here. The reason for this is that interference during photometry due to hemoglobin, which exists in large amounts in whole blood, could not be eliminated. By incorporating a light-shielding layer as one of the functional layers, the material of the present invention enables measurement of enzyme activity using whole blood directly as a sample solution, which was impossible with conventional analysis methods. It makes it possible. Since the material of the present invention is an analysis material in which a color reaction proceeds only after the sample solution is attached, photometry after the reaction may be performed from the bottom of the analysis material, and may be either transmission photometry or reaction photometry. In the multilayer chemical analysis material of the present invention, a light-shielding layer with high light scattering properties is provided between the color reaction layer and the substrate layer to block interference caused by red blood cells and hemoglobin on the upper surface of the substrate layer, and the material is passed through the transparent support. Direct measurement using whole blood as a sample solution is also possible by reflective photometry of the color density in the color reaction layer. An example of the layer structure of materials in such a case is shown in FIG. Since the light-shielding layer itself also functions to prevent the diffusion of diffusible interference substances and/or chromogenic compounds, there is no need to provide a special diffusion-preventing layer.
In addition, hemoglobin, bilirubin, and chyle, which are often found in serum, are detected in serum analysis.
However, the diffusion prevention layer used in the material of the present invention completely blocks the diffusion of these interfering substances to the lower layer, so if a light shielding layer is provided, hemolysis and high Analysis of serum samples containing bilirubin and chyle can also be performed without error. The non-diffusible substrate used in the material of the present invention has physical properties such as molecular size, shape, and degree of dissociation that change significantly due to the action of the analyte, which is the object of analysis.
As a result, it refers to a substance whose diffusivity in the hydrophilic binder layer of a multilayer chemical analysis material increases significantly.
Specific examples of non-diffusible substrates include substrates for various enzymes contained in biological fluids. Among these, the multilayer chemical analysis material of the present invention can be particularly effectively applied to the following:
Specific examples of hydrolytic enzymes include protease, amylase, lipase, and pectinase. When these hydrolases are used as test substances, the non-diffusible substrate used in the present invention is a substantially colorless pigment-forming reactive group on the substrate of each hydrolase, i.e., protein, amylose, glyceride, or pectin. A combination of these is used. The substrate layer is composed of a layered structure of a non-diffusible substrate. When the material of the present invention is formed by coating, the substrate is dissolved or dispersed in a binder solution consisting of one or more types of polymers, and then the solution is coated and dried. However, since the substrate layer of the material of the present invention has a high molecular weight itself, it can also be formed by methods such as coating or impregnation without using a binder. For example, after a pretreatment such as impregnating a paper, cloth, porous plastic membrane, etc. with a substrate, it is also possible to overlay it on a support containing a color reaction layer by means such as lamination. The first hydrophilic binder polymer that can be used in the substrate includes various hydrophilic binders. Among these, those that can be used in the material of the present invention include natural hydrophilic polymers such as gelatin, agarose, sodium alginate, carboxymethylcellulose, and methylcellulose, polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, and polyhydroxy Examples include hydrophilic synthetic polymers such as ethyl methacrylate, copolymers containing acrylic acid, and copolymers containing maleic acid. An appropriate binder is selected from among these, taking into account usage conditions, characteristics of the test substance, coating characteristics, etc. For example, protein binders such as gelatin are completely inappropriate as binders for protease analysis materials. Furthermore, when the molecular weight of the test substance is large, diffusion of the test substance into the substrate layer becomes a problem, and it is necessary to use a binder with a high swelling ratio. Among the hydrophilic binder polymers, particularly suitable as binders for the substrate layer of the materials of the invention are agarose, polyacrylamide, sodium polyacrylate, copolymers containing acrylic acid. The substrate layer contains a non-diffusible substrate, a hydrophilic binder, a surfactant, a pH adjusting reagent, and a fine powder to improve various properties such as coating performance, diffusibility of diffusive compounds, reactivity, and storage stability. , antioxidants, and various other organic or inorganic additives can be added. The thickness of the substrate layer is not particularly limited, but in order to provide it as a coating layer, it is suitably in the range of about 1 μm to 50 μm, particularly preferably in the range of 2 μm to 30 μm. However, when a method other than coating is used, such as lamination, the film thickness can vary widely from several tens of micrometers to several hundred micrometers. The color-forming reaction layer of the material of the present invention is a layer containing a chromogen compound that reacts with a dye-forming reactive group in a diffusible compound (reaction product) to form a dye and a second hydrophilic binder. Various combinations of the non-diffusible substrate in the substrate layer and the chromogen compound in the color reaction layer are possible, as will be detailed later, but a specific combination that best matches the performance of the target analytical material is recommended. need to be selected. As mentioned above, the diffusion of the chromogen compound in the color reaction layer into the substrate layer in the process of producing the material of the present invention results in color development, that is, "fogging" that is not caused by the action of the test substance. Because it reduces analytical performance,
This must be definitely prevented. For this purpose, it is necessary to take various measures to make the chromogen compound diffusion resistant. There are two methods of making couplers diffusion-resistant, which are well known in the field of photochemistry: bonding a long-chain diffusion-resistant group to the coupler, or dissolving the coupler in a hydrophobic oil and placing it in a hydrophilic binder. A dispersion method can be applied. That is, it has a layer in which a chromogen compound to which a long-chain diffusion-resistant group is bonded is dispersed in a hydrophilic binder, and a layer in which oil particles containing dissolved chromogen compounds are dispersed in a hydrophilic binder. It can be used as a color-reactive layer. Furthermore, a method of fixing a chromogen compound to a solid surface by means such as adsorption to make it resistant to diffusion can also be applied. The second hydrophilic binder used in the coloring reaction layer is also a hydrophilic polymer similar to the binder for the substrate layer, and one having approximately the same properties as the binder for the substrate layer is suitable. The first and second hydrophilic binders may be the same or different. Of course, various additives may be used. The layer thickness of the color-reactive layer can vary widely and ranges from about 1 μm to about 50 μm, preferably from about 2 μm to about 30 μm. Combinations of dye-forming reactive groups and chromogenic compounds that can be used to create the materials of the present invention and methods for synthesizing non-diffusible substrates are detailed below. As used herein, the term chromogenic compound refers to any compound capable of forming a dye by reaction with a dye-forming reactive group. Techniques regarding diffusion-resistant couplers and oil-protecting couplers, which are well known in the technical field of photographic science, are also effective means for the dye-forming reaction used in the material of the present invention. The basic principle is to reduce the coupler's diffusivity in water by attaching a bulky diffusion-resistant group or increasing its hydrophobicity while maintaining the coupler's reactivity. A concrete example is ``The Theory of
the Photographic Process” 4th edition (New
York.The Macmillan Company.Published in 1977)
Described on pages 335-372. For coupling reactions using diazonium compounds, see "Light Sensitive Systems" by J. Kosar.
