Nothing Special   »   [go: up one dir, main page]

JPH02247590A - Position measurement system - Google Patents

Position measurement system

Info

Publication number
JPH02247590A
JPH02247590A JP6843789A JP6843789A JPH02247590A JP H02247590 A JPH02247590 A JP H02247590A JP 6843789 A JP6843789 A JP 6843789A JP 6843789 A JP6843789 A JP 6843789A JP H02247590 A JPH02247590 A JP H02247590A
Authority
JP
Japan
Prior art keywords
signal
measurement signal
station
mobile station
master station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6843789A
Other languages
Japanese (ja)
Inventor
Masao Ogino
正夫 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6843789A priority Critical patent/JPH02247590A/en
Publication of JPH02247590A publication Critical patent/JPH02247590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To narrow the band of a signal and to take a measurement with high position accuracy by calculating the distances from a master station and slave stations to a mobile station from time differences which are obtained at the respective stations and then determining the position of the mobile station. CONSTITUTION:When a known time difference ts1 is generated because of the distance between the master station 1 and a 1st slave station 3 and a known time difference ts2 is generated because of the distance the master station 1 and a 2nd slave station 4, the distances l1, l2, and l3 from the master station 1 and 1st and 2nd slave stations 3 and 4 are represented by specific expressions. The time differences ts1, ts2, and t0 are already known and times t1, t2, and t3 are measured to obtain the distances l1, l2, and l3. Thus, the band of sent signals may be narrow because the master station 1 and mobile station 2 send the signals which are amplitude-modulated with a sine wave. Further, the master station 1 and slave stations 3 and 4 measure the time differences with signals obtained by multiplying a measurement signal and a delayed measurement signal, so the time differences are measured with high accuracy and the position accuracy of the mobile station 2 which is determined by the time differences can be improved.

Description

【発明の詳細な説明】 〔概要〕 移動局の位置を謝定博る位置測定システムに1」し、 信号の帯域が狭くでき、位置精度が^いことを目的とし
、 親局より正弦波の測定信号の振幅変調信号を送信し、移
動局で該測定信号の振幅変調信号を受信して所定時間遅
延した赴延測定仁号の振幅変調信号を送信し、該親局で
該遅延測定信号の振[1変調信号を受信して遅延測定信
号を復調し、該測定信号を逓倍した信号とII関した遅
i11測定信号を逓倍した信号との時@差を計測し、複
数の従局で該測定信号及び遅延測定信号の振幅変調信号
を受信して測定信号及び遅延測定信号を1a調し、復調
した測定信号を逓倍した信号と5tabた遅延測定信号
を逓倍した信号との時n差を4測し、該lI8及び複数
の従局夫々で時IIl差により移動局までの距離を算出
して移動局の位置を決定するよう構成する。
[Detailed Description of the Invention] [Summary] The purpose of this invention is to use Xie Dingbo's position measurement system to determine the position of a mobile station, narrow the signal band, and increase position accuracy. The mobile station receives the amplitude modulated signal of the measurement signal and transmits the amplitude modulation signal of the dispatch measurement signal delayed by a predetermined time, and the master station receives the amplitude modulation signal of the measurement signal. 1 modulation signal is received, the delayed measurement signal is demodulated, the time difference between the signal obtained by multiplying the measurement signal and the signal obtained by multiplying the delayed i11 measurement signal related to II is measured, and multiple slave stations demodulate the measurement signal and the delay measurement signal. Receive the amplitude modulation signal of the delay measurement signal, modulate the measurement signal and the delay measurement signal by 1a, measure the time difference of 4 times between the signal obtained by multiplying the demodulated measurement signal and the signal obtained by multiplying the delay measurement signal by 5tab, The mobile station is configured to calculate the distance to the mobile station based on the time IIl difference in the II8 and each of the plurality of slave stations, and determine the position of the mobile station.

〔産業上の利用分野〕[Industrial application field]

本発明は位置測定システムに関し、移動局の位置を測定
する位置測定システムに関する。
TECHNICAL FIELD The present invention relates to a positioning system, and more particularly, to a positioning system for determining the position of a mobile station.

