Nothing Special   »   [go: up one dir, main page]

JPH02280836A - Preparation of catalyst for dimethyl ether synthesis - Google Patents

Preparation of catalyst for dimethyl ether synthesis

Info

Publication number
JPH02280836A
JPH02280836A JP1100307A JP10030789A JPH02280836A JP H02280836 A JPH02280836 A JP H02280836A JP 1100307 A JP1100307 A JP 1100307A JP 10030789 A JP10030789 A JP 10030789A JP H02280836 A JPH02280836 A JP H02280836A
Authority
JP
Japan
Prior art keywords
catalyst
dimethyl ether
methanol
aluminum
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1100307A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
繁 野島
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1100307A priority Critical patent/JPH02280836A/en
Publication of JPH02280836A publication Critical patent/JPH02280836A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the title catalyst which suppresses reactions to produce by-products by precipitating a composite hydroxide of copper, zinc, and aluminum on a metal oxide or hydroxide carrier and stabilizing by sintering. CONSTITUTION:A composite hydroxide of copper, zinc, and aluminum as an active component for methanol synthesis is precipitated on an oxide or a hydroxide of aluminum, titanium, etc., having a methanol dehydration activity. Then, the precipitation product is filtered and sintered for stabilization. A catalyst prepared by this method accelerates methanol synthesis reaction and methanol dehydration reaction and suppresses by-product formation in the dehydration reaction in synthesis of dimethyl ether from CO and H2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素及び−酸化炭素よりジメチルエーテルを製
造する触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a catalyst for producing dimethyl ether from hydrogen and carbon oxide.

〔従来の技術〕[Conventional technology]

一般にCO,H,等の合成ガスよりガソリンを合成する
プロセスは未だ十分確立きれたものでなく、多くの問題
点を有している。例えば、F−Tプロセスは生成物は広
範囲にわたって生成するため、ガソリン留分を得るため
には生成物を改質する必要があり、さらに、MTGプロ
セス(合成ガス→メタノール→ガソリン)はメタノール
合成が熱力学的平部支配のためメタノール収率が低い等
の問題点を有している。−万、反応中間体としてジメチ
ルエーテルを経由するガソリン合成は、合成ガスのジメ
チルエーテル転換反応が熱力学的平衡支配に縛られず、
高収率でジメチルエーテルを生成することができる九め
、近年注目されているプロセスである。
Generally, the process of synthesizing gasoline from synthesis gas such as CO, H, etc. has not yet been fully established and has many problems. For example, in the FT process, products are produced over a wide range, so it is necessary to reform the products in order to obtain a gasoline fraction, and in addition, in the MTG process (synthesis gas → methanol → gasoline), methanol synthesis is It has problems such as low methanol yield due to thermodynamic plateau control. - In gasoline synthesis via dimethyl ether as a reaction intermediate, the dimethyl ether conversion reaction of synthesis gas is not bound by thermodynamic equilibrium control;
It is a process that has been attracting attention in recent years because it can produce dimethyl ether in high yield.

一般に、CO%H,よりメタノールを製造する触媒は鋼
−亜鉛系等広く仰られている。一方、 Co。
In general, catalysts for producing methanol from CO%H are widely referred to as steel-zinc systems. On the other hand, Co.

H,よりジメチルエーテル転換反応する触媒はF−T反
応用触媒が挙げられるが、選択性がよくなく寿命もあま
Vない。さらに、ジメチルエーテルはメタノール全脱水
することによって製造されるため、メタノール合成触媒
とメタノール脱水触媒を混合する方法が挙げられるが%
C析出等の副反応により触媒寿命が短い等の問題点を抱
えており、現状触媒として実用的ではない。
Catalysts for converting H into dimethyl ether include FT reaction catalysts, but they have poor selectivity and short lifespans. Furthermore, since dimethyl ether is produced by completely dehydrating methanol, one method is to mix a methanol synthesis catalyst and a methanol dehydration catalyst.
It has problems such as a short catalyst life due to side reactions such as C precipitation, and is currently not practical as a catalyst.

〔発明が解決しようとする昧題〕[The problem that the invention attempts to solve]

前記混合触媒が劣化する原因として、メタノール合成触
媒とメタノール脱水触媒の最適反応条件が異なる次め、
同一反応器内で両触媒を混合し、メタノール合成反応と
メタノール脱水反応の逐次反応により Co、島からジ
メチルエーテルt−S造する場合、ジメチルエーテルの
分解反応やF−T反応等の副反応が顕著に生じ、C析出
やワックス付着等により急激に触媒が劣化すると考えら
れる。
The reasons for the deterioration of the mixed catalyst are that the optimal reaction conditions of the methanol synthesis catalyst and the methanol dehydration catalyst are different;
When both catalysts are mixed in the same reactor and dimethyl ether t-S is produced from Co and islands through the sequential reaction of methanol synthesis reaction and methanol dehydration reaction, side reactions such as dimethyl ether decomposition reaction and F-T reaction are noticeable. It is thought that the catalyst deteriorates rapidly due to C precipitation, wax adhesion, etc.

不発明は上記技術水準に鑑み、Co、H,より°ジメチ
ルエーテルを製造する場合、メタノール合成反応とメタ
ノール脱水反応の逐次反応をより速く行わせ、特に後者
反応の際生じる副反応を抑制しうる触媒の製造法を提供
しようとするものである。
In view of the above-mentioned state of the art, the present invention has been made to provide a catalyst that allows the sequential reactions of methanol synthesis reaction and methanol dehydration reaction to occur more quickly when dimethyl ether is produced from Co, H, and can particularly suppress side reactions occurring during the latter reaction. The aim is to provide a manufacturing method for

〔線題を解決するための手段〕[Means for solving line problems]

本発明は水素および一酸化炭素からジメチルエーテルを
合成する触媒の製造法において、メタノールの脱水活性
を有する金Jf411!化物筐たは水酸化物の担体上に
、メタノール合成活性成分である鋼、亜鉛、アルミニウ
ムの複合水酸化物を沈殿生成させ、焼成安定化すること
を特徴とするジメチルエーテル合成用触媒の製造法であ
る。
The present invention relates to a method for producing a catalyst for synthesizing dimethyl ether from hydrogen and carbon monoxide, in which gold Jf411! has methanol dehydration activity! A method for producing a catalyst for dimethyl ether synthesis, which comprises precipitating a composite hydroxide of steel, zinc, and aluminum, which is an active ingredient in methanol synthesis, on a compound case or a hydroxide carrier and stabilizing it by calcination. be.

本発明の上記触媒製造の際、担体として、アルミニウム
、チタニウム、スズ、鉄、ジルコニウムの中から選ばれ
友少なくとも1檀以上の酸化物ま次は水酸化物を使用す
ることが好ましい。
In producing the catalyst of the present invention, it is preferable to use at least one oxide or hydroxide selected from aluminum, titanium, tin, iron, and zirconium as a carrier.

〔作 用〕[For production]

本発明によって、メタノール合成反応条件とメタノール
脱水反応条件の最is件が同一である触媒が製造しうる
According to the present invention, it is possible to produce a catalyst in which the methanol synthesis reaction conditions and the methanol dehydration reaction conditions are the same.

本発明の触媒の製造法をや\具体的に説明する。The method for producing the catalyst of the present invention will be explained in more detail.

1ず、メタノール脱水反応性を有するtl!触媒の酸化
物もしくは水酸化物を担体とし、銅、亜鉛、アルミニウ
ム等のメタノール合成活性成分を含む酸性水浴液(硝酸
塩、硫酸塩、塩化物。
1. tl that has methanol dehydration reactivity! An acidic water bath solution that uses a catalyst oxide or hydroxide as a carrier and contains methanol synthesis active ingredients such as copper, zinc, and aluminum (nitrates, sulfates, and chlorides).

酢酸塩などの水g液)に上記担体を加え、炭酸ナトリウ
ム、酸性炭酸ナトリウム、アンモニア、苛性ソーダ水浴
欣等のアルカリ水浴液を加えることによって行われる。
This is carried out by adding the above-mentioned carrier to a water solution such as acetate, and adding an alkaline water bath solution such as sodium carbonate, acidic sodium carbonate, ammonia, or caustic soda water bath solution.

この際、上aピ担体が沈殿生成の時の核となる。At this time, the upper api carrier becomes the core during precipitation formation.