(New York, John Wiley and Sons, Inc.,
Published in 1965) on pages 194-258. A dye-forming reactive group refers to a single atom or a group of atoms that can be bonded by a chemical reaction with a chromogenic compound (resulting in the formation of a dye). The chemical reaction for bonding the dye-forming reactive group and the chromogen compound may be any reaction, and the bond may be any bond such as a covalent bond, an ionic bond, or a coordinate bond. In short, the dye produced by combining the dye-forming reactive group and the chromogen compound through a chemical reaction exists stably to the extent that it meets the purpose of photometry, preferably substantially permanently after being produced. Any combination and chemical reaction of a dye-forming reactive group and a chromogen compound can be used in the present invention as long as a dye having a bond such as that present in the dye is produced. In these combinations, the dye-forming reactive group is a substantially colorless group (substantially has no absorption in the visible light region), but the chromogenic compound may be colorless, and may interfere or cause interference when photometrically measuring the dye. It is acceptable to have a color that does not prevent damage (has absorption in the visible light range that does not interfere with or prevent damage in the visible light range of the dye). As the combination of a dye-forming reactive group and a chromogenic compound, a combination of many compounds known as a group of compounds having the ability to carry out a coupling reaction to form a dye can be used in the material of the present invention.
For example, in the above-mentioned bibliography edited by James, 335
- Combinations of conventional silver halide photographic color developer couplers and oxidizing agents described on page 361, and various coupling reagents using diazonium salts as diazo components as described on pages 194-258 of the literature by Kosar. as a coupling component (coupler), and a combination of a nitrogen-containing heterocyclic quaternary ammonium salt, which is often used in photographic sensitizing dyes, and dialkylaminobenzaldehyde or a similar compound (a styryl dye is formed). A combination of these can be preferably used in the material of the present invention because the dye-forming reaction is fast. Further, combinations of various leuco dyes used in pressure-sensitive copying papers, heat-sensitive recording materials, etc. and various phenol compounds as color development promoters can also be used in the materials of the present invention. As is clear from the principle, there is no reason to uniquely limit each element of the color-forming reaction combination to the dye-forming reactive group and the chromogen compound that reacts with this reactive group to form a dye. Regarding each element, a pigment-forming reactive group is inevitably selected depending on the inhibition of enzyme reaction, the stability of synthetically difficult compounds, etc., but since it diffuses together with a diffusible compound (substrate with a low molecular weight), a pigment-forming reactive group is It is preferable that it is diffusible. The dye-forming reactive group selected above is bonded to the non-diffusible substrate using the "reactive dye" technology widely used in the dye industry. In the dye industry, in addition to physically adsorbing dye compounds on various natural fibers, chemical bonds are intentionally formed to obtain a more favorable dyeing state. The dye used at this time is a reactive dye, and K.Venkataraman
This reactive dye is described in detail in The Chemistry of Synthetic Dyes, ed., Volume 1 (New York, Academic Press, 1972).
In particular, the "linking group" that connects dye molecules to molecules of natural polymers such as polysaccharide cellulose and protein fibers such as wool and silk has been described in detail, and these techniques can be used in the non-diffusible substrate used in the present invention. It can be used for manufacturing. That is, this linking group can be used to link a dye-forming reactive group and a non-diffusible substrate to obtain a compound useful in the present invention. Since the dye-forming reactive group is reduced in molecular weight by an enzymatic reaction and undergoes diffusion migration in a hydrophilic binder to perform a coloring reaction, it preferably has a soluble group such as a sulfone group, a carboxyl group, or a hydroxyl group. Even if this soluble group is introduced into a part of the linking group, favorable results can be obtained. The dye-forming reactive group that is bonded to the non-diffusible substrate through the linking group is usually a variety of couplers used in photographic systems, such as pyrazolin-5-one, naphthol, phenol, acylacetanilide, etc., and these need to be bonded to the linking group. Therefore, it is necessary to have an amino group, a hydroxyl group, etc.
Two-equivalent couplers having a leaving group in the coupling position, which are well known in the photographic industry, can also be used. When the chromogen compound is a diazonium salt, an arylamine or the like can be used in addition to the above-mentioned couplers as a coupling component. Diazotized benzene, naphthalene, anthraquinone derivatives and N,N-disubstituted-p-phenylenediamine derivatives, heterocyclic quaternary ammonium salts, aryl as chromogen compounds that react with dye-forming reactive groups to form dyes. Examples include aldehyde derivatives. These compounds are preferably synthesized using anti-diffusion techniques, which are well known in the photographic industry. For example, a long-chain fatty acid derivative such as a stearoyl group, a long-chain alcohol, or an amine chain may be bonded as a long-chain diffusion-resistant group, or an aromatic compound such as a 2,4-di-t-butylphenoxy group may be introduced. It can be made diffusible. Also, like pigments, it can be made insolubilized to make it resistant to diffusion. Furthermore, the chromogen compound can be made resistant by compound or physical adsorption onto porous surface active compounds such as silica gel or alumina. Furthermore, the chromogen compound can be made diffusion resistant by being chemically or physically adsorbed onto a polymer compound or by being encapsulated in a polymer matrix. Specific examples of dye-forming reactive groups include the following groups. (5-pyrazolone means 2-pyrazolin-5-one.) 4,6-bis(8-hydroxy-3,6-disulfo-1-naphthylamino)-s-triazine-2
-yl group 4-anilino-6-(8-hydroxy-3,6-
disulfo-1-naphthylamino)-s-triazin-2-yl group 4-chloro-6-(8-hydroxy-3,6-disulfo-1-naphthylamino)-s-triazin-2-yl group 4-chloro -6-(1-p-sulfophenyl-5
-pyrazolone-3-ylamino)-s-triazin-2-yl group 4,5-dichloro-6-(8-hydroxy-3-
Sulfo-1-naphthylamino)-2-pyrimidyl group 4-chloro-6-[3-(1-m-sulfophenyl-5-pyrazolon-3-ylamino)anilino]-s-triazin-2-yl group 4-m -Sulfoanilino-6-(2-hydroxy-5-chloroanilino)-s-triazine-2-
yl group 4-(8-hydroxy-3,6-disulfo-1-
naphthylamino)-6-(1-phenyl-5-pyrazolone-3-ylamino)-s-triazine-
2-yl group 4-[β-(N-ethyl-4-trichloromethylanilino)ethoxy]-6-(8-hydroxy-
3,6-disulfo-1-naphthylamino)-s-
Triazin-2-yl group 4-p-sulfoanilino-6-(3-p-sulfophenyl-4,4-dichloro-5-pyrazolone-
Alkali metal cations (e.g. Li, Na,
A group in which a sulfonate group (-SO 3 ) to which K ) is bound (1,3,3-trimethyl-6-p-formylphenyl-6-azoniaoctyl)oxy group and a chlorine anion as a counterion . Specific examples of chromogen compounds include the following compounds. 2-tetradecyloxy-5-sulfonatobenzenediazonium 5-(N-octadecylsulfamoyl)-2-
Methoxybenzenediazonium tetrafluoroborate 5-(N-octylsulfamoyl)-2-methoxybenzenediazonium 1-naphthalenesulfonate 2-dodecyloxy-4-nitrobenzenediazonium tetrafluoroborate 5-tetradecyloxycarbonyl-2-methoxybenzenediazonium Tetrafluoroborate 9,10-anthraquinone-1-diazonium 2-
Naphthalenesulfonate 2-methyl-3-tetradecylbenzothiazolium Perchlorate 5-dodecyloxycarbonyl-2,3,3-trimethyl-1-(γ-sulfonatopropyl)indolenium 1-(2,4-di- t-amylphenoxy)-2
-Oxo-6-(4-amino-2-methylphenyl)-3,6-diazaoctane. The light-transmitting and water-impermeable support of the multilayer chemical analysis material of the present invention includes polyethylene terephthalate, cellulose ester (cellulose diacetate, cellulose triacetate, cellulose acetate propionate, etc.), polycarbonate,
A known transparent support such as a plastic film such as polymethyl methacrylate or a glass plate having a thickness of about 50 μm to about 2 mm can be used. If the support is hydrophobic and the adhesion with the hydrophilic binder of the reagent layer is insufficient, treatment to make the surface of the support hydrophilic (e.g., ultraviolet irradiation, electron beam irradiation, flame treatment, hydrolysis with alkali, etc.) ) or provide a subbing layer on the surface of the support made of a substance that has an appropriate adhesive strength to both the support and the hydrophilic binder of the reagent layer, or provide the surface of the support with a subbing layer that does not significantly reduce the light transmittance. Known auxiliary treatments such as forming fine irregularities within a range (brushing, electrolytic etching, etc.) can be applied. In addition to the support and the reagent layer, the material of the present invention can be used by laminating other functional layers for the purpose of preventing diffusion, uniformly spreading the sample, shielding light, adhesion, etc., if necessary. The function of the diffusion prevention layer is to completely prevent the diffusion of the non-diffusible substrate to other layers before being affected by the test substance, and also to prevent the diffusion of reaction products (diffusible compounds) that have become diffusible. It's in the absence of it. Of course, it also has the function of preventing the chromogen compound in the color reaction layer from diffusing into the substrate layer. The materials used for the anti-diffusion layer are hydrophilic polymers similar to those used for the substrate layer. Particularly suitable polymers among these are gelatin, polyvinyl alcohol, which have properties suitable for revealing diffusivity differences between non-diffusible substrates and products (diffusible compounds). are doing. Various additives can be added to the diffusion prevention layer as well as those mentioned regarding the substrate layer. As the aqueous liquid sample spreading layer (hereinafter simply referred to as the spreading layer) of the multilayer chemical analysis material, non-fibrous isotropic porous materials described in the aforementioned patent specifications and literature can be used, as well as hydrophilic It is possible to use fabrics that have been subjected to chemical treatment. Non-fibrous isotropic porous materials include brush polymers (commonly known as membrane filters), materials in which a microporous material such as diatomaceous earth or a microcrystalline material (e.g. microcrystalline cellulose) is uniformly dispersed in a binder, glass or Porous material made of microspherical beads of synthetic polymeric material held in point contact with each other by a binder, TiO 2 or BaSO 4
There are also brush polymers in which fine powders such as, etc. are uniformly dispersed. As a textile that has been made hydrophilic,
The fabric is thoroughly washed with water, degreased and dried, and the fabric is impregnated with a small amount of surfactant, wetting agent, hydrophilic polymer, or hydrophilic polymer with dispersed TiO 2 or BaSO 4 fine powder after washing with water and degreasing. be. For details on the technology and fabrics using hydrophilic-treated fabrics as a spreader, please refer to JP-A-55-
164356) is specifically described in detail in the specification, and can be applied to the present invention according to the description. The thickness of the spread layer ranges from about 50 μm to about 500 μm, preferably about 50 μm for non-fibrous isotropic porous materials.
The thickness ranges from 80 μm to about 300 μm, and in the case of a hydrophilized fabric, the thickness of the fabric after hydrophilic treatment and air drying is about 80 μm to about 1 mm, preferably about 100 μm to about 400 μm. . When the spreading layer is a non-fibrous isotropic porous material, a non-fibrous etc. is placed on the substrate layer as described in the specifications of JP-A-49-53888, JP-A-50-137192, etc. The spread layer can be provided by applying and drying a solution or dispersion capable of forming a diagonal porous layer, or by gluing a thin layer of non-fibrous isotropic porous material. When the spreading layer is made of a hydrophilized fabric, the spreading layer can be provided by bonding the hydrophilized fabric onto the substrate layer. Non-fibrous isotropic porous materials or hydrophilized fabrics can be bonded to a substrate layer by utilizing the properties of the hydrophilic binder polymer in the substrate layer when the substrate layer is semi-dry or when the substrate layer is dry. A method in which the surface of the substrate layer is wetted with water or water containing a surfactant, and a non-fibrous isotropic porous material or a hydrophilized fabric is brought into close contact with the surface of the substrate layer, and an appropriate pressure is applied as necessary. can be adopted. Another method for adhering a non-fiber isotropic porous material or a hydrophilic-treated fabric to a substrate layer is to use an adhesive that can permeate an aqueous liquid sample, and to use an adhesive layer that can permeate an aqueous liquid sample, which will be described later. A method can be adopted in which the substrate layer is provided on the substrate layer. The multilayer analysis material of the present invention can be provided with a diffusion prevention layer, if necessary. Further, in the multilayer chemical analysis material of the present invention, a color-shielding layer or a light-reflecting layer can be provided between the substrate layer and the color reaction layer. Further, an aqueous liquid sample-permeable adhesive layer may be provided between the developing layer and the substrate layer, color shielding layer, or light reflecting layer for the purpose of firmly adhering the developing layer.
The color shielding layer, the light reflecting layer, and the adhesive layer are described in detail in the above-mentioned patent specification, and can be provided in the present invention according to the description. The color-shielding layer or light-reflecting layer is made by dispersing white fine powder such as TiO 2 fine powder or BaSO 4 fine powder in a hydrophilic binder polymer and has a thickness of about 1 μm to about 50 μm, preferably about 2 μm to about 20 μm. A layer having a thickness of about 2 μm to about 50 μm, preferably about 2 μm to about 20 μm, consisting of a white or light-colored metallic luster fine powder such as aluminum dispersed in a hydrophilic binder polymer; Made of light-colored metal with a thickness of about 5 nm to approx.
