Nothing Special   »   [go: up one dir, main page]

JPH0226162B2 - - Google Patents

Info

Publication number
JPH0226162B2
JPH0226162B2 JP9358184A JP9358184A JPH0226162B2 JP H0226162 B2 JPH0226162 B2 JP H0226162B2 JP 9358184 A JP9358184 A JP 9358184A JP 9358184 A JP9358184 A JP 9358184A JP H0226162 B2 JPH0226162 B2 JP H0226162B2
Authority
JP
Japan
Prior art keywords
light
light source
detection
optical
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9358184A
Other languages
Japanese (ja)
Other versions
JPS60237306A (en
Inventor
Osamu Koike
Norio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP9358184A priority Critical patent/JPS60237306A/en
Publication of JPS60237306A publication Critical patent/JPS60237306A/en
Publication of JPH0226162B2 publication Critical patent/JPH0226162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、変形しやすい工業製品、生体、文化
財等の物体の形状測定や、生産ラインでの物体の
厚さ、物体に生ずるキズ等の大きさ、位置の測定
等に用いられる可視域のレーザ光を用いた非接触
変位検出器に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is applicable to measuring the shape of easily deformed objects such as industrial products, living organisms, and cultural assets, and measuring the thickness of objects on production lines and the damage caused to objects. This invention relates to a non-contact displacement detector that uses laser light in the visible range and is used to measure size and position.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来、この種の非接触変位検出器は、例えば第
1図に示すものがあつた。すなわち、被検出物に
対するレーザ光の照射位置を確認するため、
632.8nmの可視のレーザ光を発するHe−Neガス
レーザ1、音響光学変調器2、反射鏡3、集光レ
ンズ4及び光半導体位置検出器5等を一ケース内
に含む構造となつていた。
Conventionally, this type of non-contact displacement detector has been shown, for example, in FIG. In other words, in order to confirm the irradiation position of the laser beam on the object to be detected,
The structure included a He--Ne gas laser 1 that emits visible laser light of 632.8 nm, an acousto-optic modulator 2, a reflecting mirror 3, a condenser lens 4, an optical semiconductor position detector 5, etc. in one case.

この非接触変位検出器は、下記のようにして被
検出物を検出する。先ず、He−Neガスレーザ1
から出射されたレーザ光6は、音響光学変調器2
によつて変調され、透過光7と回折光8に分離さ
れ、反射鏡3によつて光軸調整された透過光7、
回折光8のうち透過光7は、スリツト9の壁によ
つて遮断されて、回折光8のみが非接触変位検出
器外に出射される。出射された回折光8は、被検
出物10の光照射点11に照射され、この光照射
点11で反射・散乱される。反射・散乱された光
の一部12と被検出物10の周囲の背景光は、こ
の非接触変位検出器内の集光レンズ4により、光
半導体位置検出器5の受光面上の集光点13に集
光される。次に、光半導体位置検出器5は、この
集光点13の位置を電気信号として出力する。次
に、被検出物10による反射・散乱光12による
検出すべき電気信号と、周囲の背景光による雑音
である電気信号とのS/N比を向上させるため
に、非接触変位検出器内の演算回路14では、音
響光学変調器2の変調と同期して、反射・散乱光
12による電気信号を検出し、被検出物10の位
置が計算され、この計算結果は、非接触変位検出
器外の例えば、プロツタやCRTなどの表示部1
5に表示される。また、回折光8の光軸上を移動
した被検出物10′の場合、光照射点11′で反
射・散乱した光12′は集光点13′に集光され、
前述したと同様の方法により被検出物10′の位
置が計算される。
This non-contact displacement detector detects an object in the following manner. First, He-Ne gas laser 1
The laser beam 6 emitted from the acousto-optic modulator 2
transmitted light 7, which is modulated by, separated into transmitted light 7 and diffracted light 8, and whose optical axis is adjusted by a reflecting mirror 3;
The transmitted light 7 of the diffracted light 8 is blocked by the wall of the slit 9, and only the diffracted light 8 is emitted to the outside of the non-contact displacement detector. The emitted diffracted light 8 is irradiated onto a light irradiation point 11 of the object to be detected 10, and is reflected and scattered at this light irradiation point 11. A part of the reflected and scattered light 12 and the background light around the object to be detected 10 are focused by the condensing lens 4 in this non-contact displacement detector to a condensing point on the light receiving surface of the optical semiconductor position detector 5. The light is focused on 13. Next, the optical semiconductor position detector 5 outputs the position of this focal point 13 as an electrical signal. Next, in order to improve the S/N ratio between the electrical signal to be detected due to the reflected/scattered light 12 by the detected object 10 and the electrical signal that is noise due to surrounding background light, The arithmetic circuit 14 detects the electrical signal from the reflected/scattered light 12 in synchronization with the modulation of the acousto-optic modulator 2, and calculates the position of the detected object 10. This calculation result is sent to the outside of the non-contact displacement detector. For example, display unit 1 of a printer or CRT
5 is displayed. Furthermore, in the case of the object 10' that has moved on the optical axis of the diffracted light 8, the light 12' reflected and scattered at the light irradiation point 11' is focused on the condensing point 13'.
The position of the object to be detected 10' is calculated using a method similar to that described above.

しかしながら、従来の非接触変位検出器は、レ
ーザ光源、音響光学変調器等の光変調器、位置検
出器及びこれらを駆動・制御する回路(例えば、
音響光学変調器2用駆動回路16)、電源等が一
ケース内に収容されているので、重量が2〜3Kg
と大きくなり、移動が容易でないという欠点があ
つた。また、この非接触変位検出器内には、反射
鏡の光軸調整、スリツトによる透過光の遮断、音
響光学変調器の場合はブラツク角の調整等の精密
な微調整機構が多数内蔵されており、この非接触
変位検出器を移動させると、振動や衝撃等によつ
てアライメントに変動が生じ、レーザ光量や光軸
にずれが生じる欠点があつた。この欠点を除去す
るために微調整機構など各部を頑強なものにする
と、さらに複雑化し、重量も大きくなるという欠
点が発生する。
However, conventional non-contact displacement detectors require a laser light source, an optical modulator such as an acousto-optic modulator, a position detector, and a circuit for driving and controlling these (for example,
Since the drive circuit 16) for the acousto-optic modulator 2, power supply, etc. are housed in one case, the weight is 2 to 3 kg.
The disadvantage was that it was large and difficult to move. In addition, this non-contact displacement detector has many built-in precise fine adjustment mechanisms, such as adjusting the optical axis of the reflecting mirror, blocking transmitted light with a slit, and adjusting the black angle in the case of an acousto-optic modulator. However, when this non-contact displacement detector is moved, the alignment changes due to vibrations, shocks, etc., resulting in deviations in the amount of laser light and the optical axis. If each part, such as the fine adjustment mechanism, is made more robust in order to eliminate this drawback, it will become even more complex and the weight will increase.

さらに、従来の構成では、レーザ光源等の熱源
と位置検出器、集光レンズとが一ケース内に収容
されているため、位置検出器及び集光レンズが熱
の影響を受けて検出誤差を生じてしまう欠点があ
り、さらにこの検出誤差を防止するために、例え
ば冷却フアン17を内蔵させているが、完全に冷
却フアン17によつて熱の影響を防止できない欠
点があつた。完全な防止を可能とする冷却装置を
使用したとき、非接触変位検出器は、さらに複雑
化し、大型化するという欠点があつた。
Furthermore, in conventional configurations, a heat source such as a laser light source, a position detector, and a condensing lens are housed in one case, so the position detector and condensing lens are affected by heat, resulting in detection errors. Furthermore, in order to prevent this detection error, for example, a cooling fan 17 is built in, but there is a drawback that the influence of heat cannot be completely prevented by the cooling fan 17. When using a cooling device that allows complete prevention, the non-contact displacement detector has the drawback of becoming more complex and larger.