従来より自動車1人等の移動局の位置を測定する位ff
測定システムがある。このようなシステムは規模が大き
くならず、かつ位置W!度が高いことが要望されている
Conventionally, the position of a mobile station such as a single person in a car is measuredff
There is a measurement system. Such a system does not grow in scale, and the location W! A high level of accuracy is required.

(従来の技術) 従来の位置測定システムとしては、 (1)移動物体にGPS (グローバル・ボジショニン
グ・システム)を用いたvIJ星からの位1l111報
信号を受信するGPS受信機を設け、少なくとも3個の
GPS衛星の位1情報信号により位置を測定する方法、 ■ 移動物体が出力するVHF又はLJHFの信号を少
なくとも2ケ所の固定局の方向探知器で受信し、この2
ケ所の固定局からの移動物体の方向の交点で位置を測定
する方法、 ■ 少なくとも3ケ所のロラン局またはデツカ局のパル
ス信号を移動物体で受信し、各局のパルス信号同の位相
差により各局までの距離を求める双曲線航法により位置
を測定する方法、 等がある。
(Prior Art) As a conventional position measurement system, (1) a moving object is equipped with a GPS receiver that receives position signals from the vIJ star using GPS (Global Positioning System), and at least three A method of measuring the position using the position information signals of several GPS satellites;
A method of measuring the position at the intersection of the directions of a moving object from two fixed stations. ■ The moving object receives pulse signals from at least three Loran stations or Detsuka stations, and the pulse signals from each station are measured using the same phase difference. There is a method of measuring the position by hyperbolic navigation to find the distance between.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の巾の方法は複数の衛星を必要とするためシステム
全体が大規模になり、コストが非常に高いという問題が
ある。
Conventional satellite methods require multiple satellites, making the entire system large-scale and costly.

■の方法は方向探知器の精度によって移動物体と固定局
との距離が大きくなると位M1a度が悪化するという四
題がある。
Method (2) has four problems: the M1a degree worsens as the distance between the moving object and the fixed station increases, depending on the accuracy of the direction finder.

■の方法は位置精度を上げようとするとパルスのエツジ
が急峻でなければならず送信するパルス信号の帯域幅に
よって位置精度が制限されるという問題があった。
In method (2), if an attempt is made to improve the positional accuracy, the edge of the pulse must be steep, and the positional accuracy is limited by the bandwidth of the pulse signal to be transmitted.

本発明は上記の点に鑑みなされたもので、信号の帯域が
狭くでき、位置精度が高い位置測定システムを提供する
ことを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a position measurement system with a narrow signal band and high position accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明シス゛jムの原理図を示す。 FIG. 1 shows a diagram of the principle of the system of the present invention.

同図中、親局1は正弦波の測定信号の振幅変調信号を送
信する。
In the figure, a master station 1 transmits an amplitude modulated signal of a sine wave measurement signal.

移動局2は測定信号の振幅変調信号を受信して所定II
問遅延した遅延測定信号の振幅変alll信号を送信す
る。
The mobile station 2 receives the amplitude modulation signal of the measurement signal and performs a predetermined II
The amplitude variation signal of the delayed delay measurement signal is transmitted.

親局1は遅延測定信号の振幅変調信号を受信して遅延測
定信号を復調し、測定信号を逓倍した信号とW輿した遅
延測定信号を逓倍した信号との時n差を計測する。
The master station 1 receives the amplitude modulation signal of the delay measurement signal, demodulates the delay measurement signal, and measures the time difference between the signal obtained by multiplying the measurement signal and the signal obtained by multiplying the delayed measurement signal.

第1.第2の従局3.4は測定信号及び遅延測定信号の
振幅変調信号を受信して測定信号及び遅延測定信号を1
!漏し、復調した測定信号を逓倍した信号とW講した遅
延測定信号を逓倍した信号との時間差を4測する。
1st. The second slave station 3.4 receives the amplitude modulation signal of the measurement signal and the delay measurement signal, and converts the measurement signal and the delay measurement signal into one signal.
! The time difference between the signal obtained by multiplying the leaked and demodulated measurement signal and the signal obtained by multiplying the delayed measurement signal obtained by W correction is measured four times.

親局1及び複数の従局3.4夫々で得た時間差により夫
々から移動82までの距離t’l+、lz+L3を算出
して移動局2の位置を決定する。
The position of the mobile station 2 is determined by calculating distances t'l+ and lz+L3 from each of the master station 1 and the plurality of slave stations 3.4 to the mobile station 82 based on the time differences obtained from each of the master station 1 and the plurality of slave stations 3.4.

〔作用〕[Effect]

本発明においては、親局1.移動82は正弦波で振幅変
調した信号を送信するため、送信信号の帯域が狭くて済
む、また、親局1及び第1.第2の従局3,4夫々は測
定信号及び遅延測定信号を逓倍した信号により時間差を
測定するため時間差を高m度に測定でき、時間差から決
定される移動局2の位lI精度が向上する。
In the present invention, the master station 1. Since the mobile unit 82 transmits a signal whose amplitude is modulated with a sine wave, the band of the transmission signal can be narrow. Since the second slave stations 3 and 4 each measure the time difference using a signal obtained by multiplying the measurement signal and the delay measurement signal, the time difference can be measured to a high degree, and the accuracy of the position of the mobile station 2 determined from the time difference is improved.

(実施例) 第2図は親局の一実施例のブロック図を示す。(Example) FIG. 2 shows a block diagram of one embodiment of the master station.

同図中、llll11部20は高安定基準信号発振器2
4でtIIJiIIされた所定周波数(例えば10KH
z)の測定信号を出ツノし、この測定信号はAM変調器
(MOD)21及び逓信器29に供給され、また111
11部20は測定信号に同期したスイッチング信号をス
イッチ(SW)22に供給する。
In the figure, llll11 section 20 is a highly stable reference signal oscillator 2.
A predetermined frequency (for example, 10KH
z), and this measurement signal is supplied to an AM modulator (MOD) 21 and a transmitter 29, and is also supplied to an AM modulator (MOD) 21 and a transmitter 29.
11 section 20 supplies a switching signal synchronized with the measurement signal to a switch (SW) 22.

AM変調器21には発振器24の出力する周波数01の
高安定基準信号を分周Ia25で分周した周波数例えば
10MHzの分局信号が供給されており、この分周信号
を測定信号で振幅変II (AM変調)して混合器(M
IX)26に供給する。混合器26は基準信号に被AM
!![信号を加!s混合して周波数変換を行ない、ここ
で得られたLIHF又はVHF帯域の周波数f1の高周
波信号は帯域フィルタ27で不要周波数成分を除去され
、かつアンプ28で増幅されてスイッチ22に供給され
る。スイッチ22はスイッチング信号の供給時にアンプ
28をアンテナ30に接続し上記高周波信号がアンテナ
30より送信される。
The AM modulator 21 is supplied with a divided signal with a frequency of, for example, 10 MHz, which is obtained by dividing the highly stable reference signal of frequency 01 outputted from the oscillator 24 by a frequency division Ia 25, and this frequency divided signal is amplitude-modified by the measurement signal II ( AM modulation) and mixer (M
IX) 26. The mixer 26 receives AM from the reference signal.
! ! [Add signal! s mixing and frequency conversion, and the obtained high frequency signal of frequency f1 in the LIHF or VHF band has unnecessary frequency components removed by a bandpass filter 27, is amplified by an amplifier 28, and is supplied to the switch 22. The switch 22 connects the amplifier 28 to the antenna 30 when a switching signal is supplied, and the high frequency signal is transmitted from the antenna 30.

スイッチ22はスイッチング信号の供給がないときアン
テナ30を帯域フィルタ31に接続し、このときアンテ
ナ30で受信された受信高周波信号は帯域フィルタ31
.アンプ32を通して混合器33に供給され、ここで基
準信号を減Il混合して周波数10MHzに変換され、
帯域フィルタ34を通してAMIIII器(OEM)3
5に供給される。
The switch 22 connects the antenna 30 to the bandpass filter 31 when no switching signal is supplied, and the received high frequency signal received by the antenna 30 at this time is passed through the bandpass filter 31.
.. It is supplied to a mixer 33 through an amplifier 32, where the reference signal is reduced and mixed and converted to a frequency of 10 MHz.
AMIII device (OEM) 3 through bandpass filter 34
5.

AM復調器35で復調されて得られる周波数10KHz
の遅延測定信号は逓信器37でm逓倍され、波形整形回
路38で波形整形されて時till定部23に供給され
る。時間測定部23は制御部23よりの測定信号を逓信
器29でm逓倍した信号を基準とし移動局2からの遅延
測定信号との時a差(第31i1(A)GC示す時I!
O差j+)を計測し、位置算出部39に供給する。
Frequency 10KHz obtained by demodulating with AM demodulator 35
The delay measurement signal is multiplied by m by a transmitter 37, shaped into a waveform by a waveform shaping circuit 38, and then supplied to the time determining section 23. The time measurement unit 23 uses the signal obtained by multiplying the measurement signal from the control unit 23 by m by the transmitter 29 as a reference, and uses the time difference a (I! as indicated by the 31i1(A) GC) with the delay measurement signal from the mobile station 2 as a reference.
0 difference j+) is measured and supplied to the position calculation section 39.

位置算出部39は第1.第2の従局より端子40を介し
て第3図(8)、(C)に示す時間差t2.t=が供給
され、この時間差jl * j2 *t3夫々を親局及
び各従局大々と、移動局との距1111i+、tz、t
t夫々ニ換算し、親鳥、第1゜第2の従局夫々を中心と
する距離tllt2゜L3の円の交点を求めて移動局の
位置を決定する。
The position calculation unit 39 is the first. The time difference t2 shown in FIGS. 3(8) and 3(C) is transmitted from the second slave station via the terminal 40. t= is supplied, and this time difference jl * j2 * t3 is calculated as the distance 1111i+, tz, t between the master station, each slave station, and the mobile station, respectively.
The position of the mobile station is determined by calculating the intersection of circles having a distance of tllt2°L3 centered on the parent bird and the 1st and 2nd slave stations.

第4図は移動局の一実施例のブロック図を丞す。FIG. 4 shows a block diagram of one embodiment of a mobile station.

同図中、アンテナ42で受信された親局よりの高周波信
号はスイッチ43からアンプ44に供給され、ここで増
幅され、混合器45で局部発振器46よりの局発信号と
減界混合され中間周波信号とされる。この中間周波信号
はAMtlXll器48に供給されて親局の副一部20
の出力した測定信号が復調され制御部49に供給される
。制御部49はこの測定信号の入来後所定時間だけスイ
ッチ43を切換えてアンテナ42を送信に使用する。
In the figure, a high frequency signal from a master station received by an antenna 42 is supplied from a switch 43 to an amplifier 44, where it is amplified, and a mixer 45 delimits and mixes it with a local oscillation signal from a local oscillator 46 to generate an intermediate frequency signal. It is considered a signal. This intermediate frequency signal is supplied to the AMtlXll unit 48 and the sub-section 20 of the master station
The output measurement signal is demodulated and supplied to the control section 49. The control unit 49 switches the switch 43 for a predetermined period of time after receiving the measurement signal to use the antenna 42 for transmission.

また中間周波信号は遅延回路51で第3図(D)に示す
#l1ijo  (@えば300μsec )だけ遅延
されて混合器52に供給され、ここで局発信号と加算混
合され親局の送信する測定信号と同一周波数の高周波信
号(即ち遅延測定信号のAM変調信号)とされる。この
高周波信号は帯域フィルタ53及びアンプ54及びスイ
ッチ43を経てアンテナ42より送信される。
Further, the intermediate frequency signal is delayed by #l1ijo (for example, 300 μsec) as shown in FIG. 3(D) in the delay circuit 51, and then supplied to the mixer 52, where it is added and mixed with the local oscillation signal and measured to be transmitted from the master station. It is assumed to be a high frequency signal having the same frequency as the signal (ie, an AM modulated signal of the delay measurement signal). This high frequency signal is transmitted from the antenna 42 via a bandpass filter 53, an amplifier 54, and a switch 43.

第5図は従局の一実施例のブロック図を示す0同図中、
アンテノ゛で受信した親局及び移動局よりの高周波信号
は帯域フィルタ61.アンプ62を経て混合器63に供
給され、ここで発振器64の出力する周波数01の高安
定基準信号と減算混合されて周波数10MH2に変換さ
れ、帯域フィルタ65で帯域tiIIj!された後AM
tl調器66に供給される。AMv!JI器66u周波
数10KHz (7)親局よりの測定信号及び移動局よ
りの遅延測定信号夫々をIIEIする。この測定信号及
び遅延測定信号は逓信器67でm逓倍され、かつ波形整
形回路68で波形整形されて時m111定部69及びI
!13 ’#J l!l571に供給され、る。
FIG. 5 shows a block diagram of an embodiment of the slave station.
High frequency signals from the master station and mobile station received by the antenna are passed through a bandpass filter 61. It is supplied to a mixer 63 via an amplifier 62, where it is subtractively mixed with a highly stable reference signal of frequency 01 outputted from an oscillator 64, converted to a frequency of 10MH2, and then passed through a bandpass filter 65 to a band tiIIj! AM after being
It is supplied to the tl adjuster 66. AMv! JI device 66u frequency 10 KHz (7) Perform IIEI on the measurement signal from the master station and the delay measurement signal from the mobile station. The measurement signal and the delay measurement signal are multiplied by m in a transmitter 67, and are waveform-shaped in a waveform shaping circuit 68, and then are
! 13'#J l! 1571.

糾IIl!I71は測定信号を受信した後待機状態とな
り、峙m測定部69にて遅延測定信号との時間差を測定
させ端子72より親局に供給する。また118fFIi
測定部69の基準発振器は^安定発振器64を分局器7
0にて分周した信号にて充分向11されている。第1.
第2の従局夫々はB[差tl。
笾IIl! After receiving the measurement signal, the I71 enters a standby state, has a time measurement section 69 measure the time difference with the delay measurement signal, and supplies it to the master station from the terminal 72. Also 118fFIi
The reference oscillator of the measuring section 69 is the stable oscillator 64 and the branching unit 7.
The signal frequency-divided by 0 is sufficient for the direction 11. 1st.
Each of the second slave stations has B[difference tl.

12夫々を得てIIEIに供給する。12 each and supply it to IIII.

ここで、第3図に示す如く、親局と第1の従局図の距離
により既知の時1m差ts1が生じ、親鳥と第2の従局
間の距離によりa知の時I!!1差ts2が生じるとき
、親局、第1の従局、第2の従局夫々から移動局までの
距1t+、tz、ti夫々は次式%式% rIWR差tS1.t、2.toは既知であり、時間差
i1 a t2− ’j3を測定して距melt + 
* t 21L3を得ることができる。
Here, as shown in FIG. 3, the distance between the master station and the first slave station causes a difference ts1 of 1 m at the known time, and the distance between the master station and the second slave station causes the difference ts1 at the known time. ! When 1 difference ts2 occurs, the distances 1t+, tz, and ti from each of the master station, first slave station, and second slave station to the mobile station are calculated using the following formula % rIWR difference tS1. t, 2. to is known, and the time difference i1 a t2- 'j3 is measured to find the distance melt +
*t21L3 can be obtained.

このように、iI局、移eiは正弦波で振幅変調した信
号を送信するため、送信信号の帯域が狭くて済む。また
、11局及び第1.第2の従局夫々は測定信号及び遅延
測定信号を逓倍した信号により峙rIJ差を測定するた
めIIn差を高精度に測定でき、時間差から決定される
移動局2の位置精度が向上する。また、親局と移動局と
少なくとも2つの従局との比較的小さな規模でシステム
を構成できコストも高くならない。
In this way, since the iI station and the station ei transmit a signal whose amplitude is modulated with a sine wave, the band of the transmission signal can be narrow. Also, 11 stations and 1st station. Since each of the second slave stations measures the relative rIJ difference using a signal obtained by multiplying the measurement signal and the delay measurement signal, the IIn difference can be measured with high accuracy, and the position accuracy of the mobile station 2 determined from the time difference is improved. Furthermore, the system can be constructed on a relatively small scale, consisting of a master station, a mobile station, and at least two slave stations, and the cost does not increase.

なお、従局を3局以上設置して移動局の位11!精度を
上げることができる。また、移動局が複数ある場合、各
移動局の固定遅延時開1.を異ならしめることにより移
動局を識別することができる。
In addition, if three or more slave stations are installed, the number of mobile stations is 11! Accuracy can be increased. In addition, when there are multiple mobile stations, each mobile station has a fixed delay time of 1. A mobile station can be identified by making the numbers different.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の位置測定システムによれば、送信
する信号の帯域が狭くて済み、位置精度を^くできシス
テム規模が小さくて済み、実用上きわめて有用である。
As described above, according to the position measuring system of the present invention, the band of the signal to be transmitted can be narrow, the position accuracy can be improved, and the system scale can be small, making it extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図はrA局の一実施例のブロック図、第3図は本発
明システムのタイムシーケンスを示す図、 第4図は移動局の・一実施例のブロック図、第5図は従
局の一実施例のブロック図である。 図において、 1は!1局、 2は移動局、 3.4は従局 を示す。 特許出願人 富 士 通 株式会社 杢発明/)庸哩藺 第1図 =t=mストのタ4ムンナメ1示す刃 第3図
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the rA station, Fig. 3 is a diagram showing the time sequence of the system of the present invention, and Fig. 4 is a diagram of an embodiment of the mobile station. Block Diagram FIG. 5 is a block diagram of one embodiment of the slave station. In the diagram, 1 is! 1 station, 2 is a mobile station, and 3.4 is a slave station. Patent Applicant: Fujitsu Moku Invention Co., Ltd./) Yokohama Figure 1 = t = m Strike 4 Munname 1 Blade Figure 3

Claims (1)

【特許請求の範囲】  親局(1)より正弦波の測定信号の振幅変調信号を送
信し、 移動局(2)で該測定信号の振幅変調信号を受信して所
定時間遅延した遅延測定信号の振幅変調信号を送信し、 該親局(1)で該遅延測定信号の振幅変調信号を受信し
て遅延測定信号を復調し、該測定信号を逓倍した信号と
復調した遅延測定信号を逓倍した信号との時間差を計測
し、 複数の従局(3、4)で該測定信号及び遅延測定信号の
振幅変調信号を受信して測定信号及び遅延測定信号を復
調し、復調した測定信号を逓倍した信号と復調した遅延
測定信号を逓倍した信号との時間差を計測し、 該規局(1)及び複数の従局(3、4)夫々で時間差に
より移動局(2)までの距離を算出して移動局(2)の
位置を決定することを特徴とする位置測定システム。
[Claims] A master station (1) transmits an amplitude modulated signal of a sine wave measurement signal, a mobile station (2) receives the amplitude modulated signal of the measurement signal, and generates a delayed measurement signal delayed by a predetermined time. transmitting an amplitude modulation signal, receiving the amplitude modulation signal of the delay measurement signal at the master station (1) and demodulating the delay measurement signal, and generating a signal obtained by multiplying the measurement signal and a signal obtained by multiplying the demodulated delay measurement signal. A plurality of slave stations (3, 4) receive the amplitude modulation signal of the measurement signal and the delay measurement signal, demodulate the measurement signal and the delay measurement signal, and generate a signal obtained by multiplying the demodulated measurement signal. The time difference between the demodulated delay measurement signal and the multiplied signal is measured, and the distance to the mobile station (2) is calculated based on the time difference at each of the normal station (1) and the plurality of slave stations (3, 4). 2) A position measuring system characterized by determining the position.
JP6843789A 1989-03-20 1989-03-20 Position measurement system Pending JPH02247590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6843789A JPH02247590A (en) 1989-03-20 1989-03-20 Position measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6843789A JPH02247590A (en) 1989-03-20 1989-03-20 Position measurement system

Publications (1)

Publication Number Publication Date
JPH02247590A true JPH02247590A (en) 1990-10-03

Family

ID=13373685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6843789A Pending JPH02247590A (en) 1989-03-20 1989-03-20 Position measurement system

Country Status (1)

Country Link
JP (1) JPH02247590A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016341A1 (en) * 1994-11-23 1996-05-30 Christopher Probert A position determining system and a method pertaining thereto
JP2009520193A (en) * 2005-12-15 2009-05-21 インビジトラック, インコーポレイテッド Method and system for reduced attenuation in object tracking using RF technology
US8648722B2 (en) 2005-12-15 2014-02-11 Invisitrack, Inc. Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US9288623B2 (en) 2005-12-15 2016-03-15 Invisitrack, Inc. Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US9507007B2 (en) 2005-12-15 2016-11-29 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US9699607B2 (en) 2005-12-15 2017-07-04 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US9813867B2 (en) 2005-12-15 2017-11-07 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US9913244B2 (en) 2005-12-15 2018-03-06 Polte Corporation Partially synchronized multilateration or trilateration method and system for positional finding using RF
US10091616B2 (en) 2005-12-15 2018-10-02 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US10281557B2 (en) 2005-12-15 2019-05-07 Polte Corporation Partially synchronized multilateration/trilateration method and system for positional finding using RF
US10440512B2 (en) 2012-08-03 2019-10-08 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
WO2020085061A1 (en) * 2018-10-25 2020-04-30 株式会社オートネットワーク技術研究所 Communication device
US10834531B2 (en) 2005-12-15 2020-11-10 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US10845453B2 (en) 2012-08-03 2020-11-24 Polte Corporation Network architecture and methods for location services
US10863313B2 (en) 2014-08-01 2020-12-08 Polte Corporation Network architecture and methods for location services
US11125850B2 (en) 2011-08-03 2021-09-21 Polte Corporation Systems and methods for determining a timing offset of emitter antennas in a wireless network
US11255945B2 (en) 2018-03-27 2022-02-22 Polte Corporation Multi-path mitigation in tracking objects using compressed RF data
US11835639B2 (en) 2011-08-03 2023-12-05 Qualcomm Technologies, Inc. Partially synchronized multilateration or trilateration method and system for positional finding using RF