A thin porous metal layer permeable to an aqueous liquid sample of 100 nm, preferably from about 5 nm to about 50 nm, can be provided. The adhesive layer is made of a polymer of the same type as the aqueous liquid sample-permeable hydrophilic polymer used as a binder in the substrate layer, color shielding layer, light reflection layer, etc., and has a thickness of about 0.5 μm to about 10 μm, preferably about 0.7 μm. Layers ranging from μm to about 5 μm can be provided. To adhere the spread to an adhesive layer made of a hydrophilic polymer, an aqueous solution of the hydrophilic polymer is applied onto the substrate layer, color-blocking layer or light-reflecting layer, and the surface of the adhesive layer is then coated during or after drying. is moistened with water or water containing a surfactant, a non-fibrous isotropic porous material or a hydrophilized fabric is brought into contact with the surface, and an appropriate pressure is applied to uniformly contact the adhesive layer. Can be layered. Furthermore, a multilayer chemical analysis material in which the spreading layer is firmly adhered can also be obtained by applying a solution or dispersion capable of forming a non-fibrous isotropic porous layer onto the adhesive layer. In order to explain the material of the present invention more specifically and in detail, a multilayer chemical analysis for measuring amylase activity will be described in detail below as a specific example. A multilayer chemical analysis material for amylase analysis, which is an embodiment of the material of the present invention, consists of a non-diffusible substrate layer in which a dye-forming reactive group is bonded to a compound containing an amylose bond, which is a substrate for amylase, such as starch, and a hydrophilic binder. A substrate layer consisting of a substrate layer, a diffusion prevention layer, and a coloring reagent layer consisting of a hydrophilic binder and a chromogen compound that reacts with a dye-forming reactive group bonded to the substrate to form a dye, are layered on a transparent plastic film. It has a painted composition. Starch molecules are naturally very large and non-diffusible and do not diffuse into the coloring layer prior to reaction, so the dye-forming reactive groups and chromogenic compounds are kept separate. The multilayer chemical analysis material is virtually colorless. When an aqueous sample solution containing amylase, which is a test substance, is attached to the substrate layer, the amylase diffuses and permeates into the substrate layer together with the aqueous medium. Then, as the hydrolytic action of amylase progresses and the starch molecules are cut and reduced to lower molecules, the diffusivity in the layer increases, and the oligosaccharides (diffusible compounds) to which the pigment-forming reactive groups are bound undergo a coloring reaction. It diffuses into the layer, where it undergoes a coupling reaction with a chromogen compound, forming a pigment. The activity of amylase is proportional to the rate of starch hydrolysis, while the rate of pigment formation is proportional to the amount of oligosaccharides with attached pigment-forming reactive groups diffused into the color-forming reaction layer. Therefore, the activity of amylase can be determined by photometrically measuring the amount of dye formed within a certain period of time. As is clear from the above explanation, in the material of the present invention, the pigment formation reaction rate is measured, and from this and a calibration curve prepared in advance using a known amount of amylase, the amylase in the test solution is determined. Measure activity. In this method, the test solution is almost colorless before application, and the optical density value obtained by photometry after the reaction is directly proportional to the amount of dye formed as a result of the enzymatic reaction. A dye substrate is used in which a dye is previously bound to starch, similar to blue starch, which was used in the well-known blue starch method or the dry analysis method known from JP-A No. 53-131089. It becomes unnecessary to completely separate the unreacted substrate and the reacted substrate during photometry, which is necessary in the method. For example, JP-A-53-
In the invention disclosed in No. 131089, the optical properties before and after the reaction are completely or almost the same, so it is not only necessary to separate the layers using diffusivity, but also to separate the layers using non-diffusivity. A light shielding layer is essential between the substrate layer containing the dye substrate and the detection layer containing the polymer mordant to completely optically separate the two. Further, in this method, reflection photometry from the detection layer side is an essential condition. On the other hand, with the material of the present invention, it is possible to measure using transmitted light without using a light shielding layer, and it is understood that this method is more suitable for quantitative measurement. Specific embodiments based on the material principles of the invention have already been described in detail. Since the material of the present invention utilizes a pigment-forming reaction,
Prior to the reaction with the test substance, the non-diffusible substrate containing the dye-forming reactive group and the chromogen compound must be kept completely separated. What is important is complete separation of the non-diffusible substrate and the chromogen compound, and one way to achieve this is to ensure that the substrate itself is non-diffusible and at the same time the chromogen compound itself is also non-diffusible. It is. Various known methods and principles can be used to keep the chromogen compound non-diffusible. A very effective means for making the chromogen compound difficult to diffuse is to dissolve the chromogen compound in a hydrophobic oil in advance, or to disperse it in a hydrophilic binder while being localized in particles. Details of the manufacturing method and implementation technology for such particles can be found in JP-A-56-
It is described in the specification of No. 8549. It goes without saying that techniques known in the field of photographic science can also be used. The hydrophobic solvent used as a solvent for the chromogen compound must have a high boiling point, be able to exist in a stable dispersion state in a hydrophilic binder, be hydrophobic and not only contain the chromogen compound. It also has high solubility or hydrophilicity for the produced pigment. Examples of such oils include liquid plasticizers such as phthalate esters (e.g., dibutyl phthalate, dicyclohexyl phthalate, didodecyl phthalate, dioctyl phthalate), phosphate esters (e.g., triethyl phosphate, tributyl phosphate, triphthalate), enyl phosphate),
Adipic acid esters (e.g. diisodecyl adipate, dioctyl adipate), long chain fatty acid amides (e.g. N,N-diethyldodecanamide, N,N
-dimethyloctanamide, N,N-diethyloctanamide). Organic solvents with low or high boiling points (e.g. toluene, benzyl alcohol, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, alkylnaphthalene, acetonitrile, methylene chloride), animal oils, vegetable oils, minerals to improve solubility and stability. Oil etc. can also be used alone or in a mixed state. The particle size of the hydrophobic oil particles containing the chromogen compound or the particle size of the hydrophobic oil particles containing the chromogen compound is approximately
0.1μm to about 30μm, preferably about 0.1μm to about 10μm
is within the range of Fine particles of hydrophobic oil containing a chromogen compound or fine particles containing a chromogen compound are dispersed in the coloring reaction layer. A color reaction layer formed by dispersing fine particles of hydrophobic oil containing a hydrophobic chromogen compound in a hydrophilic binder is one preferred embodiment of the color reaction layer in the multilayer chemical analysis material of the present invention. In particular, when the test substance is amylase and the non-diffusible substrate is starch with a pigment-forming reactive group, the diffusible compound produced in the substrate layer by the action of amylase is an oligosaccharide with a pigment-forming reactive group, and a small amount of Due to the hydrophilic nature of saccharides, they easily diffuse through the hydrophilic binder and reach the color reaction layer. The oligosaccharide having a pigment-forming reactive group that has reached the color-forming reaction layer undergoes a coupling reaction between the pigment-forming reactive group and the chromogen compound of the hydrophobic oil particles to form a pigment. The concentration of oligosaccharides with forming reactive groups decreases rapidly around hydrophobic oil particles containing chromogenic compounds,
Eventually, the concentration of oligosaccharides with pigment-forming reactive groups in the color-forming reaction layer decreases, and when looking at the concentration of oligosaccharides with pigment-forming reactive groups, a concentration gradient exists from the substrate layer side to the color-forming reaction layer. It turns out. Therefore, the diffusion of oligosaccharides having dye-forming reactive groups from the substrate layer to the color-forming reaction layer is constantly promoted. Therefore, unless the dye formation reaction rate in the color reaction layer is extremely slow, the dye formation reaction is fast, and as a result, there is a remarkable effect that the time required for quantifying amylase activity using the multilayer chemical analysis material of the present invention is short. There is. In addition, by selecting a combination of a dye-forming reactive group and a chromogen compound so that the dye formed in the color-forming reaction layer is a dye that is difficult to dissolve in water, a hydrophilic binder, or a hydrophobic oil, Since the dye formed near the surface of the hydrophobic oil particle is precipitated around the hydrophobic oil particle, the dye concentration within the hydrophobic oil particle does not increase, and the dye formed near the surface of the hydrophobic oil particle does not increase. The chemical reaction that forms the pigment is accelerated, and as a result, the effect of increasing the rate of pigment formation is achieved. On the other hand, by selecting a combination of a pigment-forming reactive group and a chromogen compound so that the pigment is easily soluble in hydrophobic oil, the formed pigment is concentrated inside the fine particles of hydrophobic oil. The optical density of the dye in the color reaction layer increases, and the amount of change in optical density value per unit activity value increases.
The effect is achieved that the precision of quantification is increased. Synthesis Example 1 (1) Synthesis of dye-forming reactive group (reactive coupler) Method of JTThurtston et al. ("J.Amer.Chem.
Soc., 73 (7), 2981-2983 (1951)), cyanuric chloride and 1-amino-8-hydroxynaphthalene-3,6-disulfonic acid (H acid) monosodium salt (hereinafter referred to as H acid Na salt) The reactive coupler 2-[8-hydroxy-3,6-
Synthesis of bis(sodium sulfonato)-1-naphthylamino]-4,6-dichloro-s-triazine 36.9 g of cyanuric chloride was dissolved in 150 ml of hot acetone, then poured into 500 ml of ice water and finely divided into a suspension. did. Then 140g H acid Na salt, 16g
A solution of sodium hydroxide in 300 ml of water was added dropwise to the above cyanuric chloride suspension at 0 to 4°C. Then, 250 ml of 2N aqueous sodium hydroxide solution was added dropwise. The reaction solution was gradually warmed to room temperature and stirred for 1 hour. This reaction solution was poured into acetone (4) to cause crystallization, and the precipitate was collected. The obtained compound exhibited ultraviolet absorption different from that of H acid, and high performance liquid chromatography confirmed that the content of the obtained compound (reactive coupler) was 90% or more. (2) Synthesis of a non-diffusible substrate (coupled starch) having a pigment-forming reactive group Dissolve 20g of sodium hydroxide in water 2,
Furthermore, when 46 g of cornstarch was added and stirred, it became a transparent paste. To this was added 12 g of the reactive coupler obtained above, and the mixture was stirred at room temperature for 8 hours. After neutralizing the reaction solution with dilute hydrochloric acid, 1.5% acetone was added to precipitate starch. The supernatant was decanted and then dissolved in two volumes of distilled water. After dissolution, 5 g of sodium chloride was added and reprecipitated with 1.5 g of acetone. This operation was repeated three times to remove raw materials and low molecular weight compounds. The precipitate obtained was coupler-formed starch, and this precipitate was freeze-dried. The coupler-formed starch obtained here was easily dissolved when it was swollen with water and then made into fine particles using a disperser. It was also uniformly dissolved in a 1% aqueous sodium hydroxide solution, and its absorption spectrum matched that of the reactive coupler. When the same reaction procedure was carried out by changing the reaction charge ratio of the reactive coupler, the reactive coupler was introduced at different ratios, that is, the ratio of the number of reactive coupler molecules to the number of glucose units increased from 1/18 to 1/18. Coupled starches with various ratios in the range of 1/50 were obtained. In order to assay the enzymatic activity of the obtained coupler starch, the color density was measured photometrically using a method similar to that used for Dyamyl-L, a commercially available dyed starch for quantifying amylase. Couplerized starch 460 mg, monopotassium phosphate 140
mg, and 176 mg of dipotassium phosphate were dissolved in 25 ml of distilled water to prepare a couplered starch aqueous solution. Commercially available Fast Red B Salt is used as a coloring liquid.
C-37125 (diazonium salt content approximately 20%) 300
mg was dissolved in 5 g of distilled water and used. Saliva is used as amylase solution for assay at 0.9%.
diluted with an aqueous solution containing 7% sodium chloride and 7% albumin to give 200 Somogyi units/dl.
A sample that was certified as Procedure: Add 1 part of coupler-formed starch solution to two test tubes (A, B).
ml of each sample was weighed out, and 1 ml of Diamil-L dyed substrate solution was weighed out into two other test tubes (C and D). Each test tube was pre-incubated at 37°C for 3 minutes, test tubes A and C were each filled with 100μ of amylase solution for assay, and test tubes B and D were each filled with 100μ of amylase solution for assay.
100μ of an aqueous solution containing 0.9% sodium chloride and 7% albumin was added. Each test tube was then incubated at 37°C for 10 minutes and treated with Dyamyl-L precipitant.
The enzyme reaction of amylase was stopped by adding 4 ml of Precipitant. Next, 100 µm of the diazonium salt coloring solution was added to test tubes A and B to develop color. All test tubes were centrifuged at 3000 rpm for 10 minutes, and the supernatant was exposed to light with a wavelength of 530 nm for A and B, and wavelengths of C and D for 530 nm.
Optical density values were determined by photometry using 540 nm light.

【表】 反応性カプラーグルコース単位に対する結合比
の異なるカプラー化澱料で同様の検定実験を実施
したところ、試験管Aに対応する上澄液の光学濃
度が0.23から1.9までの広範囲な値が得られた。 この検定実験により、このカプラー化澱粉に対
してアミラーは正常に作用すると結論された。 実施例 1 ゼラチン下塗りを有する無色透明ポリ(エチレ
ンテレフタレート(PET)フイルム(厚さ
180μm)の上に以下の層順に塗布により形成し
た。 呈色反応層 A液 2―メトキシ―5―テトラデシルオキシカルボ
ニルベンゼンジアゾニウムテトラフルオロボレ
ート 4.0g N,N―ジメチルカプリル酸アミド 5.0g N,N―ジエチルラウリン酸アミド 1.0g アセトニトリル 8.0g ジクロロメタン 8.0g B液 ポリアクリルアミド(平均重合度1万8千)
(5%水溶液) 140g ゼラチン(10%水溶液) 30g p―ノニルフエノキシポリグリシドール(25%
水溶液) 2g ビス(ビニルスルホニルメチル)エーテル(1
%アセトニトリル溶液) 2g 均一に溶解されたA液をB液に添加し、ホモジ
ナイザーで充分に分散し、小型塗布機で塗布・乾
燥して呈色反応層を形成させた。呈色反応層の乾
