JPH02232303A - Manufacture of titanium alloy powder sintered product - Google Patents
Manufacture of titanium alloy powder sintered productInfo
- Publication number
- JPH02232303A JPH02232303A JP5144889A JP5144889A JPH02232303A JP H02232303 A JPH02232303 A JP H02232303A JP 5144889 A JP5144889 A JP 5144889A JP 5144889 A JP5144889 A JP 5144889A JP H02232303 A JPH02232303 A JP H02232303A
- Authority
- JP
- Japan
- Prior art keywords
- sintered
- titanium alloy
- alloy
- product
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 35
- 239000000843 powder Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000005480 shot peening Methods 0.000 claims abstract description 19
- 239000002344 surface layer Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 238000005245 sintering Methods 0.000 claims abstract description 8
- 230000009466 transformation Effects 0.000 claims abstract description 6
- 239000000047 product Substances 0.000 claims description 37
- 230000008569 process Effects 0.000 claims description 10
- 239000011265 semifinished product Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 3
- 238000000227 grinding Methods 0.000 abstract description 7
- 238000003754 machining Methods 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000012467 final product Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000009661 fatigue test Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 101100227322 Caenorhabditis elegans fli-1 gene Proteins 0.000 description 1
- 101100281205 Mus musculus Fli1 gene Proteins 0.000 description 1
- 238000012356 Product development Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- -1 that is Substances 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野〕
本発明は、粉末焼結されたチタン合金製品の歩留り向上
および低コスト化に関わるチタン合金粉末焼結製品の製
造方法に関するものである.[従来の技術]
チタンおよびチタン合金は比強度が高く、また靭性,耐
食性、耐熱性などが優れた材料であるが、中でもチタン
合金は溶解、鍛造、切削性などに麓点がある。そのため
にいわゆるNear Net Shape加工技術が種
々試みられており、その一つの有力な技術として粉末冶
金法がある。チタン合金の粉末冶金法としては、原料粉
末として所定の合金成分の粉末を使用し、圧粉成型(以
下CIPと記載する),真空焼結の工程を経て製造した
焼結チタン合金を高温静水圧下で圧下して成形する(以
下旧Pと記載する)素粉末混合法が代表的なものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a titanium alloy powder sintered product, which improves the yield and reduces the cost of the powder sintered titanium alloy product. [Prior Art] Titanium and titanium alloys have high specific strength, and are materials with excellent toughness, corrosion resistance, heat resistance, etc., but titanium alloys have some drawbacks in terms of melting, forging, machinability, etc. For this purpose, various so-called near net shape processing techniques have been attempted, and one of the leading techniques is a powder metallurgy method. The powder metallurgy method for titanium alloys uses powders with predetermined alloy components as raw material powders, and processes the sintered titanium alloys through powder compacting (hereinafter referred to as CIP) and vacuum sintering using high-temperature isostatic pressure. A typical method is a raw powder mixing method (hereinafter referred to as old P) in which the powder is pressed down and molded.
かかる素粉末混合法で製造したチタン合金は、鋳塊溶解
圧延法で製造したものとほぼ同等の引張特性、破壊靭性
、疲労特性を示すことが明らかになっている。また粉末
を出発材料とすれば、小ロソト多品種の製品が容易に最
終製品形状(Net Shape)ないしは最終製品に
近い形状(Near Net Shape)に成形でき
る利点があり、今後市場がますます拡大することが期待
できる。It has been revealed that titanium alloys produced by such a raw powder mixing method exhibit tensile properties, fracture toughness, and fatigue properties that are almost equivalent to those produced by the ingot melting and rolling method. In addition, using powder as a starting material has the advantage that a wide variety of products can be easily molded into the final product shape (net shape) or a shape close to the final product (near net shape), and the market will continue to expand in the future. We can expect that.
ここで、製品開発ニーズとして、チタンおよびチタン合
金の機能性を活用した小ロットの製品の供給を渇望され
ており,さらに低価格の製品を希望されることが多くな
った。しかしながら,上述の方法では表面にミクロポロ
シティー(残留空隙)が残存してしまい、素材の製品化
の過程で切削加工および表面機械仕上げ工程が必須であ
り、多大な費用が必要でまたその工程も必然的に長くな
り、低価格化が計れない実情である。Here, as a product development need, there is a desire to supply small-lot products that utilize the functionality of titanium and titanium alloys, and there is an increasing demand for products with even lower prices. However, with the above method, microporosities (residual voids) remain on the surface, and cutting and surface machining processes are essential in the process of turning the material into a product, which requires a large amount of cost and is also time consuming. The reality is that it will inevitably become longer and it is impossible to reduce the price.
[発明が解決しようとする課題]
本発明は上述した製造工程をさらに簡素にした高能率の
製造法を提供するものである。[Problems to be Solved by the Invention] The present invention provides a highly efficient manufacturing method that further simplifies the above-mentioned manufacturing process.
容易に最終製品形状ないしは最終製品に近い形状に成形
できる利点がある粉末冶金技術の工程で、真空焼結後の
焼結チタン合金中に存在するがミクロボロシティーHI
P処理後にも焼結品の表面層に多数認められる.これら
のミクロポロシティーが最終製品まで存在すると,疲労
亀裂の発生起点となり疲労特性が悪くなる.
一方,これまで、ショットピーニングにより機械部品の
疲労寿命が著しく向上するといわれている.この効果は
これまでバネ材や線材の疲労特性の向上に著しいことが
よく知られている{例えば金属便覧改訂4版(丸善.
1982)P812}が,粉末焼結製品では、一部の部
品を除いて,あまり普及していない。近年粉末焼結技術
が大きく進歩し. NearNetShapeの技術が
大幅に発達してきたが、未だ製品の表面仕上げには機械
研削仕上げがなされ、その機械研削仕上げ面に更にショ
ットピーニングを行い,機械部品の疲労寿命を上げる努
力がなされている.粉末焼結半製品の表面層に残留した
空隙の除去のために機械研削仕上げすることは,製品製
造コストを上げるばかりでなく、製品歩留りの低下の大
きな要因である。特に機能材料としてチタンおよびチタ
ン合金材料の使用ニーズが高まり,それらの製造コスト
の切り下げ要求が多い。そのために製造工程をより簡素
化して、その機能特性を上げる必要が出てきた。そこで
本発明者らは所望の材料寸法と表面状態を得るために型
材質の選択および粉末焼結工程およびショットピーニン
グの表面仕上工程を組み合わせて、製品製造工程の短縮
と歩留り向上および低コスト化の出来るチタン合金粉末
焼結製品の製造方法を発明した.手始めにエンジン部品
のコネクッテイングロツドの軽量化を検討し、低コスト
化を可能にする粉末焼結されたチタン合金製品の製造技
術を開発した.特にショットピーニングによる表面改質
効果を十分に発揮できるように次の三点の工夫を行った
.
1)疲労特性の向上:ショットピーニングによる残留圧
縮応力の発生とその活用.
2)製品表面層の残留空隙の無害化一表面層に存在する
ミクロポロシティーの圧潰とその近傍の加工硬化の促進
と硬化した層の剥離.
3) It品表面の美麗化:機械研削に匹敵する外観と
光沢の確保.
本発明はこれらの基礎的な知見にもとすいて完成したも
のである.
[課題を解決するための手段および作用]本発明の着眼
点は,本発明者が長年にわたり研究してきた合金粉末法
および素粉末混合法によるチタン合金の粉末焼結製品の
製造技術とショットピーニング技術にある.すなわち、
従来の溶解法に代わって所定の合金成分となるよう予め
機械的に混合している混合粉末を、金型プレス,冷間静
水圧プレスなどで所定の形状に圧粉成形したCIP品に
,さらに真空焼結の工程を経て製造した焼結チタン合金
のHIP製品の表面層に多数みられる残留空隙を製造工
程簡素化のために有用なものとして活用するものである
.従来法では粉末焼結製品の表面層に残留した空隙を機
械研削により除去していた.本発明ではその残留空隙を
ショットピーニングにより圧潰して表面から深さ方向に
表面層を加工硬化させ併せて、ショットピーニングによ
り残留圧縮応力を発生させ、ショットピーニング中に圧
潰残留空隙の界面部を表面層の剥離起点にして加工硬化
した表面部分を剥離させ、機械研削相当の表面に仕上げ
る.即ちチタン合金粉末焼結製品を製造するに際し,構
成金属元素粉末を混合、圧粉成型、真空焼結の工程を経
て製造した焼結チタン合金を700℃以上β変態点温度
までのα+β2相域で加圧し、その半製品の表面層に残
留した空隙をショットピーニングして除去して表面仕上
げをすることを特徴とするチタンおよびチタン合金の粉
末焼結製品の製造方法を確立した.以下に本発明につい
て詳細に説明する.本発明において、チタン合金として
は,Tiに例えばA Q ,V,Mo,Cr,Zr.S
n,Faなどの1種または2種以上と含有せしめてなる
チタン合金に適用できる。It is a powder metallurgy process that has the advantage of being easily molded into the final product shape or a shape close to the final product.
Even after the P treatment, a large number of particles are observed on the surface layer of the sintered product. If these microporosities exist in the final product, they become the starting point for fatigue cracks and deteriorate fatigue properties. On the other hand, it has been said that shot peening significantly improves the fatigue life of mechanical parts. It has been well known that this effect significantly improves the fatigue properties of spring materials and wire rods {for example, Metal Handbook, Revised 4th Edition (Maruzen).
1982) P812} is not widely used in powder sintered products, except for some parts. Powder sintering technology has made great progress in recent years. Although NearNetShape technology has significantly developed, the surface finish of products is still machine-ground, and efforts are being made to extend the fatigue life of mechanical parts by applying shot peening to the machine-ground finished surface. Mechanical grinding to remove voids remaining in the surface layer of powder sintered semi-finished products not only increases product manufacturing costs but is also a major factor in reducing product yield. In particular, there is an increasing need for the use of titanium and titanium alloy materials as functional materials, and there are many demands to reduce their manufacturing costs. Therefore, it has become necessary to further simplify the manufacturing process and improve its functional characteristics. Therefore, the present inventors combined the selection of the mold material, the powder sintering process, and the shot peening surface finishing process to obtain the desired material dimensions and surface condition, thereby shortening the product manufacturing process, improving yield, and reducing costs. We invented a method for manufacturing titanium alloy powder sintered products. First, we investigated ways to reduce the weight of connecting rods for engine parts, and developed a manufacturing technology for powder-sintered titanium alloy products that would reduce costs. In particular, the following three points were devised to fully utilize the surface modification effect of shot peening. 1) Improvement of fatigue properties: Generation of residual compressive stress by shot peening and its utilization. 2) Detoxification of residual voids in the product surface layer - Collapse of microporosity existing in the surface layer, acceleration of work hardening in the vicinity, and peeling of the hardened layer. 3) Beautifying the surface of IT products: ensuring an appearance and gloss comparable to mechanical grinding. The present invention was completed based on these basic findings. [Means and effects for solving the problem] The focus of the present invention is on the manufacturing technology and shot peening technology of titanium alloy powder sintered products using the alloy powder method and the raw powder mixing method, which the present inventor has researched for many years. It is in. That is,
Instead of the conventional melting method, a mixed powder that has been mechanically mixed in advance to have a specified alloy component is compacted into a specified shape using a die press, cold isostatic press, etc. to form a CIP product. This project utilizes the large number of residual voids found in the surface layer of sintered titanium alloy HIP products manufactured through the vacuum sintering process to simplify the manufacturing process. In the conventional method, the voids remaining in the surface layer of powder sintered products were removed by mechanical grinding. In the present invention, the residual voids are crushed by shot peening, the surface layer is work-hardened from the surface in the depth direction, and residual compressive stress is generated by shot peening, and the interface part of the crushed residual voids is crushed to the surface during shot peening. The work-hardened surface area is used as the starting point for layer peeling, and the surface is finished to be equivalent to mechanical grinding. In other words, when producing a titanium alloy powder sintered product, the sintered titanium alloy produced through the processes of mixing the constituent metal element powders, compacting, and vacuum sintering is heated in the α + β two phase region at a temperature of 700°C or higher up to the β transformation point temperature. We have established a method for producing powder sintered products of titanium and titanium alloys, which is characterized by applying pressure and removing the remaining voids in the surface layer of semi-finished products by shot peening to finish the surface. The present invention will be explained in detail below. In the present invention, titanium alloys include Ti, for example, A Q , V, Mo, Cr, Zr. S
It can be applied to titanium alloys containing one or more of n, Fa, etc.
焼結製品の変態点は示差熱分析により決定したものを用
いる.
チタン合金の構成金属元素粉末を混合し.最終製品形状
ないし最終製品に近い形状に成形のために圧粉成型して
、真空焼結の工程を経て製造した焼結チタン合金をII
IP処理する.
多数の残留空隙が生成しているCIP後焼結処理した半
製品をHIP処理した製品を切断して断面IIimを観
察すると、残留空隙が製品の内部まで深く存在すること
がある.このことは、製品使用特性の規格を満足しない
ことになる. CIP後焼結処理した半製品を}IIP
処理すると,静水圧と特定の温度条件によりHIP製品
の表面層に残留空隙が集まった様相となる.それが表面
下約200μmの深さに散見されることが多い,これ以
上の深さになると,本発明の効果が少なくなるので、残
留空隙の存在する深さを150μmを限定の基準にして
いる。The transformation point of the sintered product is determined by differential thermal analysis. Mix the constituent metal element powders of titanium alloy. II is a sintered titanium alloy manufactured through a vacuum sintering process after compacting into the final product shape or a shape close to the final product.
Perform IP processing. If you cut a HIP-treated semi-finished product that has been sintered after CIP and observe the cross section IIim, the residual voids may exist deep inside the product. This means that the product usage characteristics standards are not met. Semi-finished products that have been sintered after CIP are subjected to }IIP
When processed, hydrostatic pressure and specific temperature conditions result in a collection of residual voids in the surface layer of the HIP product. They are often found at a depth of about 200 μm below the surface.If the depth exceeds this, the effect of the present invention will be reduced, so the depth at which residual voids exist is set at 150 μm. .
この深さが浅いほど、ショットピーニングによる剥離代
が少なく,歩留りは高くなる.これらの残留空隙の存在
する深さはHIPの加熱温度と加圧力による。700℃
以上β変態点温度までのα+β2相域で加圧することに
より約150μmの深さに残留空隙を抑制できる.
700℃未満の}IIPの加熱温度では表面下約200
μm以上残留空隙がみられるようになり疲労特性、引張
特性などが悪くなる.またβ変態点以上の加熱では組織
が粗大化して、疲゜労特性、引張特性などが悪くなる.
加圧力は特定しないが,ここで限定した加熱温度条件で
は、250kg/cm2以上の圧力を用いて1時間以上
の静水圧プレス条件でよい結果を得ることが出来る.ま
た加圧力が高いほど,残留空隙の存在する深さが浅くな
る.そのIIIP半製品の表面層に残留した空隙をショ
ットピーニングにより圧潰し、加工硬化した層を剥離し
て、除去して表面仕上げをする.鋼球を投射するシーツ
トビーニングでは、鋼球のサイズ,硬さ,投射速度など
が残留空隙の圧潰を左右する.この条件はチタン合金の
成分系に応じて選定する.その基準はチタン合金の硬度
を計測し、それ以上の硬さの球状物を10m/see以
上で投射すると,20分から40分の投射時間で残留空
隙を圧潰,剥離して美麗な金属光沢を得られる.鋼球の
サイズは限定しないが、焼結製品および}lIPi2品
の表面粗さよりも大きい100μ鳳から600μ一の径
の鋼球で投射することにより、その目的を達成できる。The shallower the depth, the smaller the amount of peeling due to shot peening, and the higher the yield. The depth at which these residual voids exist depends on the heating temperature and pressure of HIP. 700℃
By applying pressure in the α+β two-phase region up to the β transformation temperature, residual voids can be suppressed to a depth of about 150 μm. At the IIP heating temperature of less than 700℃, approximately 200℃ below the surface.
Residual voids larger than μm become visible and fatigue properties, tensile properties, etc. deteriorate. Furthermore, heating above the β-transformation point causes the structure to coarsen, resulting in poor fatigue properties and tensile properties.
Although the pressing force is not specified, under the heating temperature conditions limited here, good results can be obtained under isostatic pressing conditions using a pressure of 250 kg/cm2 or more for 1 hour or more. Furthermore, the higher the applied pressure, the shallower the depth of residual voids. The voids remaining in the surface layer of the IIIP semi-finished product are crushed by shot peening, and the work-hardened layer is peeled off and removed to finish the surface. In sheet beaning, which involves projecting steel balls, the size, hardness, and projecting speed of the steel balls affect the collapse of residual voids. These conditions are selected depending on the composition of the titanium alloy. The standard measures the hardness of titanium alloy, and when a spherical object with a harder hardness is projected at a speed of 10 m/see or higher, the remaining voids are crushed and peeled off within 20 to 40 minutes, resulting in a beautiful metallic luster. It will be done. Although the size of the steel ball is not limited, the purpose can be achieved by projecting with a steel ball having a diameter of 100μ to 600μ, which is larger than the surface roughness of the sintered product and the lIPi2 product.
[実施例]
(1)2種類の粉末、すなわち、その組成がチタン99
.6%よりなるスポンジチタン粉末と,その組成がアル
ミニウム60%,バナジウム40%の添加用母合金粉末
を用意した.
(2)第1工程:チタン粉末と添加用母合金粉末を重量
比9:1の混合比で機械的に混合した.第2工程:その
混合粉末を所定の弾力性のある型に挿入,充填した.
HIP後において製品で10+++m径の疲労と引張の
試験片となるようにCIPの試験片を作製した.第3工
程:充填粉末を静水圧プレスにより圧粉成形した.第4
工程:圧粉体を真空度10−’torr, 1250℃
で焼結処理した.第5工程=1000kg/cm”,
900℃,3時間の条件下で熱間静水圧プレスをした.
第6工程:ショットピーニングの無いものと有るものの
比較をするために,ショットピーニング条件として0.
6yata径の鋼球(硬さ}lv590)を48m/s
ecで投射. 20分、40分の2水準行った.また機
械研削も比較材にした.なお,この合金のβ変態点は9
90℃である.
(3)従来法(ショットピーニング無し)および本発明
の方法で作ったTi−6A Q−4V合金の金属組織の
表面部の特徴を第1図、第2図、第3図に示す.第2図
から明らかなように,本発明の方法で製造した合金は残
留空隙が圧潰している.また第3図は第2図の圧潰した
残留空隙近傍の加工硬化層がflI1離した表面部を示
している.
この合金から引張試験片,疲労試験片を製作しそれぞれ
の試験を行った.疲労試験条件は軸荷重、R=−1.0
, f=20Hz,大気中,室温である.引張試験結果
を表1に,また疲労特性を第4図に示す.この結果が示
すように、本発明法に表 1機械的特性値
よる合金は従来法に比べて機械研削仕上げした材質特性
と同等の特性が得られた。[Example] (1) Two types of powder, that is, the composition is titanium 99
.. We prepared sponge titanium powder consisting of 6% titanium powder and additive master alloy powder whose composition was 60% aluminum and 40% vanadium. (2) First step: Titanium powder and additive master alloy powder were mechanically mixed at a weight ratio of 9:1. Second step: The mixed powder was inserted and filled into a predetermined elastic mold.
CIP test pieces were prepared so that the product would be a fatigue and tensile test piece with a diameter of 10+++ m after HIP. Third step: The filled powder was compacted using a hydrostatic press. Fourth
Process: Press the compact into a vacuum of 10-'torr, 1250℃
It was sintered. 5th step = 1000kg/cm”,
Hot isostatic pressing was performed at 900°C for 3 hours.
6th step: In order to compare the shot peening process with and without shot peening, the shot peening conditions were set to 0.
6yata diameter steel ball (hardness} lv590) at 48m/s
Projected with ec. There were two levels: 20 minutes and 40 minutes. Machine-ground materials were also used for comparison. The β transformation point of this alloy is 9
The temperature is 90℃. (3) Figures 1, 2, and 3 show the surface characteristics of the metal structures of Ti-6A Q-4V alloys produced by the conventional method (without shot peening) and the method of the present invention. As is clear from Figure 2, the residual voids in the alloy produced by the method of the present invention are collapsed. Furthermore, FIG. 3 shows the surface area of the work-hardened layer near the crushed residual void in FIG. 2, separated by flI1. Tensile test specimens and fatigue test specimens were made from this alloy and tested on each. Fatigue test conditions are axial load, R = -1.0
, f=20Hz, in the atmosphere, at room temperature. The tensile test results are shown in Table 1, and the fatigue properties are shown in Figure 4. As shown by the results, the alloys according to the mechanical properties shown in Table 1 obtained by the method of the present invention had properties equivalent to those obtained by mechanical grinding compared to the conventional method.
[発明の効果]
本発明の特徴は複雑な形体をもつ焼結体の製品について
も,投射角度などを工夫することにより残留空隙の少な
い健全な製品を機械研削工程を省いて製造できる、その
結果、製品の歩留り向上および低コスト化が達成できる
.このチタン合金の粉末焼結製品の製造方法はチタンの
粉末焼結製品についても適用し効果がある.
なお、本発明は回転電極法等により製造した合金粉末を
用いたHIP処理製品の表面成形用にも著しい効果があ
る。[Effects of the Invention] A feature of the present invention is that even for sintered products with complex shapes, by devising the projection angle etc., healthy products with few residual voids can be manufactured without the mechanical grinding process. , improved product yield and lower costs can be achieved. This manufacturing method for titanium alloy powder sintered products can also be applied to titanium powder sintered products. It should be noted that the present invention is also extremely effective for surface shaping of HIP-treated products using alloy powder produced by a rotating electrode method or the like.
【図面の簡単な説明】
第1図はTi−6A Q−4Vからなる組成を持つチタ
ン合金をHIP処理したままの光学顕微鏡による金属組
織の写真、
第2図は第1図と同一組成を持つチタン合金を本発明の
方法で作ったショットピーニング20分鋼球を投射した
ものの光学顕微鏡による金属#I織の写真,
第3図は第1図、第2図と伺一組成を持つチタン合金を
本発明の方法で作ったショットピーニング40分鋼球を
投射したものの光学顕微鏡による金属組織の写真、
第4図は従来法と本発明法の合金材の疲労特性を示すグ
ラフ、
である.
二旧77lI
L一一一j
第4図
く リ セ1 し ぎ虹[Brief explanation of the drawings] Figure 1 is an optical microscopic photograph of the metal structure of a titanium alloy with a composition consisting of Ti-6A Q-4V after HIP treatment. Figure 2 has the same composition as Figure 1. A titanium alloy made by the method of the present invention was shot peened for 20 minutes. An optical microscope photograph of metal #I texture was taken by projecting a steel ball. Figure 3 shows a titanium alloy having the same composition as Figures 1 and 2. Figure 4 is a photograph of the metal structure of a shot-peened steel ball produced by the method of the present invention shot for 40 minutes using an optical microscope. 2 old 77lI L111j Figure 4
Claims (1)
素粉末を混合、圧粉成型、真空焼結の工程を経て製造し
た焼結チタン合金を700℃以上β変態点温度までのα
+β2相域で加圧し、その半製品の表面層に残留した空
隙をショットピーニングして除去して表面仕上げをする
ことを特徴とするチタン合金の粉末焼結製品の製造方法
。When manufacturing titanium alloy powder sintered products, the sintered titanium alloy manufactured through the processes of mixing constituent metal element powders, compacting, and vacuum sintering is heated to α of 700°C or higher up to the β transformation point temperature.
A method for manufacturing a titanium alloy powder sintered product, which comprises applying pressure in the +β2 phase region, removing voids remaining in the surface layer of the semi-finished product by shot peening, and finishing the surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1051448A JPH0692605B2 (en) | 1989-03-03 | 1989-03-03 | Method for producing powder sintered product of titanium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1051448A JPH0692605B2 (en) | 1989-03-03 | 1989-03-03 | Method for producing powder sintered product of titanium alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02232303A true JPH02232303A (en) | 1990-09-14 |
JPH0692605B2 JPH0692605B2 (en) | 1994-11-16 |
Family
ID=12887215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1051448A Expired - Fee Related JPH0692605B2 (en) | 1989-03-03 | 1989-03-03 | Method for producing powder sintered product of titanium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0692605B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009041109A (en) * | 1996-06-14 | 2009-02-26 | Hoganas Ab | Powder metallurgical body with compacted surface |
JP2012255192A (en) * | 2011-06-09 | 2012-12-27 | Nhk Spring Co Ltd | Titanium alloy member, and production method therefor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62188735A (en) * | 1986-02-14 | 1987-08-18 | Kanto Denka Kogyo Kk | Manufacture of tini alloy wire or plate |
-
1989
- 1989-03-03 JP JP1051448A patent/JPH0692605B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62188735A (en) * | 1986-02-14 | 1987-08-18 | Kanto Denka Kogyo Kk | Manufacture of tini alloy wire or plate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009041109A (en) * | 1996-06-14 | 2009-02-26 | Hoganas Ab | Powder metallurgical body with compacted surface |
JP2012255192A (en) * | 2011-06-09 | 2012-12-27 | Nhk Spring Co Ltd | Titanium alloy member, and production method therefor |
US9920399B2 (en) | 2011-06-09 | 2018-03-20 | Nhk Spring Co., Ltd. | Titanium alloy member and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH0692605B2 (en) | 1994-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4771958B2 (en) | Method for producing ultra-fine submicron particle titanium or titanium alloy products | |
JP4304245B2 (en) | Powder metallurgy object with a molded surface | |
JPH0297652A (en) | Method for molding piercing type projectile | |
CA2496093C (en) | Process for producing components or semi-finished products which contain intermetallic titanium aluminide alloys, and components producible by the process | |
JP2002509191A (en) | High-density components made by uniaxial compression of agglomerated spherical metal powder | |
IL140220A (en) | Working and annealing liquid phase sintered tungsten heavy alloy | |
CN114507833A (en) | TB8 titanium alloy bar with gradient layer alpha-phase structure and preparation method thereof | |
US4534808A (en) | Method for refining microstructures of prealloyed powder metallurgy titanium articles | |
JPH02232303A (en) | Manufacture of titanium alloy powder sintered product | |
CN111659894B (en) | Preparation method of powder high-temperature alloy bar and disc | |
US4536234A (en) | Method for refining microstructures of blended elemental powder metallurgy titanium articles | |
CN109719298B (en) | TiAl-based alloy material with core-shell structure and preparation method thereof | |
US4808250A (en) | Method for refining microstructures of blended elemental titanium powder compacts | |
CN110434324A (en) | A kind of high-performance powder wrought alloy material and preparation method thereof | |
Pourbashiri et al. | Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method | |
JPH06306508A (en) | Production of low anisotropy and high fatigue strength titanium base composite material | |
JP2852414B2 (en) | Particle-reinforced titanium-based composite material and method for producing the same | |
CN113088758A (en) | Production method of TB3 titanium alloy disc wire for fasteners | |
JPS624804A (en) | Production of titanium alloy by element powder mixing method | |
JPS6043423B2 (en) | Method for manufacturing tool alloy with composite structure | |
CN110578071A (en) | Heat treatment method for improving hardness of high-temperature titanium alloy-based composite material | |
JPH03226504A (en) | Manufacture of high density titanium alloy powder sintered product | |
JPH0762407A (en) | Production of metal powder sintered compact and its ornament | |
JPH0741806A (en) | Surface treatment of sintered titanium alloy | |
JPH05171212A (en) | Production of movable scroll |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |