JPH0228541A - Optical concentration detector - Google Patents
Optical concentration detectorInfo
- Publication number
- JPH0228541A JPH0228541A JP17936488A JP17936488A JPH0228541A JP H0228541 A JPH0228541 A JP H0228541A JP 17936488 A JP17936488 A JP 17936488A JP 17936488 A JP17936488 A JP 17936488A JP H0228541 A JPH0228541 A JP H0228541A
- Authority
- JP
- Japan
- Prior art keywords
- light
- window
- contamination
- light emitting
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 8
- 238000011109 contamination Methods 0.000 claims abstract description 23
- 238000001514 detection method Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 abstract description 17
- 230000035945 sensitivity Effects 0.000 abstract description 5
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 abstract description 4
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/43—Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
A、産業上の利用分野
本発明は、容器内の液体等の濃度を光学的に検出する装
置に関し、特に容器の窓の内面側の汚染を検出できる機
能を備えた装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a device for optically detecting the concentration of liquid, etc. in a container, and in particular has a function of detecting contamination on the inner surface of the window of the container. It is related to the device.
B1発明の概要
本発明は容器内の液体等の濃度を光学的に検出する装置
において、
光路を形成する容器の窓の外面側から別途光を照射し、
その全反射光の光量を検出することにょって、
窓面の汚染状況をリアルタイムに高感度で測定できるよ
うにしたものである。B1 Summary of the Invention The present invention provides a device for optically detecting the concentration of a liquid, etc. in a container, in which light is separately irradiated from the outer surface of a window of the container that forms an optical path;
By detecting the amount of totally reflected light, the contamination status of window surfaces can be measured in real time with high sensitivity.
C0従来の技術
現在タンク内の濃度測定は、光をタンク内液体中を通過
させ、その受光量を検出することによって行われている
。ところが、光が通過する窓面か液体中の汚物により汚
染されて受光量低下が起こり、この結果測定誤差が生じ
、正確な濃度測定が行えなくなることがしばしば起こる
。そこで窓面の汚染状況を監視し、その汚染度に応じて
濃度測定値を補正したり、あるいは汚染度が大きい場合
には窓面を清掃することが必要となる。このようなこと
から従来では、窓面を目視により点検するかあるいは容
器内の液体を抜いて、受光量を検出することが行われて
いた。C0 Prior Art Currently, the concentration inside a tank is measured by passing light through the liquid in the tank and detecting the amount of light received. However, the window surface through which the light passes becomes contaminated with contaminants in the liquid, resulting in a decrease in the amount of light received, resulting in measurement errors and often making accurate concentration measurements impossible. Therefore, it is necessary to monitor the contamination status of the window surface and correct the measured concentration value according to the degree of contamination, or to clean the window surface if the degree of contamination is high. For this reason, conventionally, the amount of received light has been detected by visually inspecting the window surface or by draining the liquid in the container.
D1発明が解決しようとする課題
しかしながら従来の方法では液体の濃度測定を中断しな
ければならないし、またリアルタイムで監視することが
できなかった。更に目視による点検では汚染度を正確に
把握することができないし、液体を抜く方法では手間が
かかってしまう。D1 Problems to be Solved by the Invention However, in the conventional method, the measurement of the concentration of the liquid had to be interrupted, and it was not possible to monitor it in real time. Furthermore, visual inspection cannot accurately determine the degree of contamination, and the method of draining the liquid is time-consuming.
本発明の目的は、リアルタイムで窓面の汚染度を高感度
で検出することができる機能を備えた便利な光式濃度検
出装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a convenient optical concentration detection device that is capable of detecting the degree of contamination on a window surface with high sensitivity in real time.
89課題を解決するための手段
本発明は、第1の発光部よりの光を容器内に入射し、そ
の光を第1の受光部により受光して、その受光量にもと
ずいて容器内の収容物の濃度を検出する装置において、
前記容器の光路の一部を形成する窓の外面側に密接して
設けられたプリズムと、前記プリズムを通して窓に窓汚
染検出用の光を照射する第2の発光部と、前記窓にて反
射された第2の発光部よりの光を受光する第2の受光部
とを設けてなる。89 Means for Solving the Problems The present invention allows light from a first light-emitting section to enter the container, receives the light by the first light-receiving section, and detects the inside of the container based on the amount of received light. A device for detecting the concentration of a substance contained in the container includes a prism provided in close contact with the outer surface of a window forming a part of the optical path of the container, and a prism that irradiates the window with light for detecting window contamination through the prism. The light emitting device includes two light emitting sections and a second light receiving section that receives light from the second light emitting section reflected by the window.
20作用
第2の発光部よりの光を窓にて全反射するように入射す
ると、その全反射光の光量は窓の内面の汚染物により減
少するので、全反射光の受光量にもとずいて窓の内面の
汚染状況が検出できる。20 Effect When the light from the second light emitting part is incident on the window so as to be totally reflected, the amount of the total reflected light is reduced by the contaminants on the inner surface of the window, so it is not based on the amount of received total reflected light. The contamination status of the inner surface of the window can be detected.
G、実施例
第1図は本発明の実施例を示す図であり、1は液体を収
容した容器、2は窓、3は第1の発光部、31は光ファ
イバ、4は受光部である。ここまでの構成は従来と同様
のものであり、第1の発光部3よりの光、例えばヘリウ
ム−ネオンレーザ−光が窓2を介して容器l内に入光し
、ここを透過して第1の受光部4にて受光される。従っ
て窓2に汚れがなければ液体濃度と第1の受光部4の受
光量とは対応し、その受光量にもとずいて液体濃度が測
定できる。G. Embodiment FIG. 1 is a diagram showing an embodiment of the present invention, in which 1 is a container containing a liquid, 2 is a window, 3 is a first light emitting section, 31 is an optical fiber, and 4 is a light receiving section. . The configuration up to this point is the same as the conventional one, and the light from the first light emitting section 3, for example, helium-neon laser light, enters the container l through the window 2, passes through it, and enters the container l. The light is received by one light receiving unit 4. Therefore, if the window 2 is clean, the liquid concentration corresponds to the amount of light received by the first light receiving section 4, and the liquid concentration can be measured based on the amount of light received.
ここで本発明の実施例では、窓2の外面側にプリズム5
を密接させると共に、プリズム5の両側に夫々汚染検出
用の光、例えばヘリウム−ネオンレーザ−光を照射する
第2の発光部6とここよりのレーザー光の反射光を受光
する第2の受光部7とを設けている。6.は光ファイバ
である。Here, in the embodiment of the present invention, a prism 5 is provided on the outer surface side of the window 2.
A second light emitting section 6 that irradiates light for contamination detection, such as helium-neon laser light, to both sides of the prism 5, and a second light receiving section that receives reflected light of the laser light from here. 7. 6. is an optical fiber.
このような実施例では、第2の発光部6よりのレーザー
光を、窓2に対する入射角が全反射角、例えば61.7
度以上となるようにプリズム5に入光させ、その反射光
を第2の受光部7で受光して光信号に対応する電圧を図
示しないパワーメ−夕で捉える。In such an embodiment, the incident angle of the laser beam from the second light emitting unit 6 to the window 2 is a total reflection angle, for example, 61.7.
The reflected light is received by the second light receiving section 7, and the voltage corresponding to the optical signal is captured by a power meter (not shown).
この装置を用い、窓2の内面にマジックインキを塗布し
てその程度(汚染度)を、第1の発光部3よりの光を受
光した第1の受光部4の受光量にもとずいて測定しなが
ら、そのときの第2の発光部6よりの光の反射光を受光
した第2の受光部7の受光量を測定した。各受光部4,
7の受光量はパワーメータにより電圧値として捉えた。Using this device, marker ink is applied to the inner surface of the window 2, and the degree of contamination (degree of contamination) is determined based on the amount of light received by the first light receiving section 4 that receives the light from the first light emitting section 3. During the measurement, the amount of light received by the second light receiving section 7 that received the reflected light from the second light emitting section 6 at that time was measured. Each light receiving section 4,
The amount of light received in No. 7 was captured as a voltage value using a power meter.
第2図はその結果を示すデータであり、汚染度と第2の
受光部7の出力値(電圧)とは相関関係のあること力ぐ
わかる。このように汚染度が高くなるにつれれて反射光
量が減少する理由については、窓2の内面に汚染物が付
着すると、窓2の内面側の媒質の屈折率が大きくなるの
で窓を透過する光量が増えるからであると考えられる。FIG. 2 shows data showing the results, and it can be clearly seen that there is a correlation between the degree of contamination and the output value (voltage) of the second light receiving section 7. The reason why the amount of reflected light decreases as the degree of contamination increases is that when contaminants adhere to the inner surface of window 2, the refractive index of the medium on the inner surface of window 2 increases, so the amount of light that passes through the window decreases. This is thought to be due to an increase in
一方窓2を汚染させずに液体の濃度を変化させて、第2
の受光部7の出力値と液体濃度との関係を調べた。結果
は第3図に示す通りである。ただし液体濃度は第1の発
光部3及び第1の受光部4を用いて測定した。On the other hand, by changing the concentration of the liquid without contaminating the window 2,
The relationship between the output value of the light receiving section 7 and the liquid concentration was investigated. The results are shown in FIG. However, the liquid concentration was measured using the first light emitting section 3 and the first light receiving section 4.