燥後の厚さは8μmであつた。 拡散防止層 水 50ml TiO2微粉末 80g p―ノニルフエノキシポリグリシドール(25%
水溶液) 0.5g 上記混合物を完全にボールミル型粉砕機で粉砕
し次いで、ゼラチン10%水溶液を300gこれに添
加し、軽く混合した後、反応層の上に塗布・乾燥
して、拡散防止層を形成させた。拡散防止層の乾
燥後の厚さは8μmであつた。 基質層 合成例1で得られたカプラー化澱粉 10g 燐酸二カリウム 2.6g 燐酸一カリウム 2.1g 水 105g ポリアクリルアミド(5%水溶液) 80g p―ノニルフエノキシポリグリシドール(25%
水溶液) 2g 上記混合物をホモジナイザーで充分に分散し、
溶解させ、溶解液をナイロンメツシユを使用して
未分散粒を過し、次いで、拡散防止層の上に塗
布・乾燥して基質層を形成させた。基質層の乾燥
後の厚さは10μmであつた。 展開層 ポリエステルを綿の混紡布(混紡比 ポリエス
テル/綿=75/25)を次の組成の水溶液に浸し親
水化処理を行なつた。 ポリアクリルアミド(平均重合度1万8千)
(0.8%水溶液) 150g p―ノニルフエノキシポリグリシドール(25%
水溶液) 1g すでに得られた基質までを設けたPETフイル
ムの塗布面をp―ノニルフエノキシグリセリン
0.2%水溶液で湿潤させた後この親水化処理した
混紡布を圧着し乾燥して、展開層を形成させ、ア
ミラーゼ活性測定用多層化学分析フイルムを完成
した。この多層化学分析フイルムは人血清及び人
全血の30から2000ソモギ単位/dlのアミラーゼ活
性に比例した発色光学濃度を示し、アミラーゼ活
性を定量できることが明らかになつた。 実施例 2 実施例1と同様にしてPETフイルムの上に呈
色反応層を設けた。ただし呈色反応層の乾燥後の
厚さは15μmであつた。 拡散防止層 ゼラチン(10%水溶液) 30g ポリアクリルアミド(5%水溶液) 70g ノニルフエノキシポリグリシドール(25%水溶
液) 500mg 上記混合物を呈色反応層の上に乾燥後の厚さが
4μmになる様に塗布し乾燥した。 基質層 合成例1と同様の製造方法でほぼ100%のアミ
ロペクチンから成る澱粉(TAPON )からカプ
ラー化澱粉を製造し、実施例1と同様の方法で基
質層を乾燥後の厚さが10μmになるようにして塗
布して多層化学分析フイルムを得た。 別に、濃度の異なるアミラーゼ検体液として遠
心分離した唾液上澄液を7%牛血清アルブミンと
0.9%塩化ナトリウムを含む水溶液で稀釈して、
アミラーゼをそれぞれ56,120,550,1100,3500
ソモギ単位/dl含有する標準液を用意した。 多層化学分析フイルムを37℃に恒温化された熱
板に静置し、アミラーゼ検体液を10μづつ基質
層に静かに滴下した。5分後に塩化亜鉛0.1%を
含浸させた紙接触させ反応を停止させた後発色
光学濃度を測光した。アミラーゼ活性量に比例し
た発色光学濃度(OD)が各々次の様に得られ
た。 ソモギ単位/dl 56 120 550 1100 3500 OD 0.35 0.45 0.53 1.04 1.27 このアミラーゼ含有量とODとの関係をグラフ
上にプロツトしたところ、この多層化学分析フイ
ルムを用いてアミラーゼ含有量を定量できること
が明らかになつた。 実施例 3 実施例1と同様にして呈色反応層、拡散防止
層、基質層を順次塗布によりPETフイルム上に
形成した。次いで展開層としてメンブレンフイル
ターであるフジミクロフイルター FM―500を
実施例1と同様の方法で圧着させ、アミラーゼ分
析用多層化学分析フイルムを調製した。 市販の酵素標準血清を実施例2と同様の方法で
適度に稀釈した唾液を添加して得た各種アミラー
ゼ濃度標準液を調製した。各標準液のアミラーゼ
活性は市販アミラーゼ活性測定試薬フアルマシア
ダイアグノステイツク社のブルースターチ法で検
定したところ、各々36,61,136,236,530,
856,1533,2964ソモギ単位/dlであつた。 各標準液を10μづつ展開層に付着させ次いで
37℃で10分間インクベーシヨンした。次いで発色
光学濃度を測定したところアミラーゼ活性にほぼ
比例する値を得た。 ソモギ単位/dl 36 61 136 236 OD 0.30 0.35 0.43 0.53 ソモギ単位/dl 530 856 1533 2964 OD 0.68 0.87 1.06 1.25 この結果から、この多層化学分析フイルムを用
いてアミラーゼ活性を定量できることが明らかに
なつた。 実施例 4 呈色反応層を形成させるために次の組成でスピ
ンナーコーテイングしたほかは実施例1と同様に
して多層化学分析フイルムを調製した。 2―メトキシ―5―テトラデシルオキシカルボ
ニルベンゼンジアゾニウムテトラフルオロボレ
ート 100mg ジアセチルセルロース 100mg メチレンクロリド 5g この多層分析フイルムに唾液の50倍稀釈液を付
着させ40℃で30分間インクベートした後測定した
ところ、実施例1と同様に発色光学濃度とアミラ
ーゼ活性との関係が得られた。 実施例 5 カプラー化澱粉として4―〔p―(ナトリウム
スルホナト)アニリノ〕―6―〔3―p―(ナト
リウムスルホナト)フエニル―4,4―ジブロモ
ロ―2―ピラゾリン―5―オン―3―イルアミ
ノ〕―s―トリアジン―2―イル基が結合したコ
ーンスターチを基質層に用い、色原体化合物とし
て1―(2,4―ジ―t―アミルフエノキシ)―
2―オキソ―6―(4―アミノ―2―メチルフエ
ニル)―3,6―ジアザオクタンを呈色反応層に
用いて実施例2と同様にしてアミラーゼ活性定量
用多層分析フイルムを調製した。この多層分析フ
イルムはアミラーゼ活性にほぼ比例してマゼンタ
色に発色し、アミラーゼ活性を定量できることが
明らかになつた。
[Table] When similar assay experiments were carried out with couplered starches having different binding ratios to the reactive coupler glucose units, the optical densities of the supernatants corresponding to test tube A varied over a wide range of values from 0.23 to 1.9. It was done. Through this verification experiment, it was concluded that amylase acts normally on this couplered starch. Example 1 Colorless transparent poly(ethylene terephthalate (PET) film (thickness
180 μm) by coating in the following layer order. Color reaction layer A solution 2-methoxy-5-tetradecyloxycarbonylbenzenediazonium tetrafluoroborate 4.0g N,N-dimethylcaprylic acid amide 5.0g N,N-diethyllauric acid amide 1.0g acetonitrile 8.0g dichloromethane 8.0g B Liquid polyacrylamide (average degree of polymerization 18,000)
(5% aqueous solution) 140g Gelatin (10% aqueous solution) 30g p-nonylphenoxy polyglycidol (25%
aqueous solution) 2g bis(vinylsulfonylmethyl)ether (1
% acetonitrile solution) 2g The uniformly dissolved solution A was added to solution B, sufficiently dispersed with a homogenizer, coated with a small coating machine, and dried to form a colored reaction layer. The thickness of the colored reaction layer after drying was 8 μm. Diffusion prevention layer Water 50ml TiO 2 fine powder 80g p-nonyl phenoxy polyglycidol (25%
Aqueous solution) 0.5g The above mixture was completely ground with a ball mill type grinder, then 300g of 10% gelatin aqueous solution was added to this, mixed lightly, and then applied and dried on the reaction layer to form a diffusion prevention layer. I let it happen. The thickness of the diffusion prevention layer after drying was 8 μm. Substrate layer Coupled starch obtained in Synthesis Example 1 10g Dipotassium phosphate 2.6g Monopotassium phosphate 2.1g Water 105g Polyacrylamide (5% aqueous solution) 80g p-nonylphenoxy polyglycidol (25%
aqueous solution) 2g The above mixture was sufficiently dispersed with a homogenizer,
The solution was dissolved, and the undispersed particles were passed through a nylon mesh, and then applied onto the diffusion prevention layer and dried to form a substrate layer. The thickness of the substrate layer after drying was 10 μm. Developing Layer A polyester/cotton blend fabric (blending ratio polyester/cotton = 75/25) was immersed in an aqueous solution having the following composition to perform hydrophilic treatment. Polyacrylamide (average degree of polymerization 18,000)
(0.8% aqueous solution) 150g p-nonylphenoxy polyglycidol (25%
Aqueous solution) 1g P-nonylphenoxyglycerin was added to the coated surface of the PET film with the substrate already obtained.
After moistening with a 0.2% aqueous solution, this hydrophilized blended fabric was pressed and dried to form a developing layer, completing a multilayer chemical analysis film for measuring amylase activity. This multilayer chemical analysis film showed a color optical density proportional to amylase activity of 30 to 2000 Somogi units/dl in human serum and human whole blood, and it was revealed that amylase activity could be quantified. Example 2 A color reaction layer was provided on a PET film in the same manner as in Example 1. However, the thickness of the color reaction layer after drying was 15 μm. Diffusion prevention layer Gelatin (10% aqueous solution) 30g Polyacrylamide (5% aqueous solution) 70g Nonylphenoxypolyglycidol (25% aqueous solution) 500mg The above mixture was placed on the coloring reaction layer so that the thickness after drying was
It was applied to a thickness of 4 μm and dried. Substrate layer Coupled starch was produced from starch (TAPON) consisting of almost 100% amylopectin using the same method as in Synthesis Example 1, and the substrate layer had a thickness of 10 μm after drying using the same method as in Example 1. A multilayer chemical analysis film was obtained by coating in this manner. Separately, the centrifuged saliva supernatant was mixed with 7% bovine serum albumin as an amylase sample solution with different concentrations.
diluted with an aqueous solution containing 0.9% sodium chloride,
Amylase 56, 120, 550, 1100, 3500 respectively
A standard solution containing Somogi units/dl was prepared. The multilayer chemical analysis film was placed on a hot plate kept at 37°C, and 10μ of the amylase sample solution was gently dropped onto the substrate layer. After 5 minutes, the mixture was brought into contact with paper impregnated with 0.1% zinc chloride to stop the reaction, and the color optical density was measured photometrically. The color optical density (OD) proportional to the amount of amylase activity was obtained as follows. Somogi units/dl 56 120 550 1100 3500 OD 0.35 0.45 0.53 1.04 1.27 When this relationship between amylase content and OD was plotted on a graph, it became clear that amylase content could be quantified using this multilayer chemical analysis film. Ta. Example 3 In the same manner as in Example 1, a color reaction layer, a diffusion prevention layer, and a substrate layer were formed on a PET film by sequential coating. Next, a membrane filter, Fuji Micro Filter FM-500, was pressed as a developing layer in the same manner as in Example 1 to prepare a multilayer chemical analysis film for amylase analysis. Various amylase concentration standard solutions were prepared by adding saliva to a commercially available enzyme standard serum diluted appropriately in the same manner as in Example 2. The amylase activity of each standard solution was assayed using a commercially available amylase activity measuring reagent, Pharmacia Diagnostics' blue starch method, and the results were 36, 61, 136, 236, 530,
It was 856, 1533, 2964 Somogi units/dl. Apply 10μ of each standard solution to the developing layer and then
Incubation was carried out for 10 minutes at 37°C. Next, when the color optical density was measured, a value almost proportional to amylase activity was obtained. Somogi units/dl 36 61 136 236 OD 0.30 0.35 0.43 0.53 Somogi units/dl 530 856 1533 2964 OD 0.68 0.87 1.06 1.25 These results revealed that amylase activity could be quantified using this multilayer chemical analysis film. Example 4 A multilayer chemical analysis film was prepared in the same manner as in Example 1, except that spinner coating was performed with the following composition to form a color reaction layer. 2-Methoxy-5-tetradecyloxycarbonylbenzenediazonium tetrafluoroborate 100mg Diacetyl cellulose 100mg Methylene chloride 5g A 50-fold dilution of saliva was attached to this multilayer analysis film, and the measurement was carried out after incubation at 40°C for 30 minutes. Similar to Example 1, the relationship between color optical density and amylase activity was obtained. Example 5 4-[p-(sodium sulfonato)anilino]-6-[3-p-(sodium sulfonato)phenyl-4,4-dibromo-2-pyrazolin-5-one-3- as couplerized starch [ylamino]-s-triazin-2-yl group-bonded cornstarch was used as the substrate layer, and 1-(2,4-di-t-amylphenoxy)- was used as the chromogen compound.
A multilayer analytical film for quantifying amylase activity was prepared in the same manner as in Example 2 using 2-oxo-6-(4-amino-2-methylphenyl)-3,6-diazaoctane in the coloring reaction layer. It was revealed that this multilayer analysis film developed a magenta color approximately in proportion to amylase activity, and that amylase activity could be quantified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の多層化学分析材
料の断面概念図である。第1図は光透過性水不透
過性支持体10の上に色原体化合物を含む呈色反
応層20、色素形成基を有する非拡散性基質を含
む基質層50がこの順に設けられた構成の多層化
学分析材料の断面概念図である。第2図は拡散防
止層30が呈色反応層20と基質層50の間に設
けられた構成の多層化学分析材料の断面概念図で
ある。第3図は第2図に示した構成の多層化学分
析材料の基質層の上に更に水性試料溶液の均一展
開を目的とした展開層70が設けられた構成の多
層化学分析材料の断面概念図である。第4図は第
3図に示した構成の多層化学分析材料の拡散防止
層30のかわりに光遮蔽層40が設けられた構成
の多層化学分析材料の断面概念図である。 第1図ないし第4図において番号は次のものを
表わす。10…光透過性水不透過性支持体、20
…呈色反応層、30…拡散防止層、40…光遮蔽
層、50…基質層、70…展開層。
1 to 4 are conceptual cross-sectional views of the multilayer chemical analysis material of the present invention. FIG. 1 shows a configuration in which a coloring reaction layer 20 containing a chromogen compound and a substrate layer 50 containing a non-diffusible substrate having a dye-forming group are provided in this order on a light-transmitting and water-impermeable support 10. FIG. 2 is a cross-sectional conceptual diagram of a multilayer chemical analysis material. FIG. 2 is a conceptual cross-sectional view of a multilayer chemical analysis material in which a diffusion prevention layer 30 is provided between a color reaction layer 20 and a substrate layer 50. FIG. 3 is a cross-sectional conceptual diagram of a multilayer chemical analysis material configured as shown in FIG. 2, in which a spreading layer 70 for the purpose of uniformly spreading an aqueous sample solution is further provided on the substrate layer of the multilayer chemical analysis material shown in FIG. It is. FIG. 4 is a conceptual cross-sectional view of a multilayer chemical analysis material having a structure in which a light shielding layer 40 is provided in place of the diffusion prevention layer 30 of the multilayer chemical analysis material having the structure shown in FIG. In FIGS. 1 to 4, the numbers represent the following: 10...Light-transparent water-impermeable support, 20
...Coloring reaction layer, 30...Diffusion prevention layer, 40...Light shielding layer, 50... Substrate layer, 70... Development layer.