なお、本発明の触媒の製造に用いる酸触媒の酸化物もし
くは水酸化物はできるだけ微粒子のものが好ましい。さ
らに、銅、亜鉛、アルミニウム等の各複合水酸化物を酸
性担体上に沈殿させる場合、できるだけ基体の細孔内部
にも沈殿物が析出し、基体の全表面層を沈殿物が覆うよ
うにすることが好ましい。
The oxide or hydroxide of the acid catalyst used in the production of the catalyst of the present invention is preferably as fine as possible. Furthermore, when precipitating composite hydroxides of copper, zinc, aluminum, etc. on an acidic carrier, the precipitates should be deposited as much as possible inside the pores of the substrate, so that the entire surface layer of the substrate is covered with the precipitates. It is preferable.

活性成分の銅、亜鉛、アルミニウムの量的関係は原子比
で鋼100に対し、亜鉛400〜10、アルミニウム1
00〜2のものが好ましい。
The quantitative relationship of the active ingredients copper, zinc, and aluminum is as follows: atomic ratio of 100 parts for steel, 400 to 10 parts for zinc, and 1 part for aluminum.
00 to 2 are preferred.

以下の実施例にて本発明触媒を詳述する。The catalyst of the present invention will be explained in detail in the following examples.

〔実施例1〕 硝酸銅(Cu(NO3)2 ・3H20:α5 mol
 〕、硝酸亜鉛[Zn(Nose、 −6H,O:α2
25 mob ]、硝酸アルミニウム(ht(Nos)
s :αO75mol ) f同一の水2tT/C静か
し、得られた酸性水浴液に300メツシユ以下に微粉砕
した7 −k1203をα1mo1加えて攪拌し、この
懸濁酸性水溶液をA欣とする。
[Example 1] Copper nitrate (Cu(NO3)2 ・3H20: α5 mol
], zinc nitrate [Zn(Nose, -6H,O:α2
25 mob], aluminum nitrate (ht(Nos)
s: αO 75 mol) f 2 t T/C of the same water. To the obtained acidic water bath solution, α 1 mol of 7-k1203 finely ground to 300 mesh or less was added and stirred. This suspended acidic aqueous solution was designated as A.

一万、NalC0gを水に浴かし、IM画濃度調製し、
このアルカリ水浴液をBgとする。
10,000, soak 0g of NalC in water, adjust IM image density,
This alkaline water bath liquid is designated as Bg.

AyとB液を80℃に保ち、80℃に保持した別のビー
カーに中和時において、pH=7を保つようにAQ、B
gを一定速度にて滴下する。
Ay and B solutions were kept at 80°C, and AQ and B were placed in separate beakers kept at 80°C to maintain pH = 7 during neutralization.
g at a constant rate.

両液の滴下の際生じる沈殿物を常に撹拌し、滴下液の分
散性をよくする。滴下時間は50分とし、その後2時間
の熟成を行った。
Constantly stir the precipitate that forms during the dropping of both liquids to improve the dispersibility of the dropped liquid. The dropping time was 50 minutes, and then aging was performed for 2 hours.

熟成後、沈殿物を濾過し、Naイオン、No31オンが
検知されないよう洗浄し、100℃、24時間乾燥する
。さらに、乾燥水酸化物を300C,5時間焼成し、ジ
メチルエーテル合成用触媒に供した。この触媒を触媒a
とする。
After aging, the precipitate is filtered, washed so that Na ions and No31 ions are not detected, and dried at 100° C. for 24 hours. Furthermore, the dried hydroxide was calcined at 300C for 5 hours and used as a catalyst for dimethyl ether synthesis. This catalyst is catalyst a
shall be.

〔実施例2〕 実施例1のA液に300メツシユ以下にR粉砕したアナ
ターゼ形Tie、をα2 mol添加した以外、実施例
1と同様の調製法にてジメチルエーテル合成用触媒を調
製した。この触媒を触媒すとする。さらに、則しA液に
300メツシユ以下に微粉砕した酸化鉄(FexOs 
) s酸化スズ(Snow)、酸化ジルコニウム(Zr
O2正号晶型)を各jr (L 1mol、(L2mO
1,[L2mol添加して実施例1と同様に調製し、触
媒C1触媒d、触媒eを得た。
[Example 2] A catalyst for dimethyl ether synthesis was prepared in the same manner as in Example 1, except that α2 mol of anatase form Tie ground to 300 mesh or less was added to Solution A of Example 1. Let us say that this catalyst is used as a catalyst. Furthermore, iron oxide (FexOs) finely ground to 300 mesh or less is added to liquid A.
)stin oxide (Snow), zirconium oxide (Zr
O2 positive crystal type) was added to each jr (L 1mol, (L2mO
The catalyst was prepared in the same manner as in Example 1 by adding 2 mol of 1, [L] to obtain catalyst C1, catalyst d, and catalyst e.

〔実施例3〕 硝fRm<α5 mol )、硝酸亜鉛(12mob 
)、硝酸アルミニラA ((L 1 mob ) 1に
同一の水2tに溶かし、 r−Az、osを冷加した酸
性水浴液A′液金調調製、実施例1と同様の手法にて調
製し次触媒ft−得次。さらに、硝酸鋼(12mob 
)、硝酸亜鉛([L2mol)、硝酸アルミニウム(α
2mob )を使用し、実施例1と同様の手法にて触媒
gt−1また、硝酸鋼(αS 5 mob )、硝酸亜
鉛((L 1 mob )%硝酸アルミニウム(105
mob ) t−使用し、実施例1と同様の手法にて触
媒りをy4製した。
[Example 3] Nitrate fRm<α5 mol), zinc nitrate (12mob
), Aluminum nitrate A ((L 1 mob) 1 was dissolved in 2 tons of the same water, and r-Az, os was cooled to prepare an acidic water bath solution A' in the same manner as in Example 1. Next catalyst ft-Tokuji.Furthermore, nitric acid steel (12mob
), zinc nitrate ([L2mol), aluminum nitrate (α
Catalyst gt-1 was prepared in the same manner as in Example 1 using nitrate steel (αS 5 mob ), zinc nitrate ((L 1 mob )%, aluminum nitrate (105
y4 catalyst was prepared in the same manner as in Example 1 using Mob) T-.

〔実施例4〕 実施例1と同様な調製法にて、A液にγ−At、O。[Example 4] Using the same preparation method as in Example 1, γ-At and O were added to solution A.

を(L 2 mol 、 (L 05 mob添加した
酸性懸濁at調製して得られた触媒1、jを得た。
(L 2 mol, (L 05 mob) was added to an acidic suspension to obtain catalyst 1,j.

〔実施例5〕 実施例1と同様の調製法にて水酸化アルミニウム(At
(oH)m )  をα1 mol、α2 m04添加
した酸性懸濁液を調製して、触媒に、tを得た。
[Example 5] Aluminum hydroxide (At
An acidic suspension containing α1 mol and α2 m04 of (oH)m) was prepared to give t to the catalyst.

〔比較例1〕 Cu0−ZrO−A120H系メタノ一ル合成触媒(C
u:Zn:At=100ニア5:25(原子比)〕とr
−At2o3であるメタノール脱水触媒’i70:30
(重量比)の割合で300メツシユ以下の微粉末を混合
し、触媒mを得た。
[Comparative Example 1] Cu0-ZrO-A120H-based methanol synthesis catalyst (C
u:Zn:At=100 near 5:25 (atomic ratio)] and r
- Methanol dehydration catalyst which is At2o3'i70:30
(weight ratio) of fine powders of 300 mesh or less were mixed to obtain catalyst m.

〔実験例1〕 実施例1〜5、比較例1にて得られ友触媒a〜mのジメ
チルエーテル合成反応の活性評価試験を下記の条件にて
行つ友。
[Experimental Example 1] An activity evaluation test for the dimethyl ether synthesis reaction of the friend catalysts a to m obtained in Examples 1 to 5 and Comparative Example 1 was conducted under the following conditions.

GH8V    8000h” 反応温度 250℃ 反応圧力 50 kg/ctn”G 触媒は16〜28メツシユに螢粒し念ものを2 cc 
 マイクロリアクターに充填し%H,3%/Nlガスに
て還元処理した後、原料ガスを供給し、初期活性評価を
行った。各触媒の初期活性評価結果を表1に示す。
GH8V 8000h" Reaction temperature 250℃ Reaction pressure 50 kg/ctn"G Catalyst is 16-28 mesh and 2 cc
After filling a microreactor and performing reduction treatment with %H, 3%/Nl gas, raw material gas was supplied and initial activity evaluation was performed. Table 1 shows the initial activity evaluation results for each catalyst.

上記結果より、本発明より得られた触媒a〜tは触媒m
に比べ初期CO転化率が高いことがわかる。
From the above results, catalysts a to t obtained according to the present invention are catalysts m
It can be seen that the initial CO conversion rate is higher than that of

〔実験例2〕 初期活性評価に供した触媒aと触媒mを耐久性試験用触
媒に供した。反応条件は下記の通り。
[Experimental Example 2] Catalysts a and m used for initial activity evaluation were used as catalysts for durability testing. The reaction conditions are as follows.

温度 250℃、圧力50kp/cIr?G、 GH8
V 4000h−”H@/Co:2 活性結果を表2に示す。
Temperature 250℃, pressure 50kp/cIr? G, GH8
V 4000h-”H@/Co:2 The activity results are shown in Table 2.

表    2 表2に示すように本発明にて調製した触媒は従来型の混
合触媒に比べ大幅に耐久性に秀れていることがわかる。
Table 2 As shown in Table 2, it can be seen that the catalyst prepared according to the present invention is significantly more durable than the conventional mixed catalyst.

Claims (1)

【特許請求の範囲】 1、水素および一酸化炭素からジメチルエーテルを合成
する触媒の製造法において、メタノールの脱水活性を有
する金属酸化物または水酸化物の担体上に、メタノール
合成活性成分である銅、亜鉛、アルミニウムの複合水酸
化物を沈殿生成させ、焼成安定化することを特徴とする
ジメチルエーテル合成用触媒の製造法。 2、前記触媒担体の組成が、アルミニウム、チタニウム
、スズ、鉄、ジルコニウムの中から選ばれた少なくとも
1種以上の酸化物または水酸化物である特許請求の範囲
第1項記載の触媒の製造法。
[Claims] 1. In a method for producing a catalyst for synthesizing dimethyl ether from hydrogen and carbon monoxide, copper, which is an active component for methanol synthesis, is placed on a metal oxide or hydroxide carrier having methanol dehydration activity; A method for producing a catalyst for dimethyl ether synthesis, characterized by precipitating a composite hydroxide of zinc and aluminum and stabilizing it by calcination. 2. The method for producing a catalyst according to claim 1, wherein the catalyst carrier has a composition of at least one oxide or hydroxide selected from aluminum, titanium, tin, iron, and zirconium. .
JP1100307A 1989-04-21 1989-04-21 Preparation of catalyst for dimethyl ether synthesis Pending JPH02280836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100307A JPH02280836A (en) 1989-04-21 1989-04-21 Preparation of catalyst for dimethyl ether synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100307A JPH02280836A (en) 1989-04-21 1989-04-21 Preparation of catalyst for dimethyl ether synthesis

Publications (1)

Publication Number Publication Date
JPH02280836A true JPH02280836A (en) 1990-11-16

Family

ID=14270516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100307A Pending JPH02280836A (en) 1989-04-21 1989-04-21 Preparation of catalyst for dimethyl ether synthesis

Country Status (1)

Country Link
JP (1) JPH02280836A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010069A1 (en) * 1991-11-11 1993-05-27 Nkk Corporation Process for producing dimethyl ether
JPH09502792A (en) * 1993-09-14 1997-03-18 セマテック インコーポレーテッド Integrated building and transport structures for production under extremely clean conditions
US5753716A (en) * 1997-02-21 1998-05-19 Air Products And Chemicals, Inc. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process
US6147125A (en) * 1996-05-13 2000-11-14 Nkk Corporation Method and apparatus for producing dimethyl ether
US6800665B1 (en) 1996-05-13 2004-10-05 Jfe Holdings, Inc. Method for producing dimethyl ether
JP2008000699A (en) * 2006-06-23 2008-01-10 Sumitomo Chemical Co Ltd Catalyst for producing dimethyl ether
CN100395023C (en) * 2004-12-17 2008-06-18 南化集团研究院 Catalyst for synthesizing copper based methanol and preparing method
CN101722002A (en) * 2008-10-10 2010-06-09 北京石油化工学院 Composite catalyst used for synthesizing dimethyl ether with carbon dioxide and preparation method and application thereof
CN101722001A (en) * 2008-10-10 2010-06-09 北京石油化工学院 Composite catalyst for dimethyl ether synthesis and preparation method and application thereof
JP2015511880A (en) * 2012-02-15 2015-04-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Catalytic activators for the synthesis of dimethyl ether from synthesis gas.
CN104646049A (en) * 2013-11-20 2015-05-27 正大能源材料(大连)有限公司 Preparation method of catalyst for directly synthesizing dimethyl ether from synthesis gas
CN107252691A (en) * 2017-06-17 2017-10-17 常州福隆工控设备有限公司 A kind of preparation method of synthesizing methanol catalyst

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010069A1 (en) * 1991-11-11 1993-05-27 Nkk Corporation Process for producing dimethyl ether
JPH09502792A (en) * 1993-09-14 1997-03-18 セマテック インコーポレーテッド Integrated building and transport structures for production under extremely clean conditions
US7033972B2 (en) 1996-05-13 2006-04-25 Jfe Holdings, Inc. Catalyst for producing dimethyl ether, method for producing catalyst and method for producing dimethyl ether
US6147125A (en) * 1996-05-13 2000-11-14 Nkk Corporation Method and apparatus for producing dimethyl ether
US6562306B1 (en) 1996-05-13 2003-05-13 Nkk Corporation Apparatus for producing dimethyl ether
US6800665B1 (en) 1996-05-13 2004-10-05 Jfe Holdings, Inc. Method for producing dimethyl ether
US5753716A (en) * 1997-02-21 1998-05-19 Air Products And Chemicals, Inc. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process
CN100395023C (en) * 2004-12-17 2008-06-18 南化集团研究院 Catalyst for synthesizing copper based methanol and preparing method
JP2008000699A (en) * 2006-06-23 2008-01-10 Sumitomo Chemical Co Ltd Catalyst for producing dimethyl ether
JP4506729B2 (en) * 2006-06-23 2010-07-21 住友化学株式会社 Catalyst for dimethyl ether production
CN101722002A (en) * 2008-10-10 2010-06-09 北京石油化工学院 Composite catalyst used for synthesizing dimethyl ether with carbon dioxide and preparation method and application thereof
CN101722001A (en) * 2008-10-10 2010-06-09 北京石油化工学院 Composite catalyst for dimethyl ether synthesis and preparation method and application thereof
JP2015511880A (en) * 2012-02-15 2015-04-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Catalytic activators for the synthesis of dimethyl ether from synthesis gas.
CN104646049A (en) * 2013-11-20 2015-05-27 正大能源材料(大连)有限公司 Preparation method of catalyst for directly synthesizing dimethyl ether from synthesis gas
CN107252691A (en) * 2017-06-17 2017-10-17 常州福隆工控设备有限公司 A kind of preparation method of synthesizing methanol catalyst

Similar Documents

Publication Publication Date Title
US3923694A (en) Methanol synthesis catalyst
JP4062647B2 (en) Catalyst for steam reforming of methanol
CA1144911A (en) Catalyst and method for producing the catalyst
EP0146165B1 (en) Modified copper- and zinc-containing catalyst and process for producing methanol using said catalyst
US4305842A (en) Preparation of improved catalyst composition
EP0742193B1 (en) Process for manufacturing methanol and process for manufacturing catalyst for methanol synthesis
CN111330586A (en) Novel ethynylation catalyst and method for producing same
JPS62210057A (en) Catalyst and its production
JPH02280836A (en) Preparation of catalyst for dimethyl ether synthesis
US4386017A (en) Preparation of improved catalyst composition
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
EP0057796B1 (en) Catalyst, catalyst support and oxychlorination process
TW592810B (en) Catalyst for dehydrogenation of cyclohexanol and method for preparation thereof
JPH0230740B2 (en)
JP4467675B2 (en) Dimethyl ether synthesis catalyst and synthesis method
JPH10216522A (en) Catalyst for methanol synthesis
JP3943648B2 (en) Methanol synthesis method
NO312179B1 (en) Catalyst with high dispersion distribution of active components and process for their preparation
JP4505127B2 (en) Production method of reforming catalyst and production method of synthesis gas using the same
JPS647974B2 (en)
AU2002309821B2 (en) Fischer-Tropsch catalyst prepared with a high purity iron precursor
US4062899A (en) Butynediol manufacture
JP2695663B2 (en) Method for producing catalyst for methanol synthesis
US4689317A (en) Catalyst precursor for ammonia synthesis and process for its production
JPS6339287B2 (en)