この結果から窓2で全反射した光の光量は窓2の内面の
汚染に対して敏感であるが、液体濃度に対しては影響を
受けないことがわかる。This result shows that the amount of light totally reflected by the window 2 is sensitive to contamination on the inner surface of the window 2, but is not affected by the liquid concentration.
H6発明の効果
本発明によれば、光量濃度検出に用いる窓の汚染状況を
、窓にて全反射した光の光量を測定することによって捉
えているため、リアルタイムで窓面の汚染度を高感度で
検出することができ、従ってその検出値に応じて濃度測
定値を補正し、正確な濃度を検出することが可能になる
し、また容器内の液体を抜くといった面倒な作業が不要
になる。H6 Effects of the Invention According to the present invention, the contamination status of the window used for light intensity detection is determined by measuring the amount of light totally reflected by the window, so the degree of contamination of the window surface can be detected in real time with high sensitivity. Therefore, it is possible to correct the measured concentration value according to the detected value, thereby making it possible to detect an accurate concentration, and also eliminating the need for troublesome work such as draining the liquid from the container.
しかも構造がシンプルであり、光量であることから、現
場に電源が不要である、安全である、誘導がない等の利
点を享受できる。Moreover, since the structure is simple and the amount of light is low, it can enjoy advantages such as no need for a power source on site, safety, and no guidance.
第1図は本発明の実施例を示す構成図、第2図は第2の
受光部出力と汚染度との関係を示すデータ図、第3図は
第2の受光部出力と液体濃度との関係を示すデータ図で
ある。
■・・・容器、2・・・窓、3゜
6・・・発光部、
4゜
7・・・
受光部、5・・・プリズム。
実施例の構成図
■・・・容器
2・・・窓
3.6・・発光部
4.7・・・受光部
5・・・プリズムFIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is a data diagram showing the relationship between the output of the second light receiving section and the degree of contamination, and FIG. 3 is a diagram showing the relationship between the output of the second light receiving section and the liquid concentration. It is a data diagram showing a relationship. ■... Container, 2... Window, 3゜6... Light emitting section, 4゜7... Light receiving section, 5... Prism. Configuration diagram of the embodiment■...Container 2...Window 3.6...Light emitting section 4.7...Light receiving section 5...Prism
Claims (1)
を第1の受光部により受光して、その受光量にもとずい
て容器内の収容物の濃度を検出する装置において、 前記容器の光路の一部を形成する窓の外面側に密接して
設けられたプリズムと、このプリズムを通して前記窓に
窓汚染検出用の光を照射する第2の発光部と、前記窓に
て反射された第2の発光部よりの光を受光する第2の受
光部とを有し、第2の発光部よりの光を窓にて全反射す
るように入射し、その反射光の受光量にもとずいて窓の
内面の汚染状況を検出することを特徴とする光式濃度検
出装置。(1) A device that makes light from a first light emitting part enter the container, receives the light by a first light receiver, and detects the concentration of the contents in the container based on the amount of received light. A prism provided in close contact with the outer surface side of the window forming a part of the optical path of the container; a second light emitting unit that irradiates the window with light for detecting window contamination through the prism; and a second light receiving part that receives the light from the second light emitting part reflected by the window, and the light from the second light emitting part is incident on the window so as to be totally reflected, and the reflected light is An optical concentration detection device characterized by detecting contamination on the inner surface of a window based on the amount of light received.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17936488A JPH0228541A (en) | 1988-07-19 | 1988-07-19 | Optical concentration detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17936488A JPH0228541A (en) | 1988-07-19 | 1988-07-19 | Optical concentration detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0228541A true JPH0228541A (en) | 1990-01-30 |
Family
ID=16064561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17936488A Pending JPH0228541A (en) | 1988-07-19 | 1988-07-19 | Optical concentration detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0228541A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9109760B2 (en) | 2011-09-02 | 2015-08-18 | Soraa, Inc. | Accessories for LED lamps |
EP2793015A4 (en) * | 2012-02-13 | 2015-08-26 | Nat Univ Corp Tokyo Med & Dent | Method and device for measuring blood information |
US9761763B2 (en) | 2012-12-21 | 2017-09-12 | Soraa, Inc. | Dense-luminescent-materials-coated violet LEDs |
US9995439B1 (en) | 2012-05-14 | 2018-06-12 | Soraa, Inc. | Glare reduced compact lens for high intensity light source |
US10036544B1 (en) | 2011-02-11 | 2018-07-31 | Soraa, Inc. | Illumination source with reduced weight |
US10436422B1 (en) | 2012-05-14 | 2019-10-08 | Soraa, Inc. | Multi-function active accessories for LED lamps |
US10529902B2 (en) | 2013-11-04 | 2020-01-07 | Soraa, Inc. | Small LED source with high brightness and high efficiency |
US10693041B2 (en) | 2009-09-18 | 2020-06-23 | Soraa, Inc. | High-performance LED fabrication |
US11054117B2 (en) | 2011-09-02 | 2021-07-06 | EcoSense Lighting, Inc. | Accessories for LED lamp systems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4995676A (en) * | 1973-01-12 | 1974-09-11 | ||
JPS5255097U (en) * | 1975-10-18 | 1977-04-20 | ||
JPS62247230A (en) * | 1986-02-04 | 1987-10-28 | バイサラ・オ−ワイ | Method and device for measuring transmission of beam |
-
1988
- 1988-07-19 JP JP17936488A patent/JPH0228541A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4995676A (en) * | 1973-01-12 | 1974-09-11 | ||
JPS5255097U (en) * | 1975-10-18 | 1977-04-20 | ||
JPS62247230A (en) * | 1986-02-04 | 1987-10-28 | バイサラ・オ−ワイ | Method and device for measuring transmission of beam |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10693041B2 (en) | 2009-09-18 | 2020-06-23 | Soraa, Inc. | High-performance LED fabrication |
US10036544B1 (en) | 2011-02-11 | 2018-07-31 | Soraa, Inc. | Illumination source with reduced weight |
US9109760B2 (en) | 2011-09-02 | 2015-08-18 | Soraa, Inc. | Accessories for LED lamps |
US11054117B2 (en) | 2011-09-02 | 2021-07-06 | EcoSense Lighting, Inc. | Accessories for LED lamp systems |
EP2793015A4 (en) * | 2012-02-13 | 2015-08-26 | Nat Univ Corp Tokyo Med & Dent | Method and device for measuring blood information |
US9995439B1 (en) | 2012-05-14 | 2018-06-12 | Soraa, Inc. | Glare reduced compact lens for high intensity light source |
US10436422B1 (en) | 2012-05-14 | 2019-10-08 | Soraa, Inc. | Multi-function active accessories for LED lamps |
US9761763B2 (en) | 2012-12-21 | 2017-09-12 | Soraa, Inc. | Dense-luminescent-materials-coated violet LEDs |
US10529902B2 (en) | 2013-11-04 | 2020-01-07 | Soraa, Inc. | Small LED source with high brightness and high efficiency |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5073720A (en) | Liquid level and volume measurement device | |
JPH0228541A (en) | Optical concentration detector | |
US6620622B1 (en) | Method of polarimetry and method of urinalysis using the same | |
SE8800686D0 (en) | PROCEDURE AND DEVICE FOR DETERMINING THE CONCENTRATION OF A SUBJECT CONNECTED TO PARTICLES IN A FLOWING MEDIUM | |
KR100876257B1 (en) | Optical measuring method and device therefor | |
CN109975222B (en) | Full-spectrum water quality detection automatic calibration and window cleaning reminding system | |
JPS63184040A (en) | Apparatus for detecting pollution of liquid | |
JP2607772B2 (en) | Flux filling rate detection method for flux cored welding wire | |
JPS58178243A (en) | Optical apparatus for measuring suspended substance concentration | |
JP2001074649A (en) | Method for measuring angle of optical rotation, and method for inspecting urine | |
JPH02259451A (en) | Turbidity meter | |
JPH03122550A (en) | Method and apparatus of measuring grain | |
JPS62140029A (en) | Apparatus for measuring surface level of liquid | |
US20060040401A1 (en) | Method and equipment for measuring the concentration of antiseptic solution | |
JPH03291551A (en) | Instrument for measuring solution component | |
RU2035721C1 (en) | Method of checking transparency of flat light-translucent materials | |
JPS63263401A (en) | Displacement measuring method | |
RU2156437C2 (en) | Gear determining surface roughness | |
JP2560231B2 (en) | Sulfate ion concentration detection sensor by wavelength in mid-infrared region and sulfate ion concentration detection method | |
FI97644C (en) | Procedure for refractometer measurement | |
JPH05203568A (en) | Method of analyzing various material, especially liquid | |
SU1728742A1 (en) | Optical method for testing volume content of particles in solution | |
JPS63315933A (en) | Method for measuring light scattering material in suspension | |
RU2051376C1 (en) | Method of photometric determination of flaws and device for its implementation | |
JPH08122271A (en) | Color filter inspection method and device for liquid crystal |