JPH02254111A - Method for controlling bellless charging equipment in blast furnace - Google Patents
Method for controlling bellless charging equipment in blast furnaceInfo
- Publication number
- JPH02254111A JPH02254111A JP7184889A JP7184889A JPH02254111A JP H02254111 A JPH02254111 A JP H02254111A JP 7184889 A JP7184889 A JP 7184889A JP 7184889 A JP7184889 A JP 7184889A JP H02254111 A JPH02254111 A JP H02254111A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- opening degree
- charging
- time
- correction amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 19
- 239000002994 raw material Substances 0.000 claims abstract description 42
- 230000001105 regulatory effect Effects 0.000 claims 2
- 238000004364 calculation method Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 13
- 239000000872 buffer Substances 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 2
- 238000012888 cubic function Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は高炉ベルレス装入設備の制御方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for controlling a blast furnace bellless charging equipment.
[従来の技術]
従来高炉ベルレス装入設備の原料流量調整弁(以下FC
Cという)の開度の制御は次の方法によって行われてい
る。[Conventional technology] The material flow rate adjustment valve (hereinafter referred to as FC) of conventional blast furnace bellless charging equipment
The opening degree (referred to as C) is controlled by the following method.
例えば特開昭8CI−4B80B号公報に開示されてい
る制御方法は、原料の排出中に下部バンカー内の重量を
ロードセル等で計測し、目標重量パターンと一致するよ
うにFCCの開度を制御している。For example, the control method disclosed in Japanese Patent Application Laid-Open No. 8CI-4B80B measures the weight inside the lower bunker with a load cell or the like while discharging the raw material, and controls the opening degree of the FCC to match the target weight pattern. ing.
また、特開昭6l−2389H号公報に開示されている
制御方法は、過去の複数チャージの排出時間と設定値と
の差に基づいて開度の修止量を算出し、次回の必要開度
を補正してFCCの開度を制御している。In addition, the control method disclosed in Japanese Patent Application Laid-open No. 6l-2389H calculates the amount of opening correction based on the difference between the discharge time of multiple charges in the past and the set value, and The opening degree of the FCC is controlled by correcting the
また、レザーピングホッパー等の排出時間のブタと下部
バンカーでの排出時間のデータとを複数持ち、FCCの
開度毎にこれらの関係を直線回帰し2、FCCの開度と
上記ホッパーとの関係を求め、この関係に基づいてこの
ホッパー等の排出時間からのFCCの開度を制御する制
御方法もある(以下フィードフォワード制御という)。In addition, we have multiple data on the discharge time of the laser ping hopper, etc. and the discharge time at the lower bunker, and linearly regress these relationships for each FCC opening.2. There is also a control method in which the opening degree of the FCC is controlled from the discharge time of the hopper etc. based on this relationship (hereinafter referred to as feedforward control).
[発明が解決しようとする課題]
上記のような特開昭80−48306号公報に開示され
ている制御方法では、高圧操業のための炉体と下部バン
カーとが一体化していること、更に、炉内圧の変化が外
乱となるために、下部バンカーの高tl’i度な重量計
測は困難であり、従って十分な制御精度が得られないと
いう問題点がある。[Problems to be Solved by the Invention] The control method disclosed in JP-A No. 80-48306 as described above requires that the furnace body and lower bunker for high-pressure operation are integrated; Since changes in the furnace internal pressure cause disturbances, it is difficult to measure the weight of the lower bunker at a high degree of tl'i, and therefore there is a problem in that sufficient control accuracy cannot be obtained.
また、特開昭11iI−238906号公報に開示され
ている制御方法では、得られた修正データを次回の制御
データに利用するので、原料の性状変化に伴うFCGの
流量特性変化に追従するのは困難であった。更に、フィ
ードフォワード制御においては、原料の性状変化に追従
できるか、レザーピングポツパー等の排出時間とFCC
関係式の精度により制御精度か決定され、十分な精度が
得られていなかった。In addition, in the control method disclosed in JP-A No. 11iI-238906, the obtained corrected data is used for the next control data, so it is difficult to follow changes in FCG flow characteristics due to changes in raw material properties. It was difficult. In addition, in feedforward control, it is necessary to check whether it is possible to follow changes in the properties of raw materials, and to check the discharge time and FCC of laser pins, etc.
Control accuracy was determined by the accuracy of the relational expression, and sufficient accuracy was not obtained.
この発明は、かかる問題点を解決するためになされたも
のてあり、FCGの開度を高精度に制御し、原1−1装
入開始点と終了点とを一致させることを可能にした高炉
ベルレス装入設備の制御方法を得ることを目的とする。This invention was made in order to solve such problems, and is a blast furnace that can control the opening degree of the FCG with high precision and make it possible to match the starting point and ending point of raw material 1-1 charging. The purpose is to obtain a control method for bellless charging equipment.
[課題を解決するための手段]
この発明に係る高炉ベルレス装入設備の制御方法は、実
績に基づく装入速度とFCCの開度との関係から基準開
度関数を発生する工程と、今回装入する原料の重量と旋
回シュータによる旋回数とから目標装入速度を求める工
程と、基準開度関数と目標装入速度とからFCCの基準
開度を求める工程とを有する。[Means for Solving the Problems] The control method for blast furnace bellless charging equipment according to the present invention includes a step of generating a reference opening degree function from the relationship between the charging speed and the opening degree of the FCC based on actual performance, and The method includes a step of determining a target charging speed from the weight of the raw material to be input and the number of turns by the rotating shooter, and a step of determining a standard opening of the FCC from the standard opening function and the target charging speed.
更に、前回の装入速度、前回の目標装入速度及び基準開
度関数並びに前回のフィードバック補正量に基づいてフ
ィードバック補正量を求める工程と、実績に基づくホッ
パーからの原料の排出重量と排出時間とから両者の関係
を示す近似式を求める]二程と、今回装入される原料の
ホッパーからの排出重量、排出時間及び前記近似式に話
づいてフィードフォワード補正量を求める工程とを有す
る。Furthermore, there is a step of calculating the feedback correction amount based on the previous charging speed, the previous target charging speed, the reference opening function, and the previous feedback correction amount, and the process of calculating the weight and time of material discharged from the hopper based on the actual results. An approximate expression representing the relationship between the two is obtained from the above] and a step of obtaining a feedforward correction amount based on the weight and time of discharge of the raw material to be charged this time from the hopper, and the approximate expression.
更に、FCGの基準開度、フィードバック補正量及びフ
ィードフォワード補正量に基づいてFCCの開度指令値
を求め、この開度指令値に基づいてFCCの開度を調整
する工程ををする。Furthermore, a step of determining an FCC opening command value based on the FCG reference opening, feedback correction amount, and feedforward correction amount, and adjusting the FCC opening based on this opening command value is performed.
[作 用]
この発明においては、FCCの基準開度を求める他に、
過去の実績に基づいてフィードバック補正量を求めると
共に、今回装入される原料の性状に基づいたフィードフ
ォワード補正量を求めて基準開度を補正してFCCの開
度指令値を求める。[Function] In this invention, in addition to determining the standard opening degree of the FCC,
A feedback correction amount is determined based on past results, a feedforward correction amount is determined based on the properties of the raw material to be charged this time, and the reference opening is corrected to determine the FCC opening command value.
そして、このFCGO開度指令値に基づいてFCCの開
度を調整する。このFCCの開度調整により原料の装入
速度か適切に制御される。Then, the opening degree of the FCC is adjusted based on this FCGO opening degree command value. By adjusting the opening of the FCC, the charging speed of raw materials can be appropriately controlled.
[実施例]
第1図はこの発明の一実施例に係る方法を実施した制御
装置及びその関連設備の説明図ある。図において、(1
0)は下部バンカー、(1j)は下部バンカー(10)
の下に設けられたFCCである。(12)は高炉の炉頂
て、(13)は炉内に設けられた旋回シュツである。(
14)は秤量ホッパーであり、秤量ホッパー(14)よ
り排出された原料はベルトコンベア(図示せず)により
搬送されて下部バンカー(10)に搬入され、F CC
(11)を介して炉内の旋回ンユタ(]3)の旋回動作
により炉内に装入される。[Embodiment] FIG. 1 is an explanatory diagram of a control device and related equipment that implement a method according to an embodiment of the present invention. In the figure, (1
0) is the lower bunker, (1j) is the lower bunker (10)
This is the FCC established under the FCC. (12) is the top of the blast furnace, and (13) is a rotating shaft installed inside the furnace. (
14) is a weighing hopper, and the raw material discharged from the weighing hopper (14) is conveyed by a belt conveyor (not shown) and carried into the lower bunker (10), where it is transferred to the F CC
(11) and is charged into the furnace by the rotating operation of the rotating unit (3) in the furnace.
(20)はFCG開度計て、F CG (11)の開度
を検出する。(21)は原料通過センサで、原料装入の
開始及び終了を検出する。(22)はロードセルで、秤
量ホッパー(14)から排出される原料の重量を検出す
る。(20) measures the FCG opening degree and detects the opening degree of FCG (11). (21) is a raw material passage sensor that detects the start and end of raw material charging. (22) is a load cell that detects the weight of the raw material discharged from the weighing hopper (14).
(30)は装入時間計測回路で、原料通過センサ(2]
)の出力に基づいて原料の装入時間を計測する。(30) is the charging time measurement circuit, and the raw material passage sensor (2)
) The raw material charging time is measured based on the output.
(31)は装入速度演算回路で、ロードセル(22)か
らの装入重量及び装入時間計測回路(30)からの装入
時間に基づいて原料の装入速度を演算する。(31) is a charging speed calculating circuit which calculates the charging speed of the raw material based on the charging weight from the load cell (22) and the charging time from the charging time measuring circuit (30).
(50)はデータファイルで、装入速度g−1側回路(
31)からの装入速度情報及びFCC開度11(20)
からの開度情報を蓄積し、装入速度とFCCの開度との
実績データを常時ファイルしていく。このときのデータ
ファイルの内容は例えば原料銘柄別それぞれが第2図に
示すように設定されたF CC(11)の開度区間(1
0’)につき0.1゛毎にその装入速度データをファイ
ルしである。(50) is the data file, charging speed g-1 side circuit (
Charging speed information from 31) and FCC opening degree 11 (20)
Accumulate opening degree information from the FCC and constantly file performance data of charging speed and FCC opening degree. The contents of the data file at this time are, for example, the opening range (1
0'), the charging speed data is filed every 0.1''.
(51)は演算装置であり、データファイル(50)の
データに基づいて、各開度ことに装入速度の平均値を求
め、次に第3図(A)に示すように、装入速度に対する
開度の散布図を作成し、散布図を第3図(B)に示すよ
うに曲線(例えば3次関数)に近似した基準開度関数を
発生させる。例えば次式に示す関数を発生ずる。(51) is a calculation device, which calculates the average value of the charging speed for each opening degree based on the data of the data file (50), and then calculates the charging speed as shown in FIG. 3(A). A scatter diagram of the opening degree is created, and a reference opening function is generated that approximates the scatter diagram to a curve (for example, a cubic function) as shown in FIG. 3(B). For example, a function shown in the following equation is generated.
θ=av +bv2+cv+d (1)(3
2)は]」標速度演算回路であり、装入重量と予め設定
された旋回シュータの旋回数に基ついて、VQ−装入重
量−(に定旋回数×1旋回時間)により、目標装入速度
VQを求める。(33)は基準開度演算回路であり、目
標装入速度voと演算装置(51)からの基準開度関数
とに基づいて次式によりFCCの基準開度θ0を演算す
る。θ=av +bv2+cv+d (1)(3
2) is a target speed calculation circuit, which calculates the target charging by VQ - charging weight - (fixed number of turns x 1 turning time) based on the charging weight and the preset number of turns of the turning shooter. Find the speed VQ. (33) is a reference opening calculation circuit, which calculates the reference opening θ0 of the FCC according to the following equation based on the target charging speed vo and the reference opening function from the calculation device (51).
vo =avo +bvo2+cvo +d (2
)(35)は切り替えスイッチであり、基準開度演算回
路(33)からの基準開度θ0を制御信号として自動制
御する場合と、自動制御によらず所定のFCGの設定開
度によって制御する場合とを択一的に選択する。この実
施例では自動制御が選択されている場合について以下説
明する。(35)及び(3G)はそれぞれバッファであ
り、バッファ(35)には前回の実績の装入速度が記憶
され、バッファ(36)には前回の目標装入速度が記憶
される。vo = avo + bvo2 + cvo + d (2
) (35) is a changeover switch, which is used for automatic control using the reference opening θ0 from the reference opening calculation circuit (33) as a control signal, and for control based on a predetermined FCG opening setting without automatic control. Select alternatively. In this embodiment, a case where automatic control is selected will be described below. (35) and (3G) are buffers, respectively. The buffer (35) stores the previous actual charging speed, and the buffer (36) stores the previous target charging speed.
(37)はフィートハック補正量演算回路(以下FB補
正量演算回路という)であり、以下の演算によりフィー
ドバック補正量(以下FB補正量という)Δθ1を求め
る。(37) is a foot-hack correction amount calculation circuit (hereinafter referred to as FB correction amount calculation circuit), which calculates the feedback correction amount (hereinafter referred to as FB correction amount) Δθ1 by the following calculation.
第4図はFB補正量△θJを求めるための説明図であり
、先ず前回の同一銘柄の装入時の誤差△■を、ハソファ
(35)、 (3G)からのデータを読み出して次式
により求める。Fig. 4 is an explanatory diagram for calculating the FB correction amount △θJ. First, the error △■ during the previous charging of the same brand is calculated by reading the data from Hasofa (35) and (3G) and using the following formula. demand.
△V−前回の実績装入速度
前回の目標装入速度 (3)
そして、この△Vと今回の目標装入速度VQに対する基
準開度θo (−f (vo))とから次式により誤
差補正後の基準開度00°を求める。△V - Previous actual charging speed Previous target charging speed (3) Then, from this △V and the reference opening degree θo (-f (vo)) for the current target charging speed VQ, correct the error using the following formula. Determine the subsequent reference opening degree of 00°.
θ0’−f(vo−△V ) (4)基
準開度補正量(理論値)Δθ01を次式により求める。θ0'-f(vo-ΔV) (4) The standard opening degree correction amount (theoretical value) Δθ01 is determined by the following formula.
△θo1−θ0°−θo(5)
次に、この△θo1、補正ゲインG1 (0〜1)及び
前回のFB補正量により、FB補正瓜△θ1を求める。Δθo1−θ0°−θo(5) Next, the FB correction value Δθ1 is determined from this Δθo1, the correction gain G1 (0 to 1), and the previous FB correction amount.
△θ1=G1.X△θ01+前回FB補正量(3B)は
排出時間計1tIIJ回路であり、ロードセル(22)
の出力に基づいて原料の排出時間を計flll+する。Δθ1=G1. X△θ01 + previous FB correction amount (3B) is the discharge time meter 1tIIJ circuit, and the load cell (22)
The raw material discharge time is calculated based on the output of fllll+.
(52)はデータファイルであり、ujlff時1nノ
測定回路(38)からの排出時間情報及びロードセル(
22)からのυ1出重量情報を格納し、両者の関係につ
いてのデータを蓄積していく。このときのデータの内容
は例えば第5図に示すとおりてあり、原料銘柄別に巻下
秤ユ器の排出重量−排出時1jjlの関係について、最
新のデータが原料銘柄別に例えば3000個ずつ格納さ
れている。(52) is a data file that contains discharge time information from the ujlff 1n measuring circuit (38) and the load cell (
22) is stored, and data regarding the relationship between the two is accumulated. The contents of the data at this time are, for example, as shown in Fig. 5, and the latest data is stored for each raw material brand, for example, 3000 pieces, regarding the relationship between the discharge weight of the lowering scale and the discharge weight of 1jjl for each raw material brand. There is.
(53)は演算回路であり、データファイル(52)の
データに基づいて、第6図(A)に示すように重量に対
する排出時間の散布図を作成し、第6図(B)に示すよ
うに散布図を例えば次式に示すように直線近似する。(53) is an arithmetic circuit that creates a scatter diagram of discharge time against weight as shown in Figure 6 (A) based on the data in the data file (52), and as shown in Figure 6 (B). For example, the scatter diagram is approximated by a straight line as shown in the following equation.
ω−αt+β (7)(39)
はフィードフォワード補正量演算回路(以下FF補正量
演算回路という)であり、今回の装入重量ω′及び排出
時間t°に基づいて今回の排出速度α”を次式により求
める。ω−αt+β (7) (39)
is a feedforward correction amount calculation circuit (hereinafter referred to as FF correction amount calculation circuit), which calculates the current discharge speed α'' based on the current charging weight ω′ and the discharge time t° using the following equation.
α′=(ω゛−β) / t ’ (8
)次に、この排出速度α゛の標準JJl出速変速度対す
る割合α′/αから、今回の目標装入速度v。α'=(ω゛-β) / t' (8
) Next, the current target charging speed v is determined from the ratio α′/α of this discharge speed α′ to the standard JJl output speed change speed.
に対する基準開度Oo (−f (vo ) )で装
入した場合の予t1すされる速度■°を求め、更に予測
される速度誤差△Vを求める。The expected speed ■° of t1 when charging is performed at the standard opening degree Oo (-f (vo)) for the reference opening degree Oo (-f (vo)) is determined, and the predicted speed error ΔV is also determined.
v =voxa’/a (9)Δv
=v’ −vo (10)次に
、この△VからFB補正量演算と同様の演算を行なって
補正量(理論値)△θo2を求め、この△θ02と補正
ゲインG2(0〜1)とにより、フィードフォワード補
正量(以下FF補正量という)△θ2を求める。v = voxa'/a (9) Δv
= v' -vo (10) Next, from this △V, perform the same calculation as the FB correction amount calculation to find the correction amount (theoretical value) △θo2, and calculate this △θ02 and the correction gain G2 (0 to 1). The feedforward correction amount (hereinafter referred to as FF correction amount) Δθ2 is determined by the following.
△θ2−G2 X△θ02 (i l
)(40)は演算・制御回路であり、選択スイッチ(
34)で選択された基準開度θ0とFB補正量演算回路
(37)からのFB補正量△θ1とFF補正量演算回路
(39)からのFF補正量△θ2とを加算して、その加
算された信号(=θ0+θI+02)をFCCの開度指
令値としてその駆動装置(図示せず)に出力する。△θ2−G2 X△θ02 (i l
) (40) is an arithmetic/control circuit, and a selection switch (
Add the reference opening θ0 selected in step 34), the FB correction amount △θ1 from the FB correction amount calculation circuit (37), and the FF correction amount △θ2 from the FF correction amount calculation circuit (39), and perform the addition. The resulting signal (=θ0+θI+02) is output to the drive device (not shown) as the FCC opening command value.
以上のように構成された実施例においては、ブタファイ
ル(5o)には装入速度とFCCの開度との関係を示す
実績データが蓄積されており、演算装置(51)はその
データに基づいて(1)式により基準開度関数を求め、
基準開度発生回路(33)はその基準開度関数と目標装
入速度VQに基づいて(2)式によりFCG基準開度θ
0を求める。In the embodiment configured as described above, the pig file (5o) has accumulated performance data showing the relationship between the charging speed and the opening degree of the FCC, and the calculation device (51) operates based on the data. Find the standard opening function using equation (1),
The reference opening degree generation circuit (33) calculates the FCG reference opening degree θ using equation (2) based on the reference opening degree function and the target charging speed VQ.
Find 0.
FB補正量演算回路(37)はバッファ(37)、 (
311t)からの前回の装入速度及び前回の]]標速度
との差異を(3)式より求め、更に(4)〜(6)式に
よりFB補正量△θ1を求める。The FB correction amount calculation circuit (37) includes a buffer (37), (
The difference between the previous charging speed from 311t) and the previous []] target speed is determined by equation (3), and the FB correction amount Δθ1 is determined by equations (4) to (6).
一方、データファイル(52)は秤量ポツパー(I4)
の排出重量と排出時間との関係を示す実績データを蓄積
しており、演算回路(53)はそのデータに基づいて(
7)式により排出時間と排出重量との関係を示す近似式
を得る。そして、FF補正量演算回路(39)は(4)
、 (5)、 (8)〜(lO)式によりFF補正量△
θ2を求める。On the other hand, the data file (52) is the weighing potper (I4).
Actual data showing the relationship between the discharge weight and the discharge time is accumulated, and the arithmetic circuit (53) calculates (
7) An approximate expression representing the relationship between the discharge time and the discharge weight is obtained. Then, the FF correction amount calculation circuit (39) is (4)
, (5), (8) ~ (lO) formula, FF correction amount △
Find θ2.
以」二のようにして求められたFCG基準開度θo、F
B補正量△θ1及びFF補正量Δθ2は演算・制御回路
(40)で加算されて、その加算値はFCC開度指令値
としてF CG (11)の駆動回路(図示せず)に供
給され、F CC(1,1,)の開度を調コ1
整する。The FCG standard opening degree θo, F obtained as described in
The B correction amount Δθ1 and the FF correction amount Δθ2 are added by the calculation/control circuit (40), and the added value is supplied as the FCC opening command value to the drive circuit (not shown) of the FCG (11). Adjust the opening of FC (1, 1,).
以上のようにして、前回の実績に基づいてFB補正量θ
1を求めてそれによりフィードバック制御を行って過去
の実績による補正を行い、更に、今回装入される原料の
性状に基づいてFF補正量θ2を求めてそれによりフィ
ードフォワード補正をするようにしたので、原料の装入
速度が適格に制御でき、原料の装入開始点と終了点とを
一致させることができ、原料を均一に装入することがで
きる。As described above, the FB correction amount θ is calculated based on the previous performance.
1 is calculated, feedback control is performed based on this, and correction is performed based on past results.Furthermore, the FF correction amount θ2 is calculated based on the properties of the raw material to be charged this time, and feedforward correction is performed using that. The raw material charging speed can be properly controlled, the raw material charging start point and the raw material charging end point can be matched, and the raw material can be charged uniformly.
なお、演算囲路(51)、 (53)の出力は毎回出
力する必要はなく、データファイル(50) (52)
にある程度新たなデータが蓄積された段階で出力させれ
ばよく、その場合には適当なタイミングでスイッチ(S
l)、 (S2)を閉成すればよい。また、FB補正
量及びFF補正量による補正をしない場合には、スイッ
チ(S;3)、 (S4)を開成する。Note that it is not necessary to output the outputs of the calculation circuits (51) and (53) every time, and the outputs of the data files (50) (52)
It is only necessary to output the data after a certain amount of new data has been accumulated in the
l), (S2) should be closed. Further, when the correction using the FB correction amount and the FF correction amount is not performed, the switches (S; 3) and (S4) are opened.
また、上記実施例において、第1図のデータファイル(
50)、 (52)及び演算回路(51)、 (5
3)はプロセス計算機に含まれ、それ以外は装入制御装
置に含まれた構成にすることができるが、その場合には
各演算回路等はそれ自体をハード構成でも実現できるが
、コンピュータのソフトウェアによっても実現できるこ
とはいうまでもない。In addition, in the above embodiment, the data file (
50), (52) and arithmetic circuits (51), (5
3) can be included in the process computer, and the others can be included in the charging control device. In that case, each arithmetic circuit, etc. can be realized by itself as a hardware configuration, but it is possible to implement it in the computer software. Needless to say, this can also be achieved by
[発明の効果]
以上のようにこの発明によれば、過去の実績に基づいて
FB補正量を求めると共に、今回装入される原料の性状
に基づいたFF補正量を求めて基準開度を補正するよう
にしたので、原料の性状に応じた制御が可能になってお
り、高精度な制御が可能になっている。[Effects of the Invention] As described above, according to the present invention, the FB correction amount is determined based on past results, and the FF correction amount is determined based on the properties of the raw material to be charged this time to correct the standard opening degree. This makes it possible to control according to the properties of the raw material, making highly accurate control possible.
第1図はこの発明の一実施例に係る方法を実施した装置
及びその関連設備を示す説明図、第2図はある原料銘柄
におけるFCC開度と装入速度との関係を示したデータ
ファイルの内容説明図、第3図(A)(B)は平均装入
速度とFCC開度との関係を示した特性図、第4図はF
B補正値を求めるだめの説明図、第5図は排出重量と排
出時間との関係を示したデータファイルの説明図、第6
図(A)(B)はυ1出時間と排出重量との関係を示し
た特性図、第7図は今回の原料の排出重量と排出時間と
の関係を求めるための説明図である。
図において、(10)は下部バンカー、(11)はFC
C,(+3)は旋回シュータ、(14)はホ・ソノクー
である。Fig. 1 is an explanatory diagram showing an apparatus and related equipment for implementing a method according to an embodiment of the present invention, and Fig. 2 is a data file showing the relationship between FCC opening degree and charging speed for a certain raw material brand. Content explanatory diagram, Figure 3 (A) (B) is a characteristic diagram showing the relationship between average charging speed and FCC opening degree, Figure 4 is F
B: An explanatory diagram of how to calculate the correction value. Figure 5 is an explanatory diagram of the data file showing the relationship between discharge weight and discharge time.
Figures (A) and (B) are characteristic diagrams showing the relationship between the evacuation time of υ1 and the discharge weight, and FIG. 7 is an explanatory diagram for determining the relationship between the discharge weight of the raw material and the discharge time. In the figure, (10) is the lower bunker, (11) is the FC
C, (+3) is a rotating shooter, and (14) is a Ho Sonokoo.
Claims (1)
から基準開度関数を発生する工程と、今回装入する原料
の重量と旋回シュータの設定旋回数とから目標装入速度
を求める工程と、基準開度関数と目標装入速度とから原
料流量調節弁の基準開度を求める工程と、 前回の装入速度、前回の目標装入速度及び基準開度関数
並びに前回のフィードバック補正量に基づいてフィード
バック補正量を求める工程と、実績に基づくホッパーか
らの原料の排出重量と排出時間とから両者の関係を示す
近似式を求める工程と、 今回装入される原料のホッパーからの排出重量、排出時
間及び前記近似式に基づいてフィードフォワード補正量
を求める工程と、 原料流量調節弁の基準開度、フィードバック補正量及び
フィードフォワード補正量に基づいて原料流量調節弁の
開度指令値を求め、この原料流量調節弁の開度指令値に
基づいて原料流量調節弁の開度を調整する工程と を有することを特徴とする高炉ベルレス装入設備の制御
方法。[Claims] A step of generating a reference opening function from the relationship between the charging speed based on actual results and the opening of the raw material flow rate control valve, and from the weight of the raw material to be charged this time and the set rotation number of the rotating chute. A step of determining the target charging speed, a step of determining the standard opening of the raw material flow control valve from the standard opening function and the target charging speed, and a step of calculating the previous charging speed, the previous target charging speed, and the standard opening function. There is also a process of calculating the feedback correction amount based on the previous feedback correction amount, a process of calculating an approximate formula showing the relationship between the weight and discharge time of the raw material from the hopper based on the actual results, and a process of calculating the amount of raw material to be charged this time. a step of determining the feedforward correction amount based on the discharge weight and discharge time from the hopper, and the approximate formula; 1. A control method for blast furnace bellless charging equipment, comprising the steps of determining an opening command value and adjusting the opening of a raw material flow rate regulating valve based on the opening command value of the raw material flow rate regulating valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7184889A JPH079006B2 (en) | 1989-03-27 | 1989-03-27 | Blast furnace bellless charging equipment control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7184889A JPH079006B2 (en) | 1989-03-27 | 1989-03-27 | Blast furnace bellless charging equipment control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02254111A true JPH02254111A (en) | 1990-10-12 |
JPH079006B2 JPH079006B2 (en) | 1995-02-01 |
Family
ID=13472370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7184889A Expired - Fee Related JPH079006B2 (en) | 1989-03-27 | 1989-03-27 | Blast furnace bellless charging equipment control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH079006B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103555873A (en) * | 2013-11-18 | 2014-02-05 | 武汉钢铁(集团)公司 | Adjusting method of material flow adjusting valve on furnace top |
CN103589816A (en) * | 2013-11-27 | 2014-02-19 | 四川省达州钢铁集团有限责任公司 | Control method of material flow proportioning valve at blast furnace top |
CN114394445A (en) * | 2022-01-13 | 2022-04-26 | 青岛杰瑞工控技术有限公司 | Port granary intelligent loading and unloading system based on industrial internet |
WO2024043062A1 (en) * | 2022-08-22 | 2024-02-29 | Jfeスチール株式会社 | Material discharge control device and material charging device |
-
1989
- 1989-03-27 JP JP7184889A patent/JPH079006B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103555873A (en) * | 2013-11-18 | 2014-02-05 | 武汉钢铁(集团)公司 | Adjusting method of material flow adjusting valve on furnace top |
CN103589816A (en) * | 2013-11-27 | 2014-02-19 | 四川省达州钢铁集团有限责任公司 | Control method of material flow proportioning valve at blast furnace top |
CN114394445A (en) * | 2022-01-13 | 2022-04-26 | 青岛杰瑞工控技术有限公司 | Port granary intelligent loading and unloading system based on industrial internet |
WO2024043062A1 (en) * | 2022-08-22 | 2024-02-29 | Jfeスチール株式会社 | Material discharge control device and material charging device |
Also Published As
Publication number | Publication date |
---|---|
JPH079006B2 (en) | 1995-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SU1493112A3 (en) | Method of controlling charging of shaft furnace | |
EP0488318B1 (en) | Control method of and apparatus for material charging at top of blast furnace | |
JPH02254111A (en) | Method for controlling bellless charging equipment in blast furnace | |
CN114018382B (en) | Control method for improving weighing precision of weightless scale for batching | |
JP3739018B2 (en) | Raw material charging control method for blast furnace | |
CN102317479A (en) | Be used for adjusting the method and system of the charging process furnace charge flow velocity of shaft furnace | |
JP2005206848A (en) | Method for controlling amount of raw material charged into blast furnace, program therefor and method for operating blast furnace | |
JP2942349B2 (en) | Blast furnace feed control method | |
JPS6151247B2 (en) | ||
JPS59145715A (en) | Controlling method of raw material control gate | |
JPS59229407A (en) | Method for controlling opening degree of flow regulating gate of bell-less blast furnace | |
JPS6137903A (en) | Method for controlling discharge of starting material to be charged into blast furnace | |
JPH0835878A (en) | Stuff feeding device | |
JP2602367B2 (en) | Raw material discharge control method for blast furnace raw material | |
WO2024100771A1 (en) | Raw material charging control device for blast furnace, method for generating opening degree command value, and program | |
JPS60135727A (en) | Correcting method of fall extent of quantitative cutting weighing machine | |
JP2699100B2 (en) | Quantitative filling method | |
JPS58123808A (en) | Charging method of raw material into blast furnace | |
JPS6326036B2 (en) | ||
JP2006265688A (en) | Method for controlling charge of raw materials into blast furnace | |
JPH01212A (en) | How to adjust the opening of the raw material control gate | |
JPH0438804B2 (en) | ||
SU831790A1 (en) | Device for correcting humidity of coke mass | |
JPH0913108A (en) | Operation of blast furnace | |
JPH10197321A (en) | Apparatus for head correction of filling and metering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |