Nothing Special   »   [go: up one dir, main page]

JPH02263709A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02263709A
JPH02263709A JP1015743A JP1574389A JPH02263709A JP H02263709 A JPH02263709 A JP H02263709A JP 1015743 A JP1015743 A JP 1015743A JP 1574389 A JP1574389 A JP 1574389A JP H02263709 A JPH02263709 A JP H02263709A
Authority
JP
Japan
Prior art keywords
oxide superconductor
acid
monocarboxylic acid
hydroxide
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1015743A
Other languages
Japanese (ja)
Inventor
Hiroshi Kato
寛 加藤
Yoshinori Takada
高田 善典
Akiyo Okuhara
奥原 明代
Masaharu Kamauchi
鎌内 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP1015743A priority Critical patent/JPH02263709A/en
Publication of JPH02263709A publication Critical patent/JPH02263709A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having a desired critical temp. with high work efficiency by dissolving org. monocarboxylates or hydroxides of the constituent elements of the oxide superconductor with the exception of oxygen in org. monocarboxylic acid, applying the resulting soln. to a base material and carrying out sintering. CONSTITUTION:Org. monocarboxylates or hydroxides of the constituent elements of an oxide superconductor such as a Y-Ba-Cu-O type oxide superconductor with the exception of oxygen are dissolved in org. monocarboxylic acid such as acetic acid or propionic acid. The mono-carboxylates may be yttrium acetate, barium acetate and copper acetate. The hydroxides may be yttrium hydroxide, barium hydroxide and copper hydroxide. The resulting soln. is applied to a base material and sintering is carried out to obtain the oxide superconductor. Since the soln. does not deteriorate with the lapse of time, is easy to handle, has satisfactory film forming property and can be applied to the base material by brush coating, the oxide superconductor can easily be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超電導体の製造方法、詳しくはゾルゲ
ル法による酸化物超電導体薄膜の新規な製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide superconductor, and more particularly to a novel method for producing an oxide superconductor thin film by a sol-gel method.

〔従来の技術〕[Conventional technology]

ゾルゲル法による酸化物超電導体薄膜の製造方法は、一
般にPVD法やCVD法に比べて簡便である、膜組成が
分子レベルにおいて均一なものができ易い、あるいは均
一な膜厚で大面積の成膜が可能である、等の利点がある
The method for manufacturing oxide superconductor thin films using the sol-gel method is generally simpler than the PVD or CVD methods, and it is easier to produce films with uniform composition at the molecular level, or it is possible to form films with uniform thickness over a large area. There are advantages such as:

ゾルゲル法による酸化物超電導体の製造方法として、従
来下記の方法が知られている。
The following methods are conventionally known as methods for producing oxide superconductors using the sol-gel method.

(1,)  酸化物超電導体を構成する元素(但し酸素
を除く、酸素を除くかかる元素を以下において単に構成
元素と称す)の有機カルボン酸塩のカルボン酸水溶液を
使用する方法、 (2)  構成元素のアルコキシドの有機溶媒溶液を使
用する方法、 (3)構成元素の無機酸塩の無機酸水溶液を使用する方
法。
(1,) A method using a carboxylic acid aqueous solution of an organic carboxylate of an element constituting an oxide superconductor (excluding oxygen; such elements excluding oxygen are hereinafter simply referred to as constituent elements); (2) Configuration (3) A method using an aqueous inorganic acid solution of an inorganic acid salt of a constituent element.

しかし、(1)の方法は、溶液のpHの調節を極めて厳
密に制御する必要があり、この制御が不充分であるとそ
の溶液の塗布過程等で一部の構成元素有機カルボン酸塩
が析出して所望のTcを示す超電導体が得られ難い問題
があり、(2)の方法は、原料となるアルコキシドが高
価であり、又(3)の方法は、上述の(1)の方法以上
に構成元素無機酸塩の異常析出が生じ易く、このために
超電導体のミクロ的な組成上のバラツキのために所望の
Tcを示す超電導体が得られ難い問題がある。
However, method (1) requires very strict control of the pH of the solution, and if this control is insufficient, some organic carboxylates of the constituent elements may precipitate during the solution application process. There are problems in that it is difficult to obtain a superconductor exhibiting the desired Tc, and in method (2), the alkoxide used as a raw material is expensive, and method (3) is more expensive than method (1) above. Abnormal precipitation of the constituent elemental inorganic acid salts tends to occur, which makes it difficult to obtain a superconductor exhibiting a desired Tc due to microscopic compositional variations in the superconductor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明が解決しようとする課題は、酸化物超電導体を得
ようとする場合の従来方法にみられた各難点を解消する
ことである。
The problem to be solved by the present invention is to overcome the difficulties encountered in conventional methods for obtaining oxide superconductors.

〔課題を解決するための手段〕[Means to solve the problem]

この課題は、上記fl)の方法において使用される溶媒
たるカルボン酸水溶液に代わって有機モノカルボン酸を
使用することによって解決される。
This problem is solved by using an organic monocarboxylic acid instead of the aqueous carboxylic acid solution used in the method fl) above.

即ち本発明は、溶質として構成元素の有機モノカルボン
酸塩または水酸化物を用い、一方溶媒として有機モノカ
ルボン酸を用い、上記溶質の有機モノカルボン酸溶液を
基材に施与し、次いで焼結することを特徴とする酸化物
超電導体の製造方法である。
That is, in the present invention, an organic monocarboxylic acid salt or hydroxide of a constituent element is used as a solute, an organic monocarboxylic acid is used as a solvent, an organic monocarboxylic acid solution of the solute is applied to a substrate, and then sintering is performed. This is a method for producing an oxide superconductor, characterized in that the oxide superconductor is bonded.

〔発明の作用並びに構成〕[Function and structure of the invention]

本発明においては、溶媒として従来使用のカルボン酸水
溶液に代わって有機モノカルボン酸自体を使用する。こ
の結果、<1)の方法にみられた溶液のp Hの調節問
題、ひいてはその溶液の塗布過程等で一部の構成元素有
機カルボン酸塩が析出する問題が解消し、而して所望の
Tcを示す超電導体が容易に得られる。
In the present invention, the organic monocarboxylic acid itself is used as a solvent in place of the conventionally used aqueous carboxylic acid solution. As a result, the problem of adjusting the pH of the solution that occurred in method <1) and the problem of precipitation of some of the organic carboxylates of the constituent elements during the coating process of the solution are resolved, and the desired result is solved. A superconductor exhibiting Tc can be easily obtained.

本発明に於いては、ペロプスカイト型三次元結晶構造を
とり得、且つ超電導特性を示す酸化物超電導体、たとえ
ばRe−Ba−Cu−0(ここにReは、稀土類元素を
示し、その1種または2種以上が用いられる。稀土類元
素のうち、特にイツトリウム、ランタン、ネオジム、サ
マリウム、ユーロピウム、ガドリニウム、ジスプロシウ
ム、ホルミウム、エルビウム、ツリウム、イッテルビウ
ム、ルテシウムが好ましい、 ) 、B1−Pb−5r
−Ca−Cu−0,Tl−Ba−CaCu−0等、が製
造対象とされる。それら超電導体の構成元素は、を機モ
ノカルボン酸塩または水酸化物として用いられる。この
際の有機モノカルボン酸としては、蟻酸、酢酸、プロピ
オン酸、酪酸、吉草酸、ヘキサン酸、ヘプタン酸、ある
いはそれ以上の炭素数を有するものが例示できる。
In the present invention, an oxide superconductor that can have a perovskite three-dimensional crystal structure and exhibits superconducting properties, such as Re-Ba-Cu-0 (where Re represents a rare earth element, Among the rare earth elements, yttrium, lanthanum, neodymium, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium are particularly preferred.
-Ca-Cu-0, Tl-Ba-CaCu-0, etc. are to be manufactured. The constituent elements of these superconductors are used as monocarboxylic acid salts or hydroxides. Examples of the organic monocarboxylic acid in this case include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, heptanoic acid, and those having more carbon atoms.

溶媒たる有機モノカルボン酸としても、蟻酸、酢酸、プ
ロピオン酸、酪酸、吉草酸、ヘキサン酸、ヘプタン酸、
あるいはそれ以上の炭素数を有するものが例示できる。
Organic monocarboxylic acids as solvents include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, heptanoic acid,
Alternatively, those having more carbon atoms can be exemplified.

本発明においては、後記する通り、構成元素の有機モノ
カルボン酸塩または水酸化物の有機モノカルボン酸溶液
を基材に施与し、好ましい態様においては、次いで乾燥
し、200〜900℃程度の高温度で熱処理し、最後に
焼結するが、この乾燥工程や熱処理の工程で溶媒は熱分
解ではなしに蒸発して飛散することが好ましい、その理
由は、使用する溶媒が高沸点であると蒸発よりも熱分解
によって飛散する場合が多く、熱分解の際に超電導特性
に悪影響を及ぼし易い炭素を残留し勝ちであるためであ
る。一方、溶質として構成元素の有機モノカルボン酸塩
を使用した場合、該塩の有機モノカルボン酸基と溶媒の
有機モノカルボン酸とが部分的あるいは全面的に置換す
ることが考えられる。
In the present invention, as described later, an organic monocarboxylic acid solution of an organic monocarboxylate or hydroxide of a constituent element is applied to a base material, and in a preferred embodiment, it is then dried and heated at about 200 to 900 °C. Heat treatment is carried out at high temperature and finally sintering. In this drying and heat treatment process, it is preferable that the solvent evaporates and scatters rather than thermally decomposes. This is because the solvent used has a high boiling point. This is because carbon is more likely to scatter due to thermal decomposition rather than evaporation, and carbon tends to remain during thermal decomposition, which tends to have an adverse effect on superconducting properties. On the other hand, when an organic monocarboxylic acid salt of a constituent element is used as a solute, it is conceivable that the organic monocarboxylic acid group of the salt and the organic monocarboxylic acid of the solvent are partially or completely substituted.

従って本発明においては、構成元素の塩製造に使用され
る有機モノカルボン酸と溶媒としての有機モノカルボン
酸とは互いに同一であっても別であってもよいが、いず
れも基材に施与された溶液層の乾燥工程や熱処理工程に
おいて蒸発飛散する低分子のもの、特に炭素数が10以
下、特に7以下の常温で液体ものが好ましい、但し各構
成元素の塩は2種以上の有機モノカルボン酸の混合塩、
更には水酸化物との混合塩であってよく、また溶媒とし
ての有機モノカルボン酸も2種以上の混合物であって良
い、なお、前記したように有機モノカルボン酸は水溶液
としてではなく、それ自体が用いられるが、5重量%未
満程度の不純物としての少量の水を含有するものは使用
可能である。また、構成元素の有機モノカルボン酸塩、
水酸化物は、結晶水を有していてもよい。
Therefore, in the present invention, the organic monocarboxylic acid used to produce the salt of the constituent elements and the organic monocarboxylic acid used as the solvent may be the same or different, but both may be applied to the base material. Low-molecular compounds that evaporate and scatter during the drying process and heat treatment process of the resulting solution layer, especially those with carbon numbers of 10 or less, particularly 7 or less, that are liquid at room temperature are preferred.However, the salts of each constituent element may contain two or more organic mixed salts of carboxylic acids,
Furthermore, it may be a mixed salt with a hydroxide, and the organic monocarboxylic acid as a solvent may also be a mixture of two or more types.As mentioned above, the organic monocarboxylic acid is not used as an aqueous solution, but as a solvent. It can be used as such, but it can also contain a small amount of water as an impurity, on the order of less than 5% by weight. In addition, organic monocarboxylic acid salts of constituent elements,
The hydroxide may contain water of crystallization.

各構成元素の塩を有機モノカルボン酸溶媒中に溶解する
量比については、構成元素間のモル比が所望の超電導体
中におけるモル比と一致するようにするとよい0例えば
Re+−Ha、−Cus−0、を製造する場合、有機モ
ノカルボン酸溶媒中に溶存するRe(2種以上の稀土類
元素からなる場合は、その合計量):Ba:Cuの比が
11:3となるように塩の量比を計量溶解する。各構成
元素の塩が有機モノカルボン酸に良好に溶解する限り、
その濃度は特に制限はないが、を機モノカルボン酸10
0mj!あたり10−’〜10”モル、特に10−3〜
5 X 10−’モル程度が好ましい。
Regarding the amount ratio of the salts of each constituent element dissolved in the organic monocarboxylic acid solvent, it is preferable that the molar ratio between the constituent elements matches the molar ratio in the desired superconductor.For example, Re+-Ha, -Cus. -0, the salt is added so that the ratio of Re (if it consists of two or more rare earth elements, the total amount):Ba:Cu dissolved in the organic monocarboxylic acid solvent is 11:3. Measure and dissolve the amount ratio. As long as the salts of each constituent element dissolve well in the organic monocarboxylic acid,
There is no particular limit to its concentration, but the monocarboxylic acid 10
0mj! from 10-' to 10'' mole, especially from 10-3 to
About 5 x 10-' moles are preferred.

本発明に於いて、有機モノカルボン酸溶液を施与する基
材としては、超電導体の焼結温度に耐え得る耐熱材料か
らなる各゛種形状のものが使用される。例えばMgO1
SrTiOz等のセラミック、ステンレス、白金、金、
銅、タングステン等の高融点金属の板、線、テープ等で
ある。有機モノカルボン酸溶液は、かかる基材の表面に
デイツプコート、スピンコード、刷毛塗り、アプリケー
タ塗布等各種の方法で施与することができる。
In the present invention, the base material to which the organic monocarboxylic acid solution is applied is made of a heat-resistant material that can withstand the sintering temperature of the superconductor and has various shapes. For example, MgO1
Ceramics such as SrTiOz, stainless steel, platinum, gold,
These are plates, wires, tapes, etc. made of high melting point metals such as copper and tungsten. The organic monocarboxylic acid solution can be applied to the surface of the substrate by various methods such as dip coating, spin cording, brush coating, and applicator coating.

基材に施与されたを機モノカルボン酸溶液は、直ちに焼
結工程に付されてもよいが、常温乃至軽度の加温下での
乾燥工程、次いで200〜900℃、特に350〜80
0℃で10分〜lO時間程度、好ましくは20〜5時間
程度の熱処理工程を経てから焼結することが好ましい。
The monocarboxylic acid solution applied to the substrate may be immediately subjected to a sintering process, but it may also be subjected to a drying process at room temperature to mild heating, followed by a drying process at 200 to 900°C, especially 350 to 80°C.
Sintering is preferably carried out after a heat treatment step at 0° C. for about 10 minutes to 10 hours, preferably about 20 to 5 hours.

更に乾燥工程は真空乾燥を伴うことが好ましく、熱処理
工程は大気、窒素、アルゴン、ヘリウム等の雰囲気下で
行うことが好ましく、また焼結工程は酸素雰囲気下で8
90〜960℃で行うことが好ましい。また更に焼結工
程の後、300〜500℃で30分〜lO時間程度アニ
ールすることが好ましい。
Further, the drying step is preferably accompanied by vacuum drying, the heat treatment step is preferably performed in an atmosphere of air, nitrogen, argon, helium, etc., and the sintering step is performed in an oxygen atmosphere.
It is preferable to carry out at 90 to 960°C. Further, after the sintering step, it is preferable to anneal at 300 to 500° C. for about 30 minutes to 10 hours.

〔実施例〕〔Example〕

以下に実施例を示して本発明を一層詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

実施例1 80℃に加温した純プロピオン酸100m1tに0.0
07モルの酢酸イツトリウム、0.014モルの酢酸バ
リウム、および0.021モルの酢酸銅をそれぞれ溶解
し、均一な純プロピオン酸の溶液を得た。この溶液に2
0mm角、厚さ0.5mmのMgO多結晶基板をデイツ
プし、0.2m/秒の速度で引き上げて該基板上にプロ
ピオン酸溶液を塗布した。塗膜を1時間自然乾燥し、0
.1Torr、 150℃の条件で1時間真空加熱乾燥
し、次いで450℃で1時間加熱処理して塗膜(ゲル)
の熱分解を行った。
Example 1 0.0 to 100 ml of pure propionic acid heated to 80°C
0.07 mol of yttrium acetate, 0.014 mol of barium acetate, and 0.021 mol of copper acetate were each dissolved to obtain a homogeneous solution of pure propionic acid. 2 in this solution
An MgO polycrystalline substrate of 0 mm square and 0.5 mm thick was dipped and pulled up at a speed of 0.2 m/sec to apply a propionic acid solution onto the substrate. Let the paint film dry naturally for 1 hour, and
.. Vacuum heat drying at 1 Torr and 150°C for 1 hour, then heat treatment at 450°C for 1 hour to form a coating (gel)
was thermally decomposed.

上記のデイツプコート、乾燥、加熱処理を5回繰り返し
た後、酸素雰囲気下950℃で30分加熱し、次いで4
00℃で5時間加熱を行い、yl−Bat−Cus−O
yの単一相からなる厚さ1.5μmの超電導膜をMgO
多結晶基板の表面に形成した。
After repeating the above dip coating, drying, and heat treatment 5 times, heating at 950°C for 30 minutes in an oxygen atmosphere, then 4
Heating was performed at 00°C for 5 hours to form yl-Bat-Cus-O.
A superconducting film with a thickness of 1.5 μm consisting of a single phase of MgO
It was formed on the surface of a polycrystalline substrate.

室温から60Kまでの温度域において、4端子法による
膜の電気抵抗を測定した結果、T c (onset)
は91 K、 T c (end)は84にであった。
As a result of measuring the electrical resistance of the film using the four-terminal method in the temperature range from room temperature to 60K, T c (onset)
was 91 K and T c (end) was 84.

比較例1 溶媒として純プロピオン酸に代わって50重量%プロピ
オン酸水溶液を使用した以外は実施例1と同じ方法でY
−Baz−Cu3−0 、の単一相からなる厚さ1.5
μ鋼の超電導膜をMgO多結晶基板の表面に形成した。
Comparative Example 1 Y
-Baz-Cu3-0, thickness 1.5 consisting of a single phase
A superconducting film of μ steel was formed on the surface of an MgO polycrystalline substrate.

そのT c (on 5et)は70に、Tc(end
)は60に以下であった。
Its T c (on 5et) is 70, Tc (end
) was below 60.

実施例2 90℃に加温した純酢酸−純ブロビオン酸混合液(純酢
酸濃度:10重量%)100mj+に、0.007モル
の水酸化イツトリウム、0.014モルの水酸化バリウ
ム、および0.021モルの水酸化銅をそれぞれ溶解し
、均一溶液を得た。この溶液を2000rpmで回転す
る20mm角、厚さ0.5mmのMgO多結晶基板上に
スピンコードシた。W1膜を1時間自然乾燥し、0 、
 1 Torr、150℃の条件で1時間真空加熱乾燥
し、次いで450℃で1時間加熱処理して塗膜(ゲル)
の熱分解を行った。
Example 2 0.007 mol of yttrium hydroxide, 0.014 mol of barium hydroxide, and 0.007 mol of yttrium hydroxide were added to 100 mj+ of a pure acetic acid-pure brobionic acid mixture (concentration of pure acetic acid: 10% by weight) heated to 90°C. 0.21 moles of copper hydroxide were dissolved in each to obtain a homogeneous solution. This solution was spin-coated onto a 20 mm square, 0.5 mm thick MgO polycrystalline substrate rotating at 2000 rpm. The W1 membrane was naturally dried for 1 hour, and
Vacuum heat drying at 1 Torr and 150°C for 1 hour, followed by heat treatment at 450°C for 1 hour to form a coating (gel).
was thermally decomposed.

上記のスピンコード、乾燥、加熱処理を7回繰り返した
後、酸素雰囲気下950℃で30分加熱し、次いで40
0℃で5時間加熱を行い、Y−Bat−Cu3−Oyの
単一相からなる厚さ1.7μIの超電導膜をMgO多結
晶基板の表面に形成した。
After repeating the above spin cord, drying, and heat treatment 7 times, it was heated at 950°C for 30 minutes in an oxygen atmosphere, and then heated at 950°C for 40 minutes.
Heating was performed at 0° C. for 5 hours to form a superconducting film with a thickness of 1.7 μI consisting of a single phase of Y-Bat-Cu3-Oy on the surface of the MgO polycrystalline substrate.

室温から60Kまでの温度域において、4端子法による
膜の電気抵抗を測定した結果、T c (onset)
は93 K、 T c (end)は84にであった。
As a result of measuring the electrical resistance of the film using the four-terminal method in the temperature range from room temperature to 60K, T c (onset)
was 93 K and T c (end) was 84.

比較例2 50℃に加温した10重量%グルコン酸水溶液100m
lに、0.01モルのプロピオン酸イツトリウム、0.
02モルのプロピオン酸バリウム、および0.03モル
のプロピオン酸銅をそれぞれ熔解し、均一な溶液を得た
。この溶液を使用して実施例2と同様の方法でスピンコ
ード、乾燥、及び加熱処理を12回繰り返した後、酸素
雰囲気下950℃で30分加熱し、次いで400℃で5
時間加熱を行い’l−BaオーCu2−0 yの単一相
からなる厚さ1.7μ儀の超電導膜をMgO多結晶基板
の表面に形成した。該超電導膜の’l’ c (on 
5et)は73 K、 T c (end)は60に以
下であった。
Comparative Example 2 100ml of 10% by weight gluconic acid aqueous solution heated to 50°C
l, 0.01 mol of yttrium propionate, 0.01 mol of yttrium propionate,
0.02 mol of barium propionate and 0.03 mol of copper propionate were each melted to obtain a homogeneous solution. Using this solution, spin code, drying, and heat treatment were repeated 12 times in the same manner as in Example 2, followed by heating at 950°C for 30 minutes in an oxygen atmosphere, and then heating at 400°C for 5 minutes.
A superconducting film having a thickness of 1.7 μm consisting of a single phase of 'l-Ba-Cu2-0y was formed on the surface of the MgO polycrystalline substrate by heating for a certain period of time. 'l' c (on
5et) was 73 K, and T c (end) was less than 60.

実施例3 0.007モルの酢酸イツトリウムに代えて、0.00
7モルの酢酸ホルミウムを使用した以外は実施例1と同
様の方法でHo1− Bag−Cu2−Oyの単一相か
らなる厚さ1.8μ第の超電導膜をMgO多結晶基板の
表面に形成した。
Example 3 Instead of 0.007 mol of yttrium acetate, 0.00
A 1.8μ thick superconducting film consisting of a single phase of Ho1-Bag-Cu2-Oy was formed on the surface of an MgO polycrystalline substrate in the same manner as in Example 1 except that 7 mol of holmium acetate was used. .

室温から60Kまでの温度域において、4端子法による
膜の電気抵抗を測定した結果、T c (onset)
は91 K、 T c (end)は87にであった。
As a result of measuring the electrical resistance of the film using the four-terminal method in the temperature range from room temperature to 60K, T c (onset)
was 91 K and T c (end) was 87.

実施例4 0.007モルの水酸化イツトリウムに代えて0.00
7モルの水酸化ホルミウムを使用した以外は実施例2と
同様の方法でHo+−Bat−Cuz−Oyの単一相か
らなる厚さ1.9μ幅の超電導膜をMgO多結晶基板の
表面に形成した。
Example 4 0.007 mole of yttrium hydroxide was replaced with 0.00 mole of yttrium hydroxide.
A superconducting film with a thickness of 1.9 μm and width consisting of a single phase of Ho+-Bat-Cuz-Oy was formed on the surface of an MgO polycrystalline substrate in the same manner as in Example 2 except that 7 mol of holmium hydroxide was used. did.

室温から60Kまでの温度域において、4端子法による
膜の電気抵抗を測定した結果、T c (onset)
は91 K、 T c (end)は86にであった。
As a result of measuring the electrical resistance of the film using the four-terminal method in the temperature range from room temperature to 60K, T c (onset)
was 91 K and T c (end) was 86.

実施例5〜21、比較例3〜7 溶媒の種類、温度、量、溶質の種類、量、MgO多結晶
基板への塗布方法、塗布回数、等を第1表に示す通りに
変えて、実施例1〜4と同様の方法で超電導膜をMgO
多結晶基板の表面に形成した。同表には、超@、導膜の
膜厚、並びに4端子法で測定した’l” c (on 
5et)及び’l’ c (end)の値をも示す。な
お同表の塗布方法におけるDC及びSCは、それぞれデ
イツプコート、スピンコードを表す。
Examples 5 to 21, Comparative Examples 3 to 7 Conducted by changing the type, temperature, amount of solvent, type and amount of solute, method of coating on MgO polycrystalline substrate, number of times of coating, etc. as shown in Table 1. The superconducting film was formed using MgO in the same manner as in Examples 1 to 4.
It was formed on the surface of a polycrystalline substrate. The same table includes the ultra@, the film thickness of the conductive film, and the 'l' c (on
5et) and 'l' c (end) values are also shown. Note that DC and SC in the coating method in the same table represent dip coat and spin code, respectively.

C以下余白〕 〔発明の効果〕 本発明は、次のような優れた効果を有する。Margin below C] 〔Effect of the invention〕 The present invention has the following excellent effects.

(1)本発明で使用する有機モノカルボン酸溶液は、従
来のものに比較して経時劣化が少なく、取扱い易い。
(1) The organic monocarboxylic acid solution used in the present invention has less deterioration over time than conventional solutions and is easy to handle.

(2)該有機モノカルボン酸溶液は、更に成膜性が良好
であり、デイツプコート、スピンコード、刷毛塗り、ア
プリケータ塗布等各種の方法で基材に施与することがで
きる。また広い温度範囲、濃度範囲でコーティングが可
能であり、従って広い温度範囲、濃度範囲において塗膜
のゲル化を進行せしめ得る。
(2) The organic monocarboxylic acid solution also has good film-forming properties and can be applied to the substrate by various methods such as dip coating, spin cording, brush coating, and applicator coating. Furthermore, coating can be performed over a wide temperature range and concentration range, and therefore gelation of the coating film can proceed over a wide temperature range and concentration range.

(3)  また更に溶媒として有機モノカルボン酸の水
溶液を使用した場合、特に酢酸水溶液を使用した場合に
必要とされたpHの調節が不要である。
(3) Furthermore, when an aqueous solution of an organic monocarboxylic acid is used as a solvent, there is no need to adjust the pH, which is particularly required when an acetic acid aqueous solution is used.

以上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導体を構成する元素(但し酸素を除く
)の有機モノカルボン酸塩または水酸化物の有機モノカ
ルボン酸溶液を基材に施与し、次いで焼結することを特
徴とする酸化物超電導体の製造方法。
(1) An organic monocarboxylic acid solution of an organic monocarboxylate or hydroxide of an element constituting the oxide superconductor (excluding oxygen) is applied to a base material, and then sintered. Method for manufacturing oxide superconductor.
(2)酸化物超電導体がRe_1_−Ba_2_−Cu
_3_−O_y(ここにReは、イットリウム、ランタ
ン、ネオジム、サマリウム、ユーロピウム、ガドリニウ
ム、ジスプロシウム、ホルミウム、エルビウム、ツリウ
ム、イッテルビウム、ルテシウムからなる群から選ばれ
た少なくとも1種または2種以上)である第1請求項に
記載の酸化物超電導体の製造方法。
(2) The oxide superconductor is Re_1_-Ba_2_-Cu
_3_-O_y (here, Re is at least one or two or more selected from the group consisting of yttrium, lanthanum, neodymium, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium). A method for producing an oxide superconductor according to claim 1.
JP1015743A 1988-12-28 1989-01-24 Production of oxide superconductor Pending JPH02263709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015743A JPH02263709A (en) 1988-12-28 1989-01-24 Production of oxide superconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33383288 1988-12-28
JP63-333832 1988-12-28
JP1015743A JPH02263709A (en) 1988-12-28 1989-01-24 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02263709A true JPH02263709A (en) 1990-10-26

Family

ID=18270441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015743A Pending JPH02263709A (en) 1988-12-28 1989-01-24 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02263709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206134A (en) * 2002-12-04 2003-07-22 Sumitomo Electric Ind Ltd High temperature superconducting thick film member and method for producing the same
US7326434B2 (en) 2000-10-23 2008-02-05 American Superconductor Corporation Precursor solutions and methods of using same
US8236733B2 (en) 2009-07-20 2012-08-07 Seoul National University Industry Foundation Method of forming a precursor solution for metal organic deposition and method of forming superconducting thick film using the same
CN104795180A (en) * 2015-04-07 2015-07-22 上海大学 Method for rapidly preparing REBCO superconducting film by extremely-low-fluorine MOD (metal organic deposition) method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326434B2 (en) 2000-10-23 2008-02-05 American Superconductor Corporation Precursor solutions and methods of using same
US7939126B2 (en) 2000-10-23 2011-05-10 American Superconductor Corporation Precursor solutions and methods of using same
JP2003206134A (en) * 2002-12-04 2003-07-22 Sumitomo Electric Ind Ltd High temperature superconducting thick film member and method for producing the same
US8236733B2 (en) 2009-07-20 2012-08-07 Seoul National University Industry Foundation Method of forming a precursor solution for metal organic deposition and method of forming superconducting thick film using the same
CN104795180A (en) * 2015-04-07 2015-07-22 上海大学 Method for rapidly preparing REBCO superconducting film by extremely-low-fluorine MOD (metal organic deposition) method

Similar Documents

Publication Publication Date Title
US5231074A (en) Preparation of highly textured oxide superconducting films from mod precursor solutions
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
JP2009544143A (en) Method for producing high Jc superconducting film and polymer-nitrate solution used therefor
US5141918A (en) Method of forming an oxide superconducting thin film of a single phase having no carbonate
JP5327932B2 (en) Manufacturing method of superconducting coating material
US5021399A (en) Spray pyrolysis process for preparing superconductive films
JPH027307A (en) Barrier layer arrangement for conductive layer on silicon substrate
JP2003327496A (en) Method for producing superconductor
JPH02263709A (en) Production of oxide superconductor
US4983577A (en) Metalorganic deposition of superconducting Yb-Ba-Cu-O thin films by rapid thermal annealing
KR100529602B1 (en) Method for manufacturing metal organic deposition precursor solution using superconduction oxide and film superconductor
JPH07106905B2 (en) Method for manufacturing superconductor and superconductor
KR890011126A (en) Composite oxide superconducting thin film or wire and its manufacturing method
US5116812A (en) Method of forming an oxide superconducting thin film having an R1 A2 C3 crystalline phase over an R2 A1 C1 crystalline phase
JPS63279527A (en) Manufacture of superconductor device
JP2916615B2 (en) Method for producing composite metal oxide epitaxial film having perovskite structure
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
JPH0476324B2 (en)
JPH0214827A (en) Production of superconductive oxide layer
US5059583A (en) High TC superconducting Y-BA-CU-O thin films
JP2822328B2 (en) Superconductor manufacturing method
JPH08337421A (en) Composition for forming thin barium-strontium-titanate film
JPH05229822A (en) Production of oxide superconducting film
JPH0288422A (en) Article having conductive film and its production
JP2822329B2 (en) Superconductor manufacturing method