〔本発明の目的及び構成〕[Object and structure of the present invention]

本発明は、前記のような欠点を除去するために
なされたもので、可視域のレーザ光源と該レーザ
光源より発せられたレーザ光を変調する光変調器
とを有する検出光源部と、前記レーザ光を前記検
出光源部から検出センサ部に伝送する光伝送路
と、被検出物によつて反射・散乱された前記光伝
送路を透過した光を集光する集光レンズと位置検
出器とを有する検出センサ部とからなり、かつ前
記光伝送路を介して、前記検出光源部と前記検出
センサ部とが分離していることを特徴とする非接
触変位検出器を提供することにより、検出センサ
部の移動を容易にし、且つ検出精度を向上させる
ことを目的とする。以下、本発明の実施例を第2
図に基づき詳細に説明する。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and includes a detection light source section having a visible range laser light source and an optical modulator that modulates the laser light emitted from the laser light source; An optical transmission line that transmits light from the detection light source section to the detection sensor section, a condensing lens that collects the light transmitted through the optical transmission line that is reflected and scattered by the object to be detected, and a position detector. By providing a non-contact displacement detector comprising a detection sensor section having a detection sensor section, the detection light source section and the detection sensor section are separated via the optical transmission path. The purpose is to facilitate the movement of the parts and improve detection accuracy. Hereinafter, a second embodiment of the present invention will be described.
This will be explained in detail based on the figures.

〔実施例〕〔Example〕

第2図は、本発明の一実施例を示す構成図であ
る。先ず本実施例は、可視光を発するレーザ光源
としてのHe−Neガスレーザ(波長632.8nm、出
力5mW)1、光変調器としての中心周波数80M
Hzの音響光学変調器2、反射鏡3、スリツト9、
演算回路14、前記音響光学変調器2を駆動する
音響光学変調器用駆動回路16、冷却用フアン1
7及び集光用レンズ18を有する検出光源部19
と、この検出光源部19から発せられたレーザ光
を後記する検出センサ部22に伝送する光伝送路
としての石英系の約3mの光フアイバ(GI−50)
20と、この光フアイバ20の一端、コリメート
用レンズ21、集光レンズ4及び光半導体位置検
出器5としての一次元位置検出用PSD.S1352(浜
松ホトニクス(株)製、有効受光面積34×2.5mm)を
有する検出センサ部22とからなつている。
FIG. 2 is a configuration diagram showing an embodiment of the present invention. First, this example uses a He-Ne gas laser (wavelength 632.8 nm, output 5 mW) 1 as a laser light source that emits visible light, and a center frequency 80 M as an optical modulator.
Hz acousto-optic modulator 2, reflector 3, slit 9,
an acousto-optic modulator drive circuit 16 for driving the acousto-optic modulator 2; a cooling fan 1;
7 and a detection light source section 19 having a condensing lens 18
And, a quartz-based optical fiber (GI-50) with a length of about 3 m serves as an optical transmission path for transmitting the laser light emitted from the detection light source section 19 to the detection sensor section 22, which will be described later.
20, one end of this optical fiber 20, collimating lens 21, condensing lens 4, and one-dimensional position detection PSD.S1352 (manufactured by Hamamatsu Photonics Co., Ltd., effective light receiving area 34 x 2.5 mm).

本実施例によれば、先ず、He−Neガスレーザ
1から出射された632.8nmのレーザ光6は、音響
光学変調器2によつて変調周波数2kHzで変調さ
れ、透過光7と回折光8に分離される。透過光7
は、スリツト9の壁によつて遮断され、回折光8
はスリツト9を通過して、集光用レンズ18によ
つて、検出光源部19と検出センサ部22とを結
ぶ光フアイバ20に結合され伝搬する。そして、
検出センサ部22内の光フアイバ20の一端より
出射した回折光8は、コリメート用レンズ21に
よつてコリメート光23として、被検出物10の
光照射点11に照射され、一部反射・散乱され
る。なお、被検出物10が、容易に光を反射・散
乱する物体でなければ、被検出物10の光照射点
11に、反射・散乱する手段を処せばよい。次
に、反射・散乱した光の一部12と被検出物10
の周囲の背景光は、集光レンズ4によつて光半導
体位置検出器5の受光面上の集光点13に集光さ
れ、従来と同様にして演算回路14によつて被検
出物10の位置が計算される。
According to this embodiment, first, a 632.8 nm laser beam 6 emitted from a He-Ne gas laser 1 is modulated by an acousto-optic modulator 2 at a modulation frequency of 2 kHz, and separated into transmitted light 7 and diffracted light 8. be done. Transmitted light 7
is blocked by the wall of the slit 9, and the diffracted light 8
The light passes through the slit 9 and is coupled by the condensing lens 18 to the optical fiber 20 connecting the detection light source section 19 and the detection sensor section 22 and propagates. and,
The diffracted light 8 emitted from one end of the optical fiber 20 in the detection sensor section 22 is irradiated as collimated light 23 by the collimating lens 21 to the light irradiation point 11 of the detected object 10, and is partially reflected and scattered. Ru. Note that if the object to be detected 10 is not an object that easily reflects and scatters light, the light irradiation point 11 of the object to be detected 10 may be provided with means for reflecting and scattering light. Next, a part 12 of the reflected/scattered light and the object 10 to be detected are
The surrounding background light is focused by the condensing lens 4 onto a condensing point 13 on the light receiving surface of the optical semiconductor position detector 5, and is detected by the arithmetic circuit 14 of the detected object 10 in the same way as in the conventional case. The position is calculated.

以上、本実施例によれば、検出光源部と検出セ
ンサ部を一ケース内に収容した従来の非接触変位
検出器と比較して、検出光源部と検出センサ部と
が分離しているので、測定時において、可動させ
るもの(従来は非接触変位検出器それ自体、本実
施例は検出センサ部である。)が軽量となるので、
移動が非常に容易になる。また、音響光学変調器
等に対して必要な光学系の精密な微調整機構を有
する検出光源部は、測定時において、光フアイバ
等の光伝送路を介して検出センサ部のみが移動す
るため、この移動による振動や衝撃の影響を受け
ない。この結果、検出光源部内のアライメントの
ずれによる光量及び光軸の変化を小さくすること
ができ、安定に保持することができるので検出精
度を向上させることができる。さらに、検出セン
サ部には、レーザ光源、音響光学変調器用駆動回
路等の熱源を含んでいないため、光半導体位置検
出器等の位置検出器に対する熱の影響を小さくす
ることができる。
As described above, according to this embodiment, the detection light source section and the detection sensor section are separated, compared to the conventional non-contact displacement detector in which the detection light source section and the detection sensor section are housed in one case. During measurement, the movable object (conventionally, the non-contact displacement detector itself, in this embodiment, the detection sensor section) is lightweight;
It becomes very easy to move. In addition, in the detection light source section, which has a precise fine-tuning mechanism for the optical system necessary for an acousto-optic modulator, etc., only the detection sensor section moves through an optical transmission path such as an optical fiber during measurement. It is not affected by vibration or shock caused by this movement. As a result, changes in the amount of light and the optical axis due to misalignment within the detection light source section can be reduced, and the detection accuracy can be improved because it can be stably maintained. Furthermore, since the detection sensor section does not include a heat source such as a laser light source or an acousto-optic modulator drive circuit, the influence of heat on a position detector such as an optical semiconductor position detector can be reduced.

本発明は、前記実施例に限らず下記のものであ
つてもよい。先ず、可視域のレーザ光源として、
He−Neガスレーザを用いたが、これに限定され
ることなく、例えばHe−Cdガスレーザ等のレー
ザ光を発するレーザ光源でもよく、望ましくは、
視感度の高い波長400nm〜700nmのレーザ光源
がよい。次に、光変調器は、電気光学効果による
光変調器、磁気光学効果による光変調器等であつ
てもよく、消光比が高く、構成の簡便さから音響
光学変調器が望ましい。次に、位置検出器は光半
導体位置検出器に限らず、光が照射される位置に
よつて、信号を取り出すことができるCCD等の
位置検出器であつてもよい。次に、被検出物に対
する光は、回折光でなくて透過光でもよいが、回
折光の方が消光比が高いため、かつ周囲の背景光
とのS/N比がとりやすいので、回折光の方が望
ましい。次に、光伝送路は、石英系のGI−50の
光フアイバに限らず、プラスチツクフアイバ等の
他の光フアイバでもよい。次に、反射鏡はなくて
もよいが、検出光源部の小型化を所望するとき
は、反射鏡を設けた方がよい。次に、検出光源部
の集光用レンズ、スリツト、検出センサ部のコリ
メート用レンズは、測定対象や測定精度によつ
て、適宜設ければよい。
The present invention is not limited to the above-described embodiments, but may include the following embodiments. First, as a visible range laser light source,
Although a He-Ne gas laser is used, the present invention is not limited to this, and a laser light source that emits laser light such as a He-Cd gas laser may also be used.
A laser light source with a wavelength of 400 nm to 700 nm with high visibility is preferable. Next, the optical modulator may be an optical modulator using an electro-optic effect, an optical modulator using a magneto-optic effect, etc., and an acousto-optic modulator is preferable because it has a high extinction ratio and is simple in configuration. Next, the position detector is not limited to an optical semiconductor position detector, but may be a position detector such as a CCD that can extract a signal depending on the position where light is irradiated. Next, the light to be detected may be transmitted light instead of diffracted light, but since diffracted light has a higher extinction ratio and has an easier S/N ratio with the surrounding background light, diffracted light is more desirable. Next, the optical transmission line is not limited to the quartz-based GI-50 optical fiber, but may be other optical fibers such as plastic fiber. Next, although there is no need for a reflecting mirror, if it is desired to downsize the detection light source section, it is better to provide a reflecting mirror. Next, the condensing lens and slit in the detection light source section and the collimating lens in the detection sensor section may be provided as appropriate depending on the object to be measured and the measurement accuracy.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、検出光源部と検出セン
サ部とを分離し、それらの間に光フアイバ等の光
伝送路を設けることにより、ロボツトアームの誘
導やステージ上での3次元測定等の被検出物にあ
わせて非接触変位検出器の検出センサ部の移動が
極めて容易になり、かつ被検出物の位置等を高精
度で検出できる効果がある。
As described above, according to the present invention, by separating the detection light source section and the detection sensor section and providing an optical transmission path such as an optical fiber between them, it is possible to perform tasks such as guiding a robot arm or performing three-dimensional measurements on a stage. This makes it extremely easy to move the detection sensor section of the non-contact displacement detector in accordance with the object to be detected, and has the effect that the position of the object to be detected can be detected with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の非接触変位検出器を示す構成
図、第2図は本発明の一実施例を示す構成図であ
る。 1……He−Neガスレーザ、2……音響光学変
調器、3……反射鏡、4……集光レンズ、5……
光半導体位置検出器、6……レーザ光、7……透
過光、8……回折光、9……スリツト、10……
被検出物、11……光照射点、12……反射・散
乱光、13……集光点、18……集光用レンズ、
19……検出光源部、20……光フアイバ、21
……コリメート用レンズ、22……検出センサ
部。
FIG. 1 is a block diagram showing a conventional non-contact displacement detector, and FIG. 2 is a block diagram showing an embodiment of the present invention. 1... He-Ne gas laser, 2... Acousto-optic modulator, 3... Reflector, 4... Condensing lens, 5...
Optical semiconductor position detector, 6... Laser light, 7... Transmitted light, 8... Diffracted light, 9... Slit, 10...
Object to be detected, 11... Light irradiation point, 12... Reflected/scattered light, 13... Focusing point, 18... Focusing lens,
19...detection light source section, 20...optical fiber, 21
... Collimating lens, 22 ... Detection sensor section.

Claims (1)

【特許請求の範囲】 1 可視域のレーザ光源と該レーザ光源より発せ
られたレーザ光を変調する光変調器とを有する検
出光源部と、前記レーザ光を前記検出光源部から
検出センサ部に伝送する光伝送路と、被検出物に
よつて反射・散乱された前記光伝送路を透過した
光を集光する集光レンズと位置検出器とを有する
検出センサ部とからなり、かつ前記光伝送路を介
して、前記検出光源部と前記検出センサ部とが分
離していることを特徴とする非接触変位検出器。 2 光伝送路が光フアイバであることを特徴とす
る特許請求の範囲第1項記載の非接触変位検出
器。 3 光変調器が音響光学変調器であることを特徴
とする特許請求の範囲第1項乃至第2項記載の非
接触変位検出器。
[Scope of Claims] 1. A detection light source section having a visible range laser light source and an optical modulator that modulates the laser light emitted from the laser light source, and transmitting the laser light from the detection light source section to a detection sensor section. and a detection sensor section having a position detector and a condensing lens that collects light transmitted through the optical transmission path that is reflected and scattered by an object to be detected; A non-contact displacement detector characterized in that the detection light source section and the detection sensor section are separated via a path. 2. The non-contact displacement detector according to claim 1, wherein the optical transmission path is an optical fiber. 3. The non-contact displacement detector according to claims 1 to 2, wherein the optical modulator is an acousto-optic modulator.
JP9358184A 1984-05-10 1984-05-10 Non-contact displacement detector Granted JPS60237306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9358184A JPS60237306A (en) 1984-05-10 1984-05-10 Non-contact displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9358184A JPS60237306A (en) 1984-05-10 1984-05-10 Non-contact displacement detector

Publications (2)

Publication Number Publication Date
JPS60237306A JPS60237306A (en) 1985-11-26
JPH0226162B2 true JPH0226162B2 (en) 1990-06-07

Family

ID=14086235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9358184A Granted JPS60237306A (en) 1984-05-10 1984-05-10 Non-contact displacement detector

Country Status (1)

Country Link
JP (1) JPS60237306A (en)

Also Published As

Publication number Publication date
JPS60237306A (en) 1985-11-26

Similar Documents

Publication Publication Date Title
US7388674B2 (en) Laser tracking interferometer
US3768910A (en) Detecting the position of a surface by focus modulating the illuminating beam
KR890016361A (en) Broadband photodetection of the transitional motion from the scattering plane.
US4938595A (en) Diffraction photoelectric displacement measuring device
US4813782A (en) Method and apparatus for measuring the floating amount of the magnetic head
US5135307A (en) Laser diode interferometer
JP2755757B2 (en) Measuring method of displacement and angle
US5589939A (en) Laser surveying system
JPS6085302A (en) Length measuring device based on principle of two beam laserinterferometer
EP2793042A1 (en) Positioning device comprising a light beam
JP3302139B2 (en) Measuring device for straightness of moving object
US4929082A (en) Laser linear distance measurement system and apparatus
JPS5548872A (en) Write-in unit for servo signal
JPH0226162B2 (en)
ATE105402T1 (en) POSITION MEASUREMENT DEVICE.
JP2003194518A (en) Laser distance measuring apparatus
JPS632323B2 (en)
JPS588444B2 (en) displacement measuring device
WO2002101327A1 (en) Movement detection speckle interferometer
JPS60253945A (en) Shape measuring instrument
JPS6355035B2 (en)
JPH0875433A (en) Surface form measuring device
JP2928398B2 (en) Multi-dimensional vibrometer
JPH0616088B2 (en) Liquid level measuring device
JPH0338526B2 (en)