Claims (1)

【特許請求の範囲】[Claims] 1 光透過性水不透過性支持体の上に少なくとも
二つの試薬層が積層されてなる多層化学分析材料
において、前記二つの試薬層が(a)実質的に無色で
後記する色原体化合物と反応して色素を形成しう
る色素形成反応基を有し、被検物質の作用により
前記色素形成反応基を有し実質的に無色の拡散性
化合物を生成しうる非拡散性基質を含んでなる基
質層、および(b)前記色素形成反応基と反応して色
素を形成しうる色原体化合物を含んでなる呈色反
応層よりなることを特徴とする多層化学分析材
料。
1. A multilayer chemical analysis material in which at least two reagent layers are laminated on a light-transparent water-impermeable support, in which the two reagent layers contain (a) a substantially colorless chromogen compound as described below; It has a dye-forming reactive group capable of reacting to form a dye, and comprises a non-diffusible substrate capable of producing a substantially colorless diffusible compound having said dye-forming reactive group by the action of a test substance. A multilayer chemical analysis material comprising: a substrate layer; and (b) a color-forming reaction layer comprising a chromogen compound capable of reacting with the dye-forming reactive group to form a dye.
JP11554680A 1980-08-22 1980-08-22 TASOKAGAKUBUNSEKIZAIRYO Expired - Lifetime JPH0229986B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11554680A JPH0229986B2 (en) 1980-08-22 1980-08-22 TASOKAGAKUBUNSEKIZAIRYO
DE19813133218 DE3133218A1 (en) 1980-08-22 1981-08-21 MULTILAYER CHEMICAL ANALYZING ELEMENT
GB8125648A GB2085159B (en) 1980-08-22 1981-08-21 Multilayer element for use in quantitative chemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11554680A JPH0229986B2 (en) 1980-08-22 1980-08-22 TASOKAGAKUBUNSEKIZAIRYO

Publications (2)

Publication Number Publication Date
JPS5740649A JPS5740649A (en) 1982-03-06
JPH0229986B2 true JPH0229986B2 (en) 1990-07-03

Family

ID=14665205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11554680A Expired - Lifetime JPH0229986B2 (en) 1980-08-22 1980-08-22 TASOKAGAKUBUNSEKIZAIRYO

Country Status (3)

Country Link
JP (1) JPH0229986B2 (en)
DE (1) DE3133218A1 (en)
GB (1) GB2085159B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390343A (en) * 1981-07-06 1983-06-28 Miles Laboratories, Inc. Multilayer analytical element having an impermeable radiation diffusing and blocking layer
JP2546981B2 (en) * 1982-09-07 1996-10-23 コニカ株式会社 Multilayer analysis element
JPS59120957A (en) * 1982-12-28 1984-07-12 Fuji Photo Film Co Ltd Multi-layered analyzing element
JPS59143959A (en) * 1983-02-07 1984-08-17 Fuji Photo Film Co Ltd Dry analytical element
JPS59145965A (en) * 1983-02-09 1984-08-21 Fuji Photo Film Co Ltd Analysis element for quantitative determination of bilirubin
JPS6010171A (en) * 1983-06-30 1985-01-19 Fuji Photo Film Co Ltd Multilayer analysis element
JPS6058099A (en) * 1983-09-12 1985-04-04 Konishiroku Photo Ind Co Ltd Element for dry analysis of alpha-amylase
JPS60222770A (en) * 1984-04-19 1985-11-07 Fuji Photo Film Co Ltd Integral multi-layer analysis element
JPS60222769A (en) * 1984-04-19 1985-11-07 Fuji Photo Film Co Ltd Integral multi-layer analysis element
US4806311A (en) * 1985-08-28 1989-02-21 Miles Inc. Multizone analytical element having labeled reagent concentration zone
US4806312A (en) * 1985-08-28 1989-02-21 Miles Inc. Multizone analytical element having detectable signal concentrating zone
JPH0750114B2 (en) * 1986-03-17 1995-05-31 富士写真フイルム株式会社 Analysis method using immunoassay instrument
JPH0664056B2 (en) * 1987-04-16 1994-08-22 富士写真フイルム株式会社 Integrated multi-layer analytical element for the determination of ammonia-producing substances
DE3852166T2 (en) * 1987-09-30 1995-04-06 Fuji Photo Film Co Ltd Analytical device for enzyme immunological tests.
JPH0191795A (en) * 1987-10-01 1989-04-11 Fuji Photo Film Co Ltd Analytical element
ATE139839T1 (en) * 1988-01-21 1996-07-15 Boehringer Mannheim Corp ARRANGEMENT FOR DETERMINING AN ANALYTE AND METHOD THEREOF
EP0347839B1 (en) * 1988-06-24 1994-09-28 Fujirebio Kabushiki Kaisha Dry-type analytical element for immunoassay
WO2003060517A2 (en) * 2002-01-15 2003-07-24 Bayer Healthcare Llc Diffusable adhesive composition for multi-layered dry reagent devices
US7713474B2 (en) 2002-01-15 2010-05-11 Siemens Healthcare Diagnostics Inc. Liquid permeable composition in dry reagent devices
CN101076601B (en) 2004-12-13 2013-11-13 拜尔保健有限公司 Size self-limiting compositions and test devices for measuring analytes in biological fluids
US9297804B2 (en) 2007-05-01 2016-03-29 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Assay and kit and device for removing amylase from body fluids
ES2818198T3 (en) 2015-05-26 2021-04-09 Koebenhavns Univ Ku Enzyme Activity Assay System and Devices
CN113533312A (en) * 2020-04-20 2021-10-22 杭州微策生物技术股份有限公司 Photochemical POCT (point of care testing) all-in-one test card

Also Published As

Publication number Publication date
DE3133218A1 (en) 1982-05-06
JPS5740649A (en) 1982-03-06
GB2085159B (en) 1984-07-25
GB2085159A (en) 1982-04-21

Similar Documents

Publication Publication Date Title
JPH0229986B2 (en) TASOKAGAKUBUNSEKIZAIRYO
CA1095819A (en) Element for analysis of liquids
US4069017A (en) Colorimetric assay for bilirubin
JPH0665987B2 (en) Analysis element
CA1093439A (en) Assay for bilirubin
JPH0230466B2 (en)
EP1037048A2 (en) Quantitative analysis of glucose or cholesterol in whole blood
JPH0525069B2 (en)
JPS5818628B2 (en) Ittsutai Kei Eki Taibun Sekiyouso
JPH01254867A (en) Dry type whole blood analysis element
JPH0527399B2 (en)
JPS6010171A (en) Multilayer analysis element
EP0114403B1 (en) Multilayer analytical element
JPS60115863A (en) Element for analysis containing reflecting particle
US5266460A (en) Method of preparing immunological analytical element
US4729948A (en) Dry analytical element for α-amylase
EP0791829A2 (en) Test apparatus for assaying a component in a liquid sample
JPH0623759B2 (en) Whole blood analysis element
JPS62298A (en) Dry multi-layer analytical element
USH600H (en) Whole blood analytical element and method of analyzing whole blood using the same
EP0313858A2 (en) Analytical element
JPS633263A (en) Multiple zone or multilayer testing tool reversibly fixing measuring reagent
JPH01137997A (en) Analytic element
JPS62297A (en) Multi-layer analytical element
JPS5930063A (en) Multilayer analysis element