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016341A1 (en) * 1994-11-23 1996-05-30 Christopher Probert A position determining system and a method pertaining thereto
US9507007B2 (en) 2005-12-15 2016-11-29 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US11012811B2 (en) 2005-12-15 2021-05-18 Polte Corporation Multi-path mitigation in tracking objects using a distributed antenna system
US10433111B2 (en) 2005-12-15 2019-10-01 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US9288623B2 (en) 2005-12-15 2016-03-15 Invisitrack, Inc. Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
JP2016105102A (en) * 2005-12-15 2016-06-09 インビジトラック, インコーポレイテッド Methods and system for reduced attenuation in tracking objects using rf technology
US8648722B2 (en) 2005-12-15 2014-02-11 Invisitrack, Inc. Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US9813867B2 (en) 2005-12-15 2017-11-07 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US10506376B2 (en) 2005-12-15 2019-12-10 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US9913244B2 (en) 2005-12-15 2018-03-06 Polte Corporation Partially synchronized multilateration or trilateration method and system for positional finding using RF
US9955301B2 (en) 2005-12-15 2018-04-24 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
JP2018081109A (en) * 2005-12-15 2018-05-24 ポルテ・コーポレイションPoLTE Corporation Methods and system for reduced attenuation in tracking objects using rf technology
US10091616B2 (en) 2005-12-15 2018-10-02 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US10117218B2 (en) 2005-12-15 2018-10-30 Polte Corporation Partially synchronized multilateration or trilateration method and system for positional finding using RF
US10281557B2 (en) 2005-12-15 2019-05-07 Polte Corporation Partially synchronized multilateration/trilateration method and system for positional finding using RF
US11474188B2 (en) 2005-12-15 2022-10-18 Polte Corporation Partially synchronized multilateration or trilateration method and system for positional finding using RF
JP2009520193A (en) * 2005-12-15 2009-05-21 インビジトラック, インコーポレイテッド Method and system for reduced attenuation in object tracking using RF technology
US9699607B2 (en) 2005-12-15 2017-07-04 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
US11131744B2 (en) 2005-12-15 2021-09-28 Polte Corporation Partially synchronized multilateration or trilateration method and system for positional finding using RF
US10834531B2 (en) 2005-12-15 2020-11-10 Polte Corporation Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology
JP2014013240A (en) * 2005-12-15 2014-01-23 Invisitrack Inc Method and system for reducing attenuation in rf technology-based object tracking
US11125850B2 (en) 2011-08-03 2021-09-21 Polte Corporation Systems and methods for determining a timing offset of emitter antennas in a wireless network
US11835639B2 (en) 2011-08-03 2023-12-05 Qualcomm Technologies, Inc. Partially synchronized multilateration or trilateration method and system for positional finding using RF
US10845453B2 (en) 2012-08-03 2020-11-24 Polte Corporation Network architecture and methods for location services
US11070942B2 (en) 2012-08-03 2021-07-20 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US11722840B2 (en) 2012-08-03 2023-08-08 Qualcomm Technologies, Inc Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US10440512B2 (en) 2012-08-03 2019-10-08 Polte Corporation Angle of arrival (AOA) positioning method and system for positional finding and tracking objects using reduced attenuation RF technology
US10863313B2 (en) 2014-08-01 2020-12-08 Polte Corporation Network architecture and methods for location services
US10873830B2 (en) 2014-08-01 2020-12-22 Polte Corporation Network architecture and methods for location services
US11917493B2 (en) 2014-08-01 2024-02-27 Qualcomm Technologies, Inc. Network architecture and methods for location services
US11395105B2 (en) 2014-08-01 2022-07-19 Polte Corporation Network architecture and methods for location services
US11375341B2 (en) 2014-08-01 2022-06-28 Polte Corporation Network architecture and methods for location services
US11388554B2 (en) 2014-08-01 2022-07-12 Polte Corporation Network architecture and methods for location services
US11255945B2 (en) 2018-03-27 2022-02-22 Polte Corporation Multi-path mitigation in tracking objects using compressed RF data
US11733341B2 (en) 2018-03-27 2023-08-22 Qualcomm Technologies, Inc. Multi-path mitigation in tracking objects using compressed RF data
WO2020085061A1 (en) * 2018-10-25 2020-04-30 株式会社オートネットワーク技術研究所 Communication device

Similar Documents

Publication Publication Date Title
JPH02247590A (en) Position measurement system
CA1314964C (en) Navigation and tracking system
US4651156A (en) Integrated radio location and communication system
US6587079B1 (en) Object location
US6111536A (en) System and method for distance measurement by inphase and quadrature signals in a radio system
EP0249638B1 (en) A method and apparatus for measuring distances
US3889264A (en) Vehicle locating system utilizing AM broadcasting station carriers
US3242494A (en) Position determination system
CN106483495B (en) A kind of positioning of indoor sport label and speed-measuring method
JPH0359482A (en) Position detecting system
US2440755A (en) Radio-frequency navigation system
US2611127A (en) Continuous wave navigation system
US3967277A (en) Radio navigation system
US4396918A (en) Low-frequency radio navigation system
CA2101216C (en) Method of correcting measurement errors caused by clock deviations in a secondary radar system
US3328565A (en) Navigation and position plotting system
US3797015A (en) Method of and system for locating a position
JPH063428A (en) Position spotting method
US3988733A (en) VOR receiver with improved performance in a Doppler navigation system
GB937491A (en) Improvements in or relating to a device for determining the direction of the ground speed of a moving body
US4490722A (en) Radio navigation system
JPS61198072A (en) Navigation system for automobile
JPS5950374A (en) Moving body position confirming device
US2975417A (en) Long range radio navigation system
RU2115937C1 (en) Method of radio navigation measurement in pulse-position radio navigation system