【考案の詳細な説明】[Detailed explanation of the idea]
〔産業上の利用分野〕
本考案は、火災時等の高温下においても気密性
を充分に保持し、一部に形状記憶合金をもちいた
絶縁継手に関する。
〔従来の技術〕
たとえば、ビルの引込み部分に用いられている
ガス配管(鋼管2a)は第6図に示すように屋外
Aに設けられた本管2から壁Bを貫通して屋内C
に入り、緊急遮断弁3を通つて各消費者4に至
る。火災等が発生した場合は、緊急遮断弁3を閉
じてガス爆発による二次災害を防ぐが、鋼管2a
の迷走電流をさまたげ腐食を防ぐため緊急遮断弁
3と鋼管2aとのあいだに設けられたフランジ継
手部分に絶縁継手1を設けてある。この絶縁継手
1は現地で組み立てられることが必要で、このた
めフランジ型をなし、たとえば第7図に示すOS
型絶縁継手が用いられている。この絶縁継手1
は、フランジ6,6a間にナイロンに溝7,7a
を切つた絶縁スペーサー8を設け、その溝7,7
aの中にOリング8a,8bを入れてこのOリン
グ8a,8bにより気密を保ち、さらに絶縁スペ
ーサー8と絶縁ボルト9(スタツドボルトの平行
部にエポキシコーテイングを施こすとともに絶縁
座金10,10aの材料としてFRPを用いてい
る)により絶縁を保つようにしてある。なお1
1,11aは絶縁座金10,10aの外側に設け
た平座金、12,12aは平座金11,11aの
外側に設けたナツトである。
〔考案が解決しようとする問題点〕
上記のように構成した従来の絶縁継手は、絶縁
スペーサ8、絶縁ボルト9及び絶縁座金10,1
0aにより鋼管2aに流れる迷走電流の絶縁を保
つと共に、Oリング8a,8bにより充分気密を
保持しているが、火災時におけるガスの気密性に
は問題があつた。すなわち継手部の初期組立て時
に、引張の軸力が鋼管2aに作用したり施工完了
後地盤沈下等により引張の軸力が本管2に作用し
たりすると、フランジ6,6aが火災等により高
温にさらされた場合、フランジ6,6aの面間が
広がるような力が作用する。従つて絶縁継手1が
被災し、そのような状況下で火災等により高温
(800℃以上にも達することがある)になると、ナ
イロン、エポキシ、FRPのような有機材料から
なる絶縁スペーサ8(耐火温度150℃)に充分の
耐火性がないため、内部のガスが漏洩しガス爆発
がおこるおそれがあつた。
〔問題点を解決するための手段〕
本考案は上記のような問題点を解決するために
なされたもので、常時は絶縁性を有し、火災時に
は絶縁性能を犠牲にしてシール性のみを有する絶
縁継手を得ることを目的とする。
本考案は上記の目的を達成するためになされた
もので、耐熱性絶縁スペーサと両側のフランジと
の対向面に設けられた環状溝に耐熱性リングを嵌
装して前記両フランジ間を貫通するボルト穴に絶
縁ボルトを挿通してバネ座金を介して締め付ける
絶縁継手において、前記絶縁ボルトとバネ座金及
び耐熱性リングのうちの少なくも1つの前記絶縁
ボルトに変態温度以上で縮小し前記バネ座金又は
耐熱性リングに変態温度以上で伸長する形状記憶
合金を用いたことにより耐熱性に優れた絶縁継手
を提供するものである。
〔作用〕
火災等の高温時に、絶縁ボルト、バネ座金、耐
熱性リングのうちの少なくとも何れか1つの形状
記憶合金がそれぞれ縮小、伸長、及び伸長するこ
とにより、絶縁継手の継手部分からのガスの漏洩
をなくし、気密性を充分に保持するようにした。
〔実施例〕
本考案は、形状記憶合金を一部に使用した耐熱
性の絶縁継手に関するものである。ここに形状記
憶合金とは熱弾性型マルテンサイト変態特性を有
する合金で、低応力で変形し、そのあと適当な温
度変態温度による加熱によつて変形前の形状に完
全に復するという性質を有するものをいう。第1
図は形状記憶合金の伸び率と温度との関係を示し
た線図で、常温で元の形(状態a)を加工して変
形し伸びを与えた(状態b)後加熱すると縮んで
元の長さ(状態c)に戻る。このような形状記憶
合金としては、主としてNiTi合金が市場に出て
用いられているが、他にCu−Zn−Al合金が実用
に供せられている。このような形状記憶合金が変
形、加熱する場合の具体例は第2図に示す通りで
ある。δは加熱による変形量を示している。上記
のような性質を有する形状記憶合金をフランジ型
の絶縁継手の各部分に用いることによつて高温時
にシール性能を大巾に向上させることができる。
第3図は本考案の実施例を示す断面図である。
なお、第7図と同じ機能の部分には同じ記号を付
し、説明を省略する。8はフランジ6,6a間に
介装されたドーナツ状の絶縁スペーサで、耐熱性
に優れた鉄の如き金属板からなりボルト穴13の
内側両面には、それぞれ同心円状の2条の溝7,
7a及び14,14aが設けられており、外表面
全体にはセラミツクコーテイングを施工して絶縁
性耐熱性を向上させてある。8a,8bは外側の
溝7,7aに嵌装されたOリングであり、15,
15aは内側の溝14,14aに嵌装され温度上
昇により復元性を有する形状記憶合金からなる耐
熱性リングである。耐熱性リング15,15aは
断面がU型をしており開放部を鋼管2aの中心に
向けている。これは内圧が作用した場合、耐熱性
リング15,15aが内圧によつてセルフシール
機構を生じるようにしたものである。この耐熱性
リング15,15aの変形は、図面の横方向の伸
びのみの形状を記憶させておき耐熱性リング1
5,15aの全周長は加熱前後において変化がな
いものとする。なおセラミツクコーテイングのう
ち、耐熱性リング15,15aと接する溝14,
14aの表面部分は表面を滑らかに研磨加工する
ことにより耐熱性リング15,15aのシール性
を良くし、さらにセラミツク全表面には封孔処理
としてシリコン樹脂等を含浸させ絶縁性能を向上
させてある。このように構成したことにより、常
時においてはOリング8a,8bでシールし、火
災時には耐熱性リング15,15aによりシール
する。
20はネジ部を除く表面に絶縁性を有する素材
(例えばセラミツク、エボキシ等)をコーテイン
グするかまたは絶縁の筒をボルト平行部に被覆し
た絶縁ボルトであり形状記憶合金により構成され
ている。10,10aは鉄の如き耐熱性に優れた
金属の表面にセラミツクをコーテイングし、絶縁
性、耐熱性を有するようにした絶縁座金、11,
11aは絶縁座金10,10aの外側に配設した
平座金、16,16aは平座金11,11aの外
側に配設した形状記憶合金からなるバネ座金であ
る。なお12,12aは絶縁継手を締付るナツト
である。
ところで本実施例においては、絶縁継手1bを
形成する形状記憶合金からなる部材として、絶縁
ボルト20、バネ座金16,16a、耐熱性リン
グ15,15aがあるが、これらの形状記憶合金
からなる部材の初期状態a、変形後の状態b、加
熱後の状態c(それぞれ第1図に示す状態a、状
態b、状態cに対応)は、第5図に示す通りであ
る。第5図中、δは形状記憶合金の変形量を示し
ている。第3図で示す形状記憶合金は変形後の状
態を示し、第1図、第2図、第5図のb状態に対
応する。従つて第3図で示す定常状態では、絶縁
ボルト20は“伸び”の変形、バネ座金16,1
6aは軸方向に“縮み”の変形、耐熱性リング1
5,15aは図面の横方向に“縮み”の変形が与
えられている。
上記のように構成した本考案の作用を説明すれ
ば次の通りである。ビルに火災等が発生し高温状
態になると、絶縁ボルト20は、第5図に示す変
形後の状態bから加熱後の状態cに変形する。す
なわち第3図○イ方向に縮小する。このためナツト
12,12a、バネ座金16,16a、平座金1
1,11a、絶縁座金10,10aも○イ方向の力
を受ける。しかしながらバネ座金16,16a
は、第5図の変形後の状態bから加熱後の状態c
に変形する。すなわち第3図○ロ方向に伸びる。こ
のためフランジ6,6aは○イ方向への強い力をさ
らに受けることになり、絶縁スペーサー8を両側
から強く圧縮し、フランジ6,6aの面間が広が
るのを防ぐ。一方耐熱性リング15,15aは第
5図の変形後の状態bから加熱後の状態cに変形
する。すなわち第3図○ロ方向に伸び、耐熱性リン
グ15,15aは自動的にシールすることにな
る。
耐熱性リング15,15aはフランジ6,6a
と絶縁スペーサー8の溝14,14aの間にあつ
て常時のシール性は期待せず高温時に膨張すれば
よいので使用の制限はない。
第4図は本考案の他の実施例を示す断面図であ
る。なお第3図と同じ機能の部分には同じ記号を
付し説明を省略する。本実施例においては、フラ
ンジ6,6aの面に溝21,21a及び22,2
2aを設けて、そこにOリング8a,8b及び形
状記憶合金よりなる耐熱性リング15,15aを
嵌装したものである。
以上の説明では、絶縁ボルト20、バネ座金1
6,16a、耐熱性リング15,15aをすべて
形状記憶合金からなる部材により形成している
が、本考案はこれに限定するものではなく、これ
らすべてに形状記憶合金を用いず一部に他の部材
を用いてもよい。
すなわち第1表に示す組み合わせが考えられ、
ケース1,ケース2は防災設備の整つた環境下で
使用できるが、ケース3,ケース4になる程、耐
熱性をより向上させる組合せとなつている。
[Industrial Field of Application] The present invention relates to an insulating joint that maintains sufficient airtightness even under high temperatures such as during a fire, and partially uses a shape memory alloy. [Prior Art] For example, a gas pipe (steel pipe 2a) used in a lead-in part of a building runs from a main pipe 2 installed outdoors A through a wall B to an indoor pipe C, as shown in Fig. 6.
and reaches each consumer 4 through an emergency shutoff valve 3. In the event of a fire, etc., the emergency shutoff valve 3 is closed to prevent secondary damage caused by a gas explosion, but the steel pipe 2a
An insulating joint 1 is provided at the flange joint between the emergency shutoff valve 3 and the steel pipe 2a in order to block stray currents and prevent corrosion. This insulating joint 1 needs to be assembled on-site and therefore has a flange type, for example the OS shown in Figure 7.
Type insulated joints are used. This insulation joint 1
is a groove 7, 7a in the nylon between the flanges 6, 6a.
An insulating spacer 8 is provided, and the grooves 7, 7 are
O-rings 8a and 8b are inserted into the holes 8a and 8b to maintain airtightness, and the insulating spacers 8 and insulating bolts 9 (epoxy coating is applied to the parallel parts of the stud bolts, and the insulating washers 10 and 10a are coated with epoxy). FRP is used as the material) to maintain insulation. Note 1
1 and 11a are flat washers provided on the outside of the insulating washers 10 and 10a, and 12 and 12a are nuts provided on the outside of the flat washers 11 and 11a. [Problems to be solved by the invention] The conventional insulating joint configured as described above includes an insulating spacer 8, an insulating bolt 9, and an insulating washer 10, 1.
0a maintains insulation from stray current flowing through the steel pipe 2a, and O-rings 8a and 8b maintain sufficient airtightness, but there is a problem with gas tightness in the event of a fire. In other words, if a tensile axial force acts on the steel pipe 2a during the initial assembly of the joint, or if a tensile axial force acts on the main pipe 2 due to ground subsidence after completion of construction, the flanges 6, 6a may become hot due to fire, etc. When exposed, a force acts that causes the flanges 6, 6a to spread apart. Therefore, if the insulating joint 1 is damaged and the temperature becomes high (sometimes reaching 800°C or more) due to a fire or other such situation, the insulating spacer 8 (fireproof) made of an organic material such as nylon, epoxy, or FRP Because it did not have sufficient fire resistance to withstand temperatures of 150°C, there was a risk of internal gas leaking and causing a gas explosion. [Means for solving the problem] This invention was made to solve the above problems, and it has insulation properties at all times, but in the event of a fire, it only has sealing properties at the expense of insulation performance. The purpose is to obtain insulating joints. The present invention has been made to achieve the above object, and a heat-resistant ring is fitted into an annular groove provided on the opposing surfaces of a heat-resistant insulating spacer and flanges on both sides, and penetrates between the flanges. In an insulating joint in which an insulating bolt is inserted into a bolt hole and tightened via a spring washer, at least one of the insulating bolt, a spring washer, and a heat-resistant ring is reduced at a transformation temperature or higher, and the spring washer or The present invention provides an insulating joint with excellent heat resistance by using a shape memory alloy that expands above the transformation temperature for the heat resistant ring. [Function] At high temperatures such as in a fire, the shape memory alloy of at least one of the insulating bolt, spring washer, and heat-resistant ring contracts, expands, and expands, thereby preventing gas from flowing from the joint part of the insulating joint. Eliminated leakage and maintained sufficient airtightness. [Example] The present invention relates to a heat-resistant insulating joint partially using a shape memory alloy. Shape memory alloys are alloys that have thermoelastic martensitic transformation characteristics, and have the property of deforming with low stress and then completely returning to the shape before deformation by heating to an appropriate transformation temperature. say something 1st
The figure is a diagram showing the relationship between the elongation rate and temperature of a shape memory alloy.The original shape (state a) is processed at room temperature to deform and elongate (state b), and then heated to shrink and return to its original shape. Return to length (state c). As such shape memory alloys, NiTi alloys are mainly used on the market, but Cu--Zn--Al alloys are also in practical use. A specific example of the case where such a shape memory alloy is deformed and heated is as shown in FIG. δ indicates the amount of deformation due to heating. By using a shape memory alloy having the above-mentioned properties in each part of a flange-type insulating joint, the sealing performance at high temperatures can be greatly improved. FIG. 3 is a sectional view showing an embodiment of the present invention.
Note that parts having the same functions as those in FIG. 7 are given the same symbols, and explanations thereof will be omitted. Reference numeral 8 denotes a donut-shaped insulating spacer interposed between the flanges 6 and 6a, which is made of a metal plate such as iron with excellent heat resistance, and has two concentric grooves 7 and 8 on both inner surfaces of the bolt hole 13, respectively.
7a and 14, 14a are provided, and a ceramic coating is applied to the entire outer surface to improve insulation and heat resistance. 8a and 8b are O-rings fitted into the outer grooves 7 and 7a;
15a is a heat-resistant ring made of a shape-memory alloy that is fitted into the inner grooves 14, 14a and has the ability to recover when the temperature rises. The heat-resistant rings 15, 15a have a U-shaped cross section, with the open portion facing the center of the steel pipe 2a. This is so that when internal pressure is applied, the heat-resistant rings 15, 15a create a self-sealing mechanism due to the internal pressure. The deformation of the heat-resistant rings 15, 15a is performed by memorizing the shape of only the horizontal elongation in the drawing.
It is assumed that the total circumferential length of 5 and 15a does not change before and after heating. In addition, among the ceramic coatings, the grooves 14, which are in contact with the heat-resistant rings 15, 15a,
The surface of 14a is polished to a smooth surface to improve the sealing properties of the heat-resistant rings 15, 15a, and the entire surface of the ceramic is impregnated with silicone resin or the like as a sealing treatment to improve insulation performance. . With this configuration, the O-rings 8a and 8b are used for sealing at all times, and the heat-resistant rings 15 and 15a are used for sealing in the event of a fire. Reference numeral 20 denotes an insulating bolt whose surface except the threaded portion is coated with an insulating material (eg, ceramic, epoxy, etc.) or whose parallel portion of the bolt is covered with an insulating tube, and is made of a shape memory alloy. 10, 10a is an insulating washer made by coating the surface of a metal with excellent heat resistance such as iron with ceramic to have insulation and heat resistance; 11,
11a is a flat washer disposed on the outside of the insulating washers 10, 10a, and 16, 16a are spring washers made of a shape memory alloy disposed on the outside of the flat washers 11, 11a. Note that 12 and 12a are nuts for tightening the insulating joint. By the way, in this embodiment, the insulating bolt 20, the spring washers 16, 16a, and the heat-resistant rings 15, 15a are used as the members made of the shape memory alloy that form the insulating joint 1b. The initial state a, the state b after deformation, and the state c after heating (corresponding to states a, b, and c shown in FIG. 1, respectively) are as shown in FIG. 5. In FIG. 5, δ indicates the amount of deformation of the shape memory alloy. The shape memory alloy shown in FIG. 3 shows a state after deformation, which corresponds to state b in FIGS. 1, 2, and 5. Therefore, in the steady state shown in FIG.
6a is axially “shrinking” deformation, heat-resistant ring 1
5 and 15a are given "shrinkage" deformation in the lateral direction of the drawing. The operation of the present invention configured as above will be explained as follows. When a fire or the like occurs in a building and the temperature becomes high, the insulating bolt 20 deforms from the deformed state b shown in FIG. 5 to the heated state c. That is, it is reduced in the direction of ◯A in Fig. 3. For this reason, nuts 12, 12a, spring washers 16, 16a, flat washers 1
1 and 11a, and the insulating washers 10 and 10a are also subjected to force in the ○a direction. However, the spring washers 16, 16a
is from state b after deformation to state c after heating in Fig. 5.
transforms into In other words, it extends in the direction of ○ and b in Figure 3. For this reason, the flanges 6, 6a are further subjected to a strong force in the ○A direction, and the insulating spacer 8 is strongly compressed from both sides, thereby preventing the space between the flanges 6, 6a from widening. On the other hand, the heat-resistant rings 15, 15a are deformed from the deformed state b shown in FIG. 5 to the heated state c. That is, the heat-resistant rings 15, 15a are automatically sealed by extending in the direction shown in FIG. Heat resistant rings 15, 15a are flanges 6, 6a
and the grooves 14, 14a of the insulating spacer 8, no constant sealing performance is expected, and it only needs to expand at high temperatures, so there are no restrictions on its use. FIG. 4 is a sectional view showing another embodiment of the present invention. Note that parts having the same functions as those in FIG. 3 are given the same symbols, and explanations thereof will be omitted. In this embodiment, grooves 21, 21a and 22, 2 are provided on the surfaces of the flanges 6, 6a.
2a, and O-rings 8a, 8b and heat-resistant rings 15, 15a made of shape memory alloy are fitted therein. In the above explanation, the insulating bolt 20, the spring washer 1
6, 16a, and the heat-resistant rings 15, 15a are all made of members made of shape memory alloys, but the present invention is not limited to this, and instead of using shape memory alloys in all of them, some of them are made of other materials. You may use the member. In other words, the combinations shown in Table 1 are possible,
Case 1 and Case 2 can be used in an environment with disaster prevention equipment, but Case 3 and Case 4 are combinations that further improve heat resistance.
【表】
なお形状記憶合金よりなる耐熱性リング15,
15aの代わりに市販されているステンレス等の
メタル中空Oリングを用いてもよい。この場合は
絶縁継手の設置場所(例えば防災設備が十分整つ
て火災発生後直ちにスプリンクラー等によつて冷
却され継手部が高温にならない場所)によつて異
なるが、メタル中空Oリングの偏平率はせいぜい
25%位でそれ以上偏平すると永久変形が生じる。
従つて市販のメタル中空Oリングの断面直径3.2
mmを用いるとその25%である0.8mm以上フランジ
とスペーサー間距離が離れるとメタル中空Oリン
グではシール不可能となり、その使用には限界が
生じる。
〔考案の効果〕
以上の説明から明らかなように本考案によれ
ば、ビル火災等の高温時においても気密性が充分
に保持され、継手部分からのガスの漏洩は生じた
いという顕著な効果がある。[Table] Heat-resistant ring 15 made of shape memory alloy,
A commercially available metal hollow O-ring made of stainless steel or the like may be used instead of 15a. In this case, it depends on the installation location of the insulated joint (for example, a place with sufficient disaster prevention equipment and the joint is cooled by sprinklers etc. immediately after a fire occurs so that the joint does not become hot), but the flatness of the metal hollow O-ring is at most
Permanent deformation will occur if it becomes flattened more than 25%.
Therefore, the cross-sectional diameter of a commercially available metal hollow O-ring is 3.2
If mm is used, if the distance between the flange and spacer is greater than 0.8 mm, which is 25% of that distance, it will not be possible to seal with a metal hollow O-ring, and there will be a limit to its use. [Effects of the invention] As is clear from the above explanation, the present invention has the remarkable effect that airtightness is sufficiently maintained even in high temperature situations such as building fires, and gas leakage from joints is prevented. be.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は形状記憶合金の伸び率と温度との関係
を示した線図、第2図は形状記憶合金が変形、加
熱する場合の状態を示す説明図、第3図は本考案
実施例の断面図、第4図は本考案の他の実施例を
示す断面図、第5図は各形状記憶合金の状態a,
b,cにおける変形状態を示す説明図、第6図は
ガス配管の一例を示す断面図、第7図は従来の絶
縁継手の一例を示す断面図である。
1,1b,1c……絶縁継手、6,6a……フ
ランジ、7,7a,14,14a,21,21
a,22,22a……環状溝、8……絶縁スペー
サ、8a,8b……Oリング、10,10a……
絶縁座金、12,12a……ナツト、13,1
7,17a……ボルト穴、15,15a……形状
記憶合金よりなる耐熱性リング、16,16a…
…形状記憶合金よりなる耐熱バネ座金、20……
形状記憶合金よりなる絶縁ボルト。
Fig. 1 is a diagram showing the relationship between the elongation rate and temperature of the shape memory alloy, Fig. 2 is an explanatory diagram showing the state when the shape memory alloy is deformed and heated, and Fig. 3 is a diagram showing the relationship between the elongation rate and temperature of the shape memory alloy. 4 is a sectional view showing another embodiment of the present invention, and FIG. 5 is a sectional view showing the states of each shape memory alloy.
FIG. 6 is a sectional view showing an example of a gas pipe, and FIG. 7 is a sectional view showing an example of a conventional insulating joint. 1, 1b, 1c...Insulation joint, 6, 6a...Flange, 7, 7a, 14, 14a, 21, 21
a, 22, 22a... annular groove, 8... insulating spacer, 8a, 8b... O ring, 10, 10a...
Insulating washer, 12, 12a... Nut, 13, 1
7, 17a... Bolt hole, 15, 15a... Heat resistant ring made of shape memory alloy, 16, 16a...
...Heat-resistant spring washer made of shape memory alloy, 20...
Insulating bolt made of shape memory